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Abstract. Tailored prosthesis design must to be done in as accurately as possible way to fit particular patient
requirements. Aiming this intent, some techniques based on image processing have been being studied. In this context,
the image quality is highly important and decisive in the accuracy, or even feasihility, of these methodologies. To do
so, the image treatment is done through the gamma correction technique, which must accomplish two as important as
objectives. contrast enhancement and intensity preservation. To solve this multi-objective problem, a classic and so
spread in literature technique the Non-Dominated Sorting Genetic Algorithm - version I (NSGA-I1) is applied, and besides,
an adaptive version. In this work, these algorithms were applied to some medical images, and the final results showed
that the adaptive techniques used in modified NSGA-11 are not only feasible, but also improves the final solutions.

Keywords: medical images, prosthesis, optimization, multiobjective genetic algorithm.
1. INTRODUCTION

It is clear that there exist many situations incgical optimization problems in which optimizati@f several
measures of performance (multi-objective proble®Ps) or criteria at once is unavoidable and thmeasures may
conflict with each other. In MOPs, instead of onpirnal solution, a set of optimal solutions (thed®a-optimal set)
occur due to the presence of multiple objectives.ildprovement for each solution in the Pareto-ogtiset can be
succeeded in any objective without degradationtifeast one of the others. One Pareto-optimal mwutannot be
declared as better than another unless extra imfitomis available. In order to make a better fiuhatision, a good way
is usually to find as many Pareto-optimal solutiaagossible.

Nowadays, the use of evolutionary algorithms (Etss¥olve MOPs is a common practice due to theirpetitive
performance on complex search spaces. EAs arekmelvn for their ability to deal with nonlinear amdmplex
optimization problems. The primary advantage of EAA®r other numerical methods is that they jusuireqthe
objective function values, while properties suchdiferentiability and continuity are not necessdryterms of EAs,
genetic algorithms (GAs) are numerical search taglléch operate according to procedures that rekethb principles
of natural selection and genetics. Because of theiibility, global perspective, and non-relianoa differential
information for their operation, GAs have been sssfully used in a wide variety of problems in sal’/engineering
and computation fields, e.g. Santaretlial. (2006), Donget al. (2007), Ishibuchit al. (1997), Wang and Cui (2009),
Qiu et al. (2009) and Coelho and Pessba (2009).

On other hand, the contrast enhancement and ittepeservation of gray-level digital images areedisn a
relevant research theme in medical applicatiorgs, Banget al. (2004), Qianet al. (2000) and Lin and Kao (2000).
Since there is always a trade-off between the remeénts for the enhancement of contrast and pratseny of
intensity, a multi-objective GA approach is propbs$e resolve this contradiction, making use ofdfisust and efficient
optimization structure. The effectiveness of thepmsed multi-objective genetic algorithm approaakddl on adaptive
probabilities of mutation and crossover is illusgthby a number of images of medical applicatia@iated to human
prosthesis design.

After this view, is important also to attempt taethecessity of this optimization procedure to maldimages. It
arises from the fact that, the growing image-baSéd programs need well contrasted and intensifradges to be
able to, at least with some well performance, ajpplgge processing or numerical methods to accomphkstasks. In
this particular case, based on the work of Judi@. (2009), where some of these authors developedthage-based
CAD methodology for geometric modeling of tailorptbsthesis, the final intent is to provide a weidafeasible
technique for these images pre-processing.
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The remainder of this paper is organized as folloMe section 2 presents the definitions, modeding metrics for
the contrast enhancement and intensity preservatignay-level images problem. Section 3 gives aergew in the
classic Non-Dominated Sorting Genetic Algorithmersion 1l (NSGA-II) and the adaptive procedure iempented in
the original formulation. In section 4 the tests formally presented and measured for the furtbaclasions around it
in section 5.

2. FUNDAMENTALS OF CONTRAST ENHANCEMENT AND INTENSI TY PRESERVATION IN GRAY-
LEVEL IMAGES

This section is based in the Kwekal. (2009) work. Thus it is a so complete one, becais®aiss some approaches
for contrast enhancement and also proposes a neywdrich is already used here. In general the tibgeds to get
contrast enhancement maintaining the mean imagasdity.

For the contrast enhancement, Kwekal. (2009) discussed the histogram transformationriecie for some
benchmark images. The result showed that the ephaintages had a change in the mean image intemgiigh is
defined in Eq. (1).

M=2z"1 ZU: zV: Ly (1)

u=1v=1

whereZ = U -V, U andV are the image’s width and height apg is the gray-level intensity in the pixel located a
(u,v). In this context, this change in tiM for the benchmark implies that the histogram timmsation even though
enhanced the contrast, became the viewing incemsist

Another point presented in the basis work is the tmage should also be characterized for its amoéin
information conveyed to the viewer. Intuitivelyriteans that a gray-level image is better if it cgvihe maximum
allowed gray-levels in a captured scene. This nrea@i done through a so used mathematical expressidhe
information theory, the called entropy given in E2).

L

H = —Zpilogz(pi) bits 2)

i=1

wherelL is the feasible representative gray-levels (2%6/dgvels for instance) ang is the probability of ath gray-
level (i = 1,2, ...,L). To the benchmarks, the final image resultantheftransformation method had been reduced in
the entropy (information contained).

To avoid these undesirable features, Kveblkal. (2009) proposed a modified transformation, cabbedtinuous
transformation. This method, which intents to maxarthe entropy, is presented as follows. Givegray-level image
matrix denoted by, such tha¥ = {Iu,v e[0,L— 1]}. At first, this image in put into a vector as givie Eq. (3) i.eJ is
built taking the matrix’s columns one below theeoth

I={€el0o,L-1lk=u+@w-DU,u=1,..,U0,v=1,..,V} 3)

In the next step] is sorted in ascending order, and a second véstoreated as a linear gray-level vector as in
Eq.(3).

-1
uv -1

8={8m€[0,L—1]|8m=round L-1)- m ,VmENU{O}lSmZO} 4)

In the next, this vectag is remapped, following the sorting process dorghgovectord to rebuild the original gray-
level image matrix. The result is an image wittemtities uniformly distributed, given a maximumrepl. On the
other hand, the mean is changed.

To avoid this problem, Kwokt al. (2009) studied three techniques: i) Truncatedddigtm Transformation, ii) Bi-
Histogram Transformation and iii) Gamma-Correcti®his last one was chosen because its better semodt degrees
of freedom.

The gamma-correction is widely adopted in modeniads and discussed is sequence. Consider thedan@cdone
for the continuous correction. It is absolute thens, instead of the fact for the gamma-correcti@nviectore is not
constructed in a linear form, it is built followiram exponential. The mathematical representatipneisented in Eq.(5).
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E= {Sm € [0,L — 1]|&,, = round [255 (1 - m)y] ,vm € NU {0}|€,, = 0} (5)

uv -1

where they factor must be adjusted in such way that the niegmsity is preserved and the entropy is maximized
These two objectives are given by Eqgs.(6) and (7),

min(|M — M*|) (6)
max(H) (1)

whereM” is the original gray-scale image mean. After gkposure, the problem becomes clear end can be etimm
as: It is necessary to choose &alue such that both the original image’s meamantained and the entropy of the
corrected image is maximized. To solve this mutijective task the NSGA-II and an adaptive variatiwa presented
in next section.

3. NON-DOMINATED SORTING GENETIC ALGORITHM — 1l (NS GA-Il) AND ADAPTIVE PROCEDURES

The Non-dominated Sorting Genetic Algorithm — vensll (NSGA-II) was firstly proposed in Deét al. (2002).
This algorithm is from the GAs family, where thejetiive is to mimic the nature behavior given by thenetic
dynamic and characteristics assigned by its contibim&. Summing up, the idea is to generate a coenpubdel to
simulate the Darwin’s species evolution theory. Bhsic concept is based in create individuals {swis) formed by a
vector of genes (parameters) and some consequdinégs characteristics (objective values). Gigat,tcrossover and
mutation operations are carried out, natural sieleds simulated such that only the fittest solnichould be part of
the next generation.

In this context, the NSGA-Il is a so classic altfuni, which has as great features his elitist charestic without
loss diversification. These two features are redd¢heough both the fast non-dominated sorting anevding distance
assignment algorithms. The first implements théisei mechanism through the assignment of rankingpdan a
dominance concept. The second one assigns a @iisetineasure to determine how much spread thécols.

The selection is done through a simple mechanisffiter Ahe parents (chosen from the population with a
Tournament selection for instance) are joined Miitkir offspring the resulting population has theulde size that
originally it had. At this point the ranks are @ggd and, for each one, the solutions crowdingadest are calculated.
The next generation population is then build tatkenfirsts rank till this procedure is not possibleymore, i.e. there is
not slot in the final population for the entire kaiThen this rank is cropped in such way that tleeerspread solutions
are taken from to be part of the population. Th&KSI pseudocode is presented in Figure 1.

P, « Population initialization using uniform distribution
P, < Evaluate the fitness (P;)
[P,,F] « Fast non — dominated sort (P;)
P, < Crowding distance assignment (P, F)
P, « Tournament selection (P,)
Q, < Generate new of fsprings (P,)
Q, < Evaluate the fitness (Q;)
For t = 1: Number of generations
Ry =P UQ,
[R;, F] « Fast non — dominated sort (R;)
Piyy=0Qandi=1
While |P.y 4| + |F;| £ Number of individuals
R.(F;) « Crowding distance assignment (R.(F;))
Pry1 = Pryy UR(F)
i=i+1
End While
F; « Crowding distance sorting in descending order(F;)
Piy1 =Py UR, (Fi(lz |Number of individuals — |Pt+1||))
P.,1 < Tournament selection (Py,q1)
Qi1 <« Make new of fsprings (Pr41)
Q:4+1 < Evaluate fitness (Q¢41)
t=t+1
End For

Figure 1: Pseudocode of the NSGA-II.
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There are 4 parameters, when NSGA-II is in itssitad formulation that must be chosen before the Tihey are
crossover and mutation indexes and probabilitid®e hdexes are from the Simulated Binary Cross¢8&X) and
Polynomial Mutation that can be seen with moreittetia Debet al. (2001). The final Pareto front is highly dependent
of these parameters, as is formally proved folNbe-ree Lunch Theorem (NFL) for optimization givienNolpert and
Macready(1996).

Another point is the clear necessity in chooseghmrameters to speed up the convergence withopitistiocal
minima or even loss diversity. This tuning taskcaa be seen, is not exactly an easy one. Aftefiadl good sets of
parameters to reach all this objectives is someir@ap procedure is so time spending and, in somges, even
impossible given time variance of the problem. fyododge this last difficult and improve the NSGlAperformance,
and adaptive procedure is discussed in sequence.

3.1. Adaptive procedure
And adaptive procedure to crossovey) @nd mutationg,,) probabilities was proposed by Sriniveisal. (1994) and

will be implemented in sequence in the NSGA-IItheir formulation, the probabilities are given asEigs. (8) and (9),
adapted to minimization.

kl(fmin _fl) , =
—,f =
Pc = (fmin - f) f _ f (8)
Pe=ks f' <f
kz(fmin _f) , =
——,f =
Pm = (fmin _f) r=/ 9
Pm = k4'f < f

wherek,, k,, k3, k, < 1.0 are constants,,;, is the minimum of some objective value in the dapan, f' is the best
function value between the two parents gnthe solution objective (under mutation). This fotation is done for
single-objective, for a multi-objective problemist expected tp,. andp,, becomes vector with length equal to the
number of objectives. So, to get only one probibilalue it is proposed to use the average of thesgonents.

The main concept of these procedures is make thatim parameter be changed when is perceived sadbs
diversity. The same idea is extended to the crasgoarameter despite of de convergence rate.

4. RESULTS

To analyze the effectiveness of the described dilgos, 30 runs were done to give statistical rabeea It was used
a population size of 100 and 250 generations. f@rctassic NSGA-II, the crossover and mutation pbiliies were
0.9 and 0.1, respectively. Both algorithms are cedlded, then it was used the SBX operator andnBotial Mutation.
In this context these indices were setas- n,, = 20.

Besides, the tomography images must be changeginaad possible. In this context, it was decidedhoose the
minimum mean deviation in preference. Despite of thct, the Pareto frontier of both algorithmsl®wn in Figure 2.
A first qualitative analysis of this image showattthe adaptive NSGA-II to the gamma correctiorbfgms tends to be
more spread.

In Table 1, both algorithms are statically analyZéar each run the minimal mean deviation soluttoohosen, and
after, between all good ones, a best solution @seh. These solutions are a quantitative indicat the supposed
spread characteristic, discussed earlier abovéués Note that the mean and deviation of both aihjes of the
Adaptive NSGA-II are bigger than the classic onesiBles, the best solution of the adaptive one tiebthan the
classic for both objectives, minimizing the mead amaximizing the entropy.
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Figure 2: NSGA-Il and Adaptive NSGA-II Pareto front

NSGA-I| Adaptive NSGA-II
M Deviati Mean 0.000599 0.002255
ean Deviation Standard Deviation 0.000563 0.003596
Entropy Mean . 4.471093 4.471204
Standard Deviation 0.000089 0.000435
Mean Deviation 0.000004 0.000061
Best Entropy 4.471088 4.471083
Gamma value 8.463340 8.463360

Table 1: Statistical results of both NSGA-II andyptive NSGA-II for gamma correction in 30 runs.

Figure 3 shows the best solution found gamma ctioredor a tomography in RGB. Besides, in Figurthd same
result in jpeg is presented.

(@)
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(b)
Figure 3: Gamma-correction for (a) NSGA-II and fMaJaptive NSGA-Il. RGB images.

Figure 4. Gamma-correction for (a) NSGA-II and fujaptive NSGA-II. Gray-scale images.

5. CONCLUSION

The advantage of the use of gamma-correction inicakinages gets clear in Figures 3 and 4. On therdhand,
the parameter tuning could be a time-spending sl difficult so much to make the method reachdgemlutions. In
this context the exposed in this work leads to hate that the adaptive NSGA-II not only dodges thising difficult
but also arrives in best results.

In the gray-scale image it gets clear that the madtion of entropy carries the final image to @mtmore
information about the content that must be charaete by this two dimensional signal. And, evenutjio the values in
Table 1 are very close, a qualitative analysisigfifeé 4 shows that this little difference could Ipnm a great impact in
final image. In fig 4 is clear that the adaptive ®¥sIl is more contrasting than the reached by NSGAsut the
entropy difference is only of 0.000020. On the othand the mean of the corrected image must betanagd to a
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minimal variance in relation to the original onéhal is why the gamma correction could lead to \mgger entropy
levels, but it should change the real content. €ffisct is undesired in any application, but in fnatlimage analysis it
could induce to a wrong analysis by software ondee a medic.

Finally, the results presented here are so infagesind appear to be a well possibility to applaatn medical
images. It is clear also the advantage of the fisslaptive NSGA-II, providing best results (a greatue of entropy
almost without mean deviation) with less parametafiguration, or time spending tuning for otherames.
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