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Abstract. The direct numerical simulation of transitional and turbulent incompressible flows is an area that is increasing
with the advance in computational resources. The code parallelization has became a useful tool in these simulations.
In the present work the unsteady two dimensional Navier-Stokes equations are used as physical model. The Tollmien-
Schlichting waves propagating in a Poiseuille flow was adopted as test case. Three frequencies showing different behavior
according to the Linear Stability Theory are used: an unstable, a neutral and a stable behavior. The parallelization is
done via domain decomposition in the streamwise direction.The time derivative is integrated by a classical fourth order
Runge-Kutta method. High order compact finite difference are used for the spatial derivatives discretization. The Poisson
equation is solved by a multigrid method. The present work explores different parallelization techniques for solving the
tri and penta-diagonal matrix, and the multigrid method. The results are compared to Linear Stability theory, and also
between different strategies to show the advantages and disadvantages of each one.
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1. INTRODUCTION

The multicore processors evolution combined with the aim incomputational time reduction, in computational fluid
dynamics, are driving research related to the development and parallelization of numerical methods, as described by John
and Tobiska (2000); Zhang (2002); Ge (2010); Hennigeret al. (2010) and Buckeridge and Scheichl (2010). Specifically,
in order to solve the Navier-Stokes equations, most of numerical formulations requires a linear system solution. The high
cost of a numerical linear system solution motivates the useof efficient high-order methods and multigrid methods.

High-order approximations can be achieved through the use of compact finite difference schemes. Despite increasing
the computational cost, the use of this strategy is justifiedby the low numerical dispersion and dissipation, stencil and
error reduction and high resolution as can be seen in Lele (1992); Hirsh (1975); Wray and Hussaini (1994); Kloker (1998);
Mahesh (1998) and Souzaet al. (2005).

According to Zhang (1996, 1997); Spitaleri (2000) and Guptaet al. (1997), multigrid methods can be considered
as a viable alternative for solving elliptic partial differential equations discretized withn points with an complexity
order. The efficiency of these methods, according to de Velde(1994), refers to combine iterative solvers in meshes with
different number of discretization points. According to the author, it occurs because the fact that iterative methods reduce
effectively - with a small number of iterations - only errorsassociated with high frequency.

This work aims the study and implementation of a parallel high resolution code for the solution of the 2D Navier-
Stokes equations. The code is developed to investigate the convection of Tollmien-Schilichting waves in a Poiseuille flow.
The governing equations are writing in a vorticity-velocity formulation, mainly related to the benefits of the colocatization
and the elimination of the pressure treatment. The linear system arising from the numerical solution of Poisson equation
is solved by multigrid methods. Two different methods are implemented, to evaluate the performance of each one. The
spatial derivatives are discretized by compact finite difference schemes. The integration in time is carried out by a fourth
order Runge-Kutta method. The algorithms are parallelizedwith Message Passing Interface (MPI) using a 1D domain
decomposition technique in the main flow direction. It is conducted a comparison between different parallel strategiesin
order to obtain a good performance.

The paper is structured as follows: Section 2 discusses Navier-Stokes formulation topics. The numerical code charac-
terization as the description of the multigrid methods, thecompact finite difference schemes and the boundary vorticity
treatment are discussed in Sec. 3. Section 4 deals with code parallelization. A performance analysis of the implemented
method and comparisons with the linear stability theory arepresented in Sec. 5. Finally, the main conclusions, acknowl-
edgments and references are described in Sec. 6, 7 and 8, respectively.

2. FORMULATION

Isothermal and incompressible flows of a Newtonian fluid can be modeled through Navier-Stokes equations. The
system of equations generated with continuity equation is expressed in two dimensions by:
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The dimensionless parameters used are:
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where the dimensional variables are indicated by∗. The parameterL∗ is a reference length,U∗

∞
is the free-stream

velocity andRe is the Reynolds number. Also,x∗ andy∗ represent coordinates in the longitudinal and normal direction,
respectively. Aiming to eliminate the pressure treatment of the Navier-Stokes equations, the vorticity-velocity formulation
is adopted. Therefore, it is defined the vorticityωz, such as:

ωz =
∂u
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. (5)

Using the vorticity definition and the continuity equation,it can be derived av Poisson equation as:
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Convenient transformations in the Navier-Stokes equations result in the vorticity transport equation:

∂ωz

∂t
= −

∂(uωz)

∂x
−

∂(vωz)

∂y
+

1

Re

(

∂2ωz

∂x2
+

∂2ωz

∂y2

)

. (7)

Thus, by the use of this formulation, the system to be solved consists of the Eqs. (3), (6) and (7). The boundary
conditions are specified according to the problem under consideration.

3. NUMERICAL METHOD

The Navier-Stokes equations using vorticity-velocity formulation are solved numerically with the objective of investi-
gating the flow behavior under a infinitesimal disturbance. In this sense, it is considered a rectangular area represented by
the Fig. 1.

Figure 1. Integration domain

3.1 Disturbance Introduction

According to Faselet al. (1990), the introduction of disturbances in the flow can be done through suction and blowing
of mass at the walls. At timet = 0 the flow is undisturbed. From a timet > 0, the disturbances are introduced in a region
near inflow, known as disturbance strip, through the imposition of v velocity:

v = Af(x)sin(x), x1 < x < x2 (8)

e

v = 0, x ≤ x1 or x ≥ x2, (9)

whereA is a constant used to adjust the amplitude of the disturbances,f(x) is a9th order function and the pointsx1 and
x2 are the initial and the last point of the disturbance strip. The values off(x), its first and second derivatives are zero in
these extreme points.
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3.2 Damping and relaminarization zones

In order to avoid reflections, it is used a damping regions near the inflow and near the outflow boundaries. Considering
the damping region lying between the discrete points1 ≤ i ≤ i1, it is defined a function:

f1(x) = f1(ǫ1) = 6ǫ51 − 15ǫ41 + 10ǫ41, (10)

whereǫ1 = i−1
i1−1 , 1 ≤ i ≤ i1.

At the relaminarization flow region, located betweeni3 ≤ i ≤ i4, it is defined another function

f2(x) = f2(ǫ2) = e−
ǫ
4

10 (1 − ǫ50)4, (11)

whereǫ2 = i−i3
i4−i3

, i3 ≤ i ≤ i4. In both cases, the functions in question alter the values ofthe vorticity after the integration
in time.

3.3 Multigrid method

Two geometric multigrid methods are tested: a Correction Scheme (CS) and a Full Approximation Scheme (FAS). For
the cases under consideration, the linear system is solved in a V-cycle composed by4 levels and represented by Fig. 2,
where S represents the iterative/smoother method, R is the restriction operation and P is the prolongation operation. The
finest grid is represented byh and the coarsest one by8h.

Figure 2. Multigrid method - V-cycle

3.3.1 Correction Scheme - multigrid method

Adopting a Poisson equation

∂2v

∂x2
+

∂2v

∂y2
= s, (12)

wherev represents the function ands the source term of the system. The adopted V-cycle structureis illustrated in Fig. 3.
The constantsN1 andN2 represent the number of iterations applied at a respective level. A line Jacobi method is applied
at all levels, except at the coarsest, where a Line Successive over-Relaxation (LSOR) method is used.

For the Jacobi method it is used a relaxation factor equalr1. In the case of the LSOR method, it is used a relaxation
factor equalr2. It is important to note that there is no application of iterative methods in the right branch of the V-cycle,
as explained in Fig. 3. Taking as reference the presented informations, the CS algorithm can be described as follows:

Figure 3. Multigrid CS - V-cycle

1. Starting at the finest grid, it appliesN1 iterations of a Jacobi under-relaxed method with factorr1.

2. With this approximation, computes the residue(dh) as

dh = sh −∇2vh. (13)

3. If the residue is smaller than a tolerance, the algorithm is ended. Otherwise, the residuedh is transmitted to a coarse
grid (2h) through an operation called restriction. This operation isillustrated in Fig. 4.
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Figure 4. Full Weight - restriction operation

This specific ponderation is called Full Weight (FW). The only element to be transmitted, represented by a square,
is defined as a source term in the coarse level(2h). The initial guess at(2h) level is taken equal zero.

dh ⇒ s2h (FW ) (14)

The procedures 1 - 3 are applied until it reaches the coarsestgrid. At this level,N2 LSOR iterations are applied
with factorr2.

4. The return to a more refined mesh is by applying a prolongation operation and then correcting the solution.

v8h ⇒ corr4h, (15)

v4h ⇐ v4h + corr4h. (16)

This operations, illustrated by Fig. 5 must be applied untilthe finest level. At this point, the cycle starts again.

Figure 5. Bilinear interpolation - prolongation operation

3.3.2 Full Approximation Scheme - multigrid method

Considering the Eq. (12) and the V-cycle represented by Fig.6.

Figure 6. Multigrid FAS - V-cycle

Using the FAS, the solution of the Poisson equation is performed by a LSOR method in all levels. Specifically, it is
applied a Gauss-Seidel method after the prolongation operation. In other cases, the relaxation factor is given byr2. The
multigrid FAS can be described as follows:

1. Starting at the finest grid,N1 iterations of the LSOR method are applied, with factorr2.

2. With this approximation, the residue(dh) is calculated by:

dh = sh −∇2vh. (17)
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3. If the residue is smaller than a tolerance, the algorithm is ended. Otherwise, the residuedh is transmitted to a coarse
grid (2h) through a FW operation. The approximate solutionvh is restricted by a Straight Injection, ie. without any
kind of ponderation, as can be seen in Fig. 7.

dh ⇒ s2h (FW ) (18)

vh ⇒ v2h (SI) (19)

Figure 7. Straight Injection - restriction operation

The procedures 1 - 3 are applied until they reach the coarsestgrid. At this level,N2 LSOR iterations are applied
with r2 factor.

4. The correction at this levels is calculated by:

corr8h = vn
8h − v

′

8h, (20)

wherev
′

8h represents the solution generated by the restriction operation andvn
8h is the newest solution.

5. The prolongation to a more refined mesh is done by applying the same bilinear interpolation adopted in the multigrid
CS, and then correcting the solution.

corr8h ⇒ corr4h, (21)

v4h ⇐ v4h + corr4h. (22)

6. Finally, one iteration of Gauss-Seidel method is applied. The V-cycle is finished after the application of LSOR
method at the finest grid.

3.3.3 Numerical approximations

The spatial derivatives in the Poisson equation are discretized using compact high-order finite differences approxima-
tions (Souza, 2003).

3.4 Compact high-order approximations for spatial derivatives

The use of compact finite differences to estimate the first andsecond spatial derivatives requires the resolution of
tridiagonal linear systems. The systems in question can be found in the work of Souzaet al. (2005).

The time integration is carried out by a classical fourth order Runge-Kutta method.

3.5 Spatial filter

In order to eliminate numerical (spurious) oscillations, acomputational filter is applied after the last Runge-Kutta step
(Lele, 1992). The filter adopted requires the solution of a pentadiagonal system. The filter is applied in the vorticity
component.

3.6 Numerical method

In agreement with the studies of Souza (2003) and considering the vorticity-velocity formulation, Eqs. (6), (7) and
(3) are solved numerically by the application of the following steps: (a) apply a step of the time integrator; (b) apply the
functions responsible for the damping and relaminarization zones; (c) introduce disturbances by suction and blowing at
the walls; (d) calculate the right hand side of Eq. (6); (e) calculate thev velocity by solving the linear system generated by
Eq. (6); (f) calculate the value ofu velocity by Eq. (3); (g) update the vorticity valueωz on the walls; (h) apply, after the
last sub-step of the time integrator, the computational filter. The numerical simulation ends when it reaches the desired
computational time.
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4. PARALLELIZATION

This section describes the parallel strategies adopted forsolving the multigrid methods (Poisson Equation), the high-
order compact finite difference approximations and the computational filter.

4.1 Parallel multigrid methods

Multigrid codes have been parallelized using a 1D domain decomposition technique in the main flow direction. This
choice is justified by the fact that the number of points in this direction is much bigger than the number of points in the
normal flow direction, in the problems under investigation.The MPI library has been used for parallel implementation.

It is considered a rectangular domain ofimax × jmax points. Each processing element (e.g., core, processor)k =
1, ..., p is responsible forNx points in thex direction andjmax points in they direction. TheNx value is calculated by

Nx =
imax + (inter + 1)(p − 1)

p
, (23)

inter = 2(N−1)(m − 1), (24)

wherep is the number of processing elements,inter is the intersection between adjacent domains,m is the computation
molecule size in thex direction andN is the number of V-cycle levels.

In elliptical problems the solution of any point in the domain can be affected by a change in any other point of the
domain, therefore, it is necessary to introduce communication points between adjacent processing elements. For this
reason, for the parallel CS, the communication points are: before applying a restriction operation; at each step of the
iterative/smoother method and before applying the interpolation operation. For the parallel FAS, the communications
occur: after applying a restriction operation; at each stepof the iterative/smoother method and between applying the
interpolation and correction operation.

4.2 Parallel high-order compact finite difference approximations

It is considered a discrete sequential domain containingimax×jmax points in the stream and normal flow directions,
respectively. Since the parallelization was done in thex direction, this subsection will focus in the numerical solution
of the first and second derivatives in this direction. It is observed that the use of the classical Thomas algorithm for this
problem requires the solution ofjmax linear systems.

Two strategies are developed to parallelize the numerical compact finite difference code. The first one uses the pipeline
concept, since each line of the domain represents the solution of a tridiagonal system. In this strategy a processk is
responsible to calculate just a part of a linear system associated with each discrete line of the domain. It is emphasized
that just one system is solved per domain line. The second strategy considers the processing elements independent of each
other. Unlike the previous strategy,p sub-systems are solved per domain line. At the end,inter/2 columns are changed
between adjacent processing elements, as illustrated by Fig. 8.

Figure 8. Second parallel strategy - communication betweenadjacent processing elements

4.3 Parallel computational filter

Regarding the resolution of a pentadiagonal system cited insubsection 3.5, a parallel strategy based in the pipeline
concept is adopted, therefore using the first strategy described by the previous subsection.

5. RESULTS

In this section, a comparison of a 2D Navier-Stokes equationsolver and the linear stability theory and an analysis of
the code parallelization are presented.
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5.1 Poiseuille flow and linear stability theory

In order to verify the parallel numerical code a comparison of the numerical results and the linear stability theory
is carried out. It is considered a rectangular domain, as presented by Fig. 1. The main flow under consideration is
gave by the functionu(y) = −y2 + 2y. It is adoptedA = 0.0005 to adjust the amplitude of the Tollmien-Schlichting
waves in Eq. 9. The adopted number of time steps per wave period is 128. It is used32 points per Tollmien-Schlichting
wavelength. It is also definedimax = 1433 andjmax = 81 points in thex andy directions, respectively. The distance
between consecutive points in thex andy directions are∆y = 2

jmax−1 and∆x = 2π
32αr

, whereαr is the real part of the
wavenumber. The simulation time is equal to42 times the step per period under consideration. The other constants used
arex0 = 0, x1 = 39∆x, x2 = 71∆x, x3 = (imax − 100)∆x, andx4 = (imax − 40)∆x.

The FAS multigrid maximum defect is settled to10−6. The LSOR relaxation factor adopted isr2 = 1.1. The number
of iterations at each V-cycle level isN1 = 2, N2 = 40 andN3 = 1. The second parallel strategy is used to solve the
spatial derivatives in thex direction. The tests consider a neutral, stable and unstable cases. Figures 9(a), 9(b) and 9(c)
present qualitative data results for the neutral case simulation. The simulations were done using 8 processing elements.

(a) velocity u (b) velocity v (c) vorticity

Figure 9. Poiseuille flow - neutral case - qualitative data

In addition, Figs. 10(a) and 10(b) show, respectively, the maximum speed and amplification rate associated with the
first Fourier mode of theu velocity, for each point in thex direction. The neutral, unstable and stable cases are presented
in agreement with Tab. 1.
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Figure 10. Poiseuille flow - Fourier analysis - first mode behavior

Figure 10(b) show that the numerical results are consistentwith data generated by the linear stability theory. The small
oscillations are result, fundamentally, by the mesh considered. Moreover, the oscillations near the extremes are justified
due to the introduction of disturbances and flow relaminarization.

In Fig. 10(a) it can be observed that the amplitude of the maximum disturbance velocityumax grows, remain stable or
decreases according to the unstable, neutral and stable cases, respectively. Additionally, the amplification rates obtained
for the three cases are presented in Tab. 1. The values obtained are in agreement with the reference values.

5.2 Poiseuille flow - multigrid CS and FAS comparison

Only the neutral case is considered to verify the performance of the multigrid schemes in the parallel code. The same
rectangular domain represented by Fig. 1 and the same parameters adopted in the previous section are used. Tests are
carried out considering a set of nine meshes, described by the Tab. 2.

The results also consider as a final simulation time:19, 30 and48 times the step per period associated with the meshes
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Table 1. Poiseuille flow - linear stability theory and code data

Re αi(LST ) αi(numerical)
A 5000 0.0100000 0.0104254
B 10000 0.0000988 0.0000513
C 10000 -0.0100000 -0.0111146

Table 2. Poiseuille flow - nominal axis

N 1 2 3 4 5 6 7 8 9
imax 665 665 665 1049 1049 1049 1433 1433 1433
jmax 49 65 81 49 65 81 49 65 81

considering665, 1049 and1433 in the x direction, respectively. The multigrid CS usesr1 = 0.75 andr2 = 1.1 as
relaxation factors related to Jacobi and LSOR, respectively.

Figure 11 illustrates the execution time associated with the simulation of the 9 cases presented in the Tab. 2. This
figure shows the sequential code behavior of the CS and FAS multigrid methods.
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Figure 11. Poiseuille flow - sequential multigrid comparative

Figure 11 shows that the FAS is faster than the CS for all casestested. The execution time for the both methods
increases with the number of points in they direction. It is noteworthy that there is no sense in carrying out comparisons
between cases with different number of points in thex direction, since the total time simulation is different. Moreover, to
evaluate the behavior of parallel multigrid methods using the first parallel strategy for compact finite difference derivatives,
the speedup and efficiency are presented by Figs. 12(a) and 12(b).
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Figure 12. Poiseuille flow - multigrid parallel comparativeusing the first compact finite parallel strategy

It is observed a certain uniformity of the speedup values forboth multigrid schemes analyzed. The rates, especially
with the use of2 and4 processing elements, shows very positive results. The bestspeedup results, for all test cases, are
obtained through the CS parallelization. Efficiency rates close to or above the optimum are obtained with the use of2
and4 processing elements. The efficiency obtained by the FAS was not as good as the CS, and this can be related to the
communication time spent by the application of a Gauss-Seidel iteration in the multigrid FAS.

Through analysis aimed at the Figs. 11 and 12(a), it is possible to see that the parallel CS even though more efficient
than the parallel FAS, demands a greater computational time. However, these results suggest a tendency to use the parallel
CS method, in cases with a very large numbers of points.
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Regarding the second parallel strategy for the solution of the compact approximations, the speedup and efficiency
measures are presented by Figs. 13(a) and 13(b).
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Figure 13. Poiseuille flow - multigrid parallel comparativeusing the second compact finite parallel strategy

The results in question, considering the second strategy ofparallelization, presenting similar results to the previous
case.

5.3 Poiseuille flow - comparative of parallel compact finite difference strategies

Comparisons between parallel strategies focused on compact high-order differences approximations are described as
follows. The speedup and efficiency, considering only the FAS multigrid method are shown by Figs. 14(a) and 14(b).
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Figure 14. Poiseuille flow - comparative of parallel compactfinite difference strategies using multigrid FAS method

According to Figs. 14(a) and 14(b), the second parallel strategy is superior to the first, for all the tests. The increase in
the number of processing elements implies an increase in thedifference between speedup and efficiency rates of parallel
strategies in question.

6. CONCLUSIONS

In the present study it is conducted a parallel performance analysis directed to the numerical solution of partial differ-
ential equations aimed to investigate a two dimensional incompressible and isothermal flow of a Newtonian fluid. A4th

order Runge–Kutta method is adopted for time integration ofa vorticity–velocity formulation. The Poisson equation is
solved by multigrid methods and the spatial derivatives arediscretized by high-order compact finite difference schemes.
The algorithms are parallelized with Message Passing Interface (MPI) using a 1D domain decomposition technique in the
main flow direction.

Regarding the solution of the Poisson equation the results show that the FAS multigrid method shows the best indices
of execution time for all the set of meshes tested. The increase of the communication points in the left part of the V cycle
affects the speedup and efficiency of the FAS method. It is possible that the CS method is more competitive for problems
with a large number of points. In respect the parallelization of the spatial derivatives calculation, the best use of computing
resources and the reduction of communication points obtained through the second parallel strategy confirm the feasibility
in using this strategy.

Comparatives associated with the linear stability theory show agreement with the numerical method against theoretical
results. As a result, for all cases testes, there are significant gains in the use of parallel strategies. In some cases, gains of
more than seven times may be observed with the use of 8 processing elements.
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