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Abstract. The direct numerical simulation of transitional and turbat incompressible flows is an area that is increasing
with the advance in computational resources. The code [sirdtion has became a useful tool in these simulations.
In the present work the unsteady two dimensional NaviekeStequations are used as physical model. The Tollmien-
Schlichting waves propagating in a Poiseuille flow was addpts test case. Three frequencies showing different bahavi
according to the Linear Stability Theory are used: an unktah neutral and a stable behavior. The parallelization is
done via domain decomposition in the streamwise direcfidre time derivative is integrated by a classical fourth erde
Runge-Kutta method. High order compact finite differeneeused for the spatial derivatives discretization. The fuis
equation is solved by a multigrid method. The present wopkoegs different parallelization techniques for solvirget

tri and penta-diagonal matrix, and the multigrid method.eTlesults are compared to Linear Stability theory, and also
between different strategies to show the advantages aadvhsitages of each one.

Keywords. high-order compact finite difference, multigrid methodayr-Stokes equation, parallel computation.
1. INTRODUCTION

The multicore processors evolution combined with the aimdmputational time reduction, in computational fluid
dynamics, are driving research related to the developnmehparallelization of numerical methods, as described by Jo
and Tobiska (2000); Zhang (2002); Ge (2010); Hennageal. (2010) and Buckeridge and Scheichl (2010). Specifically,
in order to solve the Navier-Stokes equations, most of nigakfiormulations requires a linear system solution. Thghhi
cost of a numerical linear system solution motivates theofigficient high-order methods and multigrid methods.

High-order approximations can be achieved through the fiseropact finite difference schemes. Despite increasing
the computational cost, the use of this strategy is justifigdhe low numerical dispersion and dissipation, stenail an
error reduction and high resolution as can be seen in Le@)1 $lirsh (1975); Wray and Hussaini (1994); Kloker (1998);
Mahesh (1998) and Sougaal. (2005).

According to Zhang (1996, 1997); Spitaleri (2000) and Gugdtal. (1997), multigrid methods can be considered
as a viable alternative for solving elliptic partial diféattial equations discretized with points with an complexity
order. The efficiency of these methods, according to de dl€l84), refers to combine iterative solvers in meshes with
different number of discretization points. According te tuthor, it occurs because the fact that iterative methestisce
effectively - with a small number of iterations - only err@ssociated with high frequency.

This work aims the study and implementation of a parallehhigsolution code for the solution of the 2D Navier-
Stokes equations. The code is developed to investigat®thection of Tollmien-Schilichting waves in a Poiseuillevil
The governing equations are writing in a vorticity-velgdirmulation, mainly related to the benefits of the colozatiion
and the elimination of the pressure treatment. The linestesy arising from the numerical solution of Poisson equatio
is solved by multigrid methods. Two different methods arplemented, to evaluate the performance of each one. The
spatial derivatives are discretized by compact finite déifce schemes. The integration in time is carried out by gHou
order Runge-Kutta method. The algorithms are paralleliziéd Message Passing Interface (MPI) using a 1D domain
decomposition technique in the main flow direction. It isdocted a comparison between different parallel stratégies
order to obtain a good performance.

The paper is structured as follows: Section 2 discussesN&tokes formulation topics. The numerical code charac-
terization as the description of the multigrid methods,dbepact finite difference schemes and the boundary varticit
treatment are discussed in Sec. 3. Section 4 deals with ardéigdization. A performance analysis of the implemented
method and comparisons with the linear stability theorypmesented in Sec. 5. Finally, the main conclusions, acknowl
edgments and references are described in Sec. 6, 7 and &;tiesly.

2. FORMULATION

Isothermal and incompressible flows of a Newtonian fluid camindeled through Navier-Stokes equations. The
system of equations generated with continuity equatiorpsessed in two dimensions by:
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The dimensionless parameters used are:
T = I* y Y= L* y U= U(;ko ’
v = = =
U;o y P p*U:O ) L* ’
with,
Ur L*
Re = —=—, (4)
v

where the dimensional variables are indicated«byThe parametel* is a reference length/% is the free-stream
velocity andRe is the Reynolds number. Alse; andy* represent coordinates in the longitudinal and normal doac
respectively. Aiming to eliminate the pressure treatmétii®Navier-Stokes equations, the vorticity-velocityfaration
is adopted. Therefore, it is defined the vorticity, such as:

Oou  Ov
o 5)
dy Ox

Using the vorticity definition and the continuity equati@rcan be derived a Poisson equation as:

0%v 0% Ow,

oy z . 6
ox? + 0y? ox ©)
Convenient transformations in the Navier-Stokes equatiesult in the vorticity transport equation:
Ow, 78(uwz) B d(vw,) n i Pw. 0w,

ot Ox Oy Re \ 0x2 oy )’

Thus, by the use of this formulation, the system to be solwtists of the Egs. (3), (6) and (7). The boundary
conditions are specified according to the problem underideretion.

Wy, =

()

3. NUMERICAL METHOD

The Navier-Stokes equations using vorticity-velocitynimiiation are solved numerically with the objective of inves
gating the flow behavior under a infinitesimal disturbanoehls sense, it is considered a rectangular area repredente
the Fig. 1.

Figure 1. Integration domain

3.1 Disturbance Introduction

According to Fasedt al. (1990), the introduction of disturbances in the flow can besdbrough suction and blowing
of mass at the walls. At time= 0 the flow is undisturbed. From a tinte> 0, the disturbances are introduced in a region
near inflow, known as disturbance strip, through the impmsiof v velocity:

v Af(z)sin(z), =1 <z <9 (8)
e

v = 0, <z Or x> x2, (9)
whereA is a constant used to adjust the amplitude of the disturtsarfi¢e) is a9'” order function and the points, and

x4 are the initial and the last point of the disturbance stripe Values off (x), its first and second derivatives are zero in
these extreme points.
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3.2 Damping and relaminarization zones

In order to avoid reflections, it is used a damping regions theainflow and near the outflow boundaries. Considering
the damping region lying between the discrete pointsSi < i1, it is defined a function:

fi(x) = file) = 66“;’ — 156‘11 + 106‘11, (20)

wheree; = jl_—jl 1<4<i.
At the relaminarization flow region, located betweer i < iy, it is defined another function

fo(@) = falea) = e~ (1 — )1, (12)

wherecy = ii‘jgg ,i3 <1 < i4. In both cases, the functions in question alter the valuésaoforticity after the integration
in time.

3.3 Multigrid method

Two geometric multigrid methods are tested: a CorrectidreSte (CS) and a Full Approximation Scheme (FAS). For
the cases under consideration, the linear system is satved/icycle composed by levels and represented by Fig. 2,
where S represents the iterative/smoother method, R i€#igation operation and P is the prolongation operatidre T
finest grid is represented lyand the coarsest one By.

Figure 2. Multigrid method - V-cycle

3.3.1 Correction Scheme - multigrid method

Adopting a Poisson equation

v 0% B

02 - oy?
wherev represents the function ardhe source term of the system. The adopted V-cycle struidultestrated in Fig. 3.
The constantsV; and N, represent the number of iterations applied at a respeetis.|A line Jacobi method is applied
at all levels, except at the coarsest, where a Line Suceessar-Relaxation (LSOR) method is used.

For the Jacobi method it is used a relaxation factor egualn the case of the LSOR method, it is used a relaxation
factor equal. It is important to note that there is no application of iterimethods in the right branch of the V-cycle,
as explained in Fig. 3. Taking as reference the presentethi@tions, the CS algorithm can be described as follows:

s, (12)

Figure 3. Multigrid CS - V-cycle

1. Starting at the finest grid, it appli@§, iterations of a Jacobi under-relaxed method with faetor

2. With this approximation, computes the residdg) as
dh = Sp — VQ’U}L. (13)

3. Ifthe residue is smaller than a tolerance, the algorithended. Otherwise, the residgjgis transmitted to a coarse
grid (2h) through an operation called restriction. This operatiatiustrated in Fig. 4.
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Figure 4. Full Weight - restriction operation

This specific ponderation is called Full Weight (FW). Theyoellement to be transmitted, represented by a square,
is defined as a source term in the coarse I1é¥k). The initial guess af2h) level is taken equal zero.

dp = Sap (FW) (14)

The procedures 1 - 3 are applied until it reaches the coagsielst At this level, No LSOR iterations are applied
with factorr,.

4. The return to a more refined mesh is by applying a proloagatperation and then correcting the solution.

vsh = COTT4p, (15)
Vap, &= Vap + corray,. (16)

This operations, illustrated by Fig. 5 must be applied uhglfinest level. At this point, the cycle starts again.
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Figure 5. Bilinear interpolation - prolongation operation

3.3.2 Full Approximation Scheme - multigrid method

Considering the Eq. (12) and the V-cycle represented by@=ig.

Figure 6. Multigrid FAS - V-cycle

Using the FAS, the solution of the Poisson equation is peréalr by a LSOR method in all levels. Specifically, it is
applied a Gauss-Seidel method after the prolongation tipardn other cases, the relaxation factor is givenrbyThe
multigrid FAS can be described as follows:

1. Starting at the finest gridy; iterations of the LSOR method are applied, with factar

2. With this approximation, the residyéy, ) is calculated by:

dh = Sp — VQ’U}L. (17)
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3. Ifthe residue is smaller than a tolerance, the algorithended. Otherwise, the residgjgis transmitted to a coarse
grid (2h) through a FW operation. The approximate solutigns restricted by a Straight Injection, ie. without any
kind of ponderation, as can be seen in Fig. 7.

dh =  Sop (FW) (18)
Vn = Ugp (SI) (19)

Figure 7. Straight Injection - restriction operation

The procedures 1 - 3 are applied until they reach the coagsestAt this level, N, LSOR iterations are applied
with r4 factor.

4. The correction at this levels is calculated by:
corrgy, = Vg, — Uéh, (20)

Wherevéh represents the solution generated by the restriction tiperandvg,, is the newest solution.

5. The prolongationto a more refined mesh is done by applii@game bilinear interpolation adopted in the multigrid
CS, and then correcting the solution.

corrgy = COTT4p, (21)
Vap, & Uap + corryy. (22)

6. Finally, one iteration of Gauss-Seidel method is appli€te V-cycle is finished after the application of LSOR
method at the finest grid.

3.3.3 Numerical approximations

The spatial derivatives in the Poisson equation are digeicttising compact high-order finite differences approxima
tions (Souza, 2003).

3.4 Compact high-order approximations for spatial derivaives

The use of compact finite differences to estimate the firstsmwmbnd spatial derivatives requires the resolution of
tridiagonal linear systems. The systems in question caonled in the work of Souzat al. (2005).
The time integration is carried out by a classical fourtheofdunge-Kutta method.

3.5 Spatial filter

In order to eliminate numerical (spurious) oscillationspaputational filter is applied after the last Runge-Kuttgs
(Lele, 1992). The filter adopted requires the solution of atp@iagonal system. The filter is applied in the vorticity
component.

3.6 Numerical method

In agreement with the studies of Souza (2003) and consiglénim vorticity-velocity formulation, Egs. (6), (7) and
(3) are solved numerically by the application of the follogyisteps: (a) apply a step of the time integrator; (b) appdy th
functions responsible for the damping and relaminarizationes; (c) introduce disturbances by suction and blowing a
the walls; (d) calculate the right hand side of Eq. (6); (¢}@late thev velocity by solving the linear system generated by
Eq. (6); (f) calculate the value af velocity by Eq. (3); (g) update the vorticity value on the walls; (h) apply, after the
last sub-step of the time integrator, the computation&rfilT he numerical simulation ends when it reaches the daksire
computational time.
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4. PARALLELIZATION

This section describes the parallel strategies adoptesbfeing the multigrid methods (Poisson Equation), the high
order compact finite difference approximations and the agatnal filter.

4.1 Parallel multigrid methods

Multigrid codes have been parallelized using a 1D domaimagosition technique in the main flow direction. This
choice is justified by the fact that the number of points i tirection is much bigger than the number of points in the
normal flow direction, in the problems under investigatibhe MPI library has been used for parallel implementation.

It is considered a rectangular domainiefax x jmax points. Each processing element (e.g., core, proceiser)
1,...,pis responsible foiVz points in ther direction andjmaa points in they direction. TheN z value is calculated by

imax + (inter +1)(p — 1)

Nz = , (23)
p

inter = 2(N_1)(m —1), (24)

wherep is the number of processing elemeritsier is the intersection between adjacent domainss the computation
molecule size in the direction andV is the number of V-cycle levels.

In elliptical problems the solution of any point in the domaian be affected by a change in any other point of the
domain, therefore, it is necessary to introduce commuioicgioints between adjacent processing elements. For this
reason, for the parallel CS, the communication points aeforle applying a restriction operation; at each step of the
iterative/smoother method and before applying the intetjm operation. For the parallel FAS, the communications
occur: after applying a restriction operation; at each stefhe iterative/smoother method and between applying the
interpolation and correction operation.

4.2 Parallel high-order compact finite difference approximations

Itis considered a discrete sequential domain containinge x jmax points in the stream and normal flow directions,
respectively. Since the parallelization was done inahdirection, this subsection will focus in the numerical sin
of the first and second derivatives in this direction. It isetved that the use of the classical Thomas algorithm fer thi
problem requires the solution gfnax linear systems.

Two strategies are developed to parallelize the numerigapact finite difference code. The first one uses the pipeline
concept, since each line of the domain represents the solofia tridiagonal system. In this strategy a process
responsible to calculate just a part of a linear system &sgocwith each discrete line of the domain. It is emphasized
that just one system is solved per domain line. The secoatkgly considers the processing elements independenttof eac
other. Unlike the previous strategysub-systems are solved per domain line. At the éntkr /2 columns are changed
between adjacent processing elements, as illustratedgBFi

inter/2

> | k+1

Figure 8. Second parallel strategy - communication betveeigcent processing elements

4.3 Parallel computational filter

Regarding the resolution of a pentadiagonal system citexifisection 3.5 a parallel strategy based in the pipeline
concept is adopted, therefore using the first strategy ibestby the previous subsection.

5. RESULTS

In this section, a comparison of a 2D Navier-Stokes equatidver and the linear stability theory and an analysis of
the code parallelization are presented.
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5.1 Poiseuille flow and linear stability theory

In order to verify the parallel numerical code a comparisbthe numerical results and the linear stability theory
is carried out. It is considered a rectangular domain, asemted by Fig. 1. The main flow under consideration is
gave by the functiom(y) = —y? + 2y. Itis adoptedd = 0.0005 to adjust the amplitude of the Tollmien-Schlichting
waves in Eq. 9. The adopted number of time steps per wavedoeri@s. It is used32 points per Tollmien-Schlichting
wavelength. It is also definedhax = 1433 andjmaax = 81 points in thex andy directions, respectively. The distance
between consecutive points in thendy directions areAy = W% andAx = 33—2 whereq,. is the real part of the
wavenumber. The simulation time is equalitbtimes the step per period under consideration. The othestants used
arexg =0, x; = 39Azx, x9 = T1Az, x5 = (imax — 100)Az, andzy = (imax — 40)Az.

The FAS multigrid maximum defect is settledt0—¢. The LSOR relaxation factor adoptedris= 1.1. The number
of iterations at each V-cycle level §; = 2, No = 40 and N3 = 1. The second parallel strategy is used to solve the
spatial derivatives in the direction. The tests consider a neutral, stable and urestatdes. Figures 9(a), 9(b) and 9(c)
present qualitative data results for the neutral case sitionl. The simulations were done using 8 processing elesnent

(a) velocity u (b) velocity v (c) vorticity

Figure 9. Poiseuille flow - neutral case - qualitative data

In addition, Figs. 10(a) and 10(b) show, respectively, tleximum speed and amplification rate associated with the
first Fourier mode of the velocity, for each point in the direction. The neutral, unstable and stable cases arenteese
in agreement with Tab. 1.

1e-08 | | | | | o, | | |
0 100 200 300 400 500 600 0 100 200 300 400 500 600
X X

(a) maximum velocity (b) amplification rate
Figure 10. Poiseuille flow - Fourier analysis - first mode héta

Figure 10(b) show that the numerical results are consistightdata generated by the linear stability theory. The $mal
oscillations are result, fundamentally, by the mesh carsid. Moreover, the oscillations near the extremes ariguabst
due to the introduction of disturbances and flow relamirzdidn.

In Fig. 10(a) it can be observed that the amplitude of the mari disturbance velocity,,,... grows, remain stable or
decreases according to the unstable, neutral and stalas, caspectively. Additionally, the amplification rategasbed
for the three cases are presented in Tab. 1. The values ebtaia in agreement with the reference values.

5.2 Poiseuille flow - multigrid CS and FAS comparison

Only the neutral case is considered to verify the perforraari¢he multigrid schemes in the parallel code. The same
rectangular domain represented by Fig. 1 and the same pesnaelopted in the previous section are used. Tests are
carried out considering a set of nine meshes, describedebyath. 2.

The results also consider as a final simulation tin#g:30 and48 times the step per period associated with the meshes
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Table 1. Poiseuille flow - linear stability theory and codéada

Re a;(LST)  «a;(numerical)
A 5000 0.0100000 0.0104254
B 10000 0.0000988 0.0000513
C 10000 -0.0100000 -0.0111146

Table 2. Poiseuille flow - nominal axis

N 1 2 3 4 5 6 7 8 9
imax 665 665 665 1049 1049 1049 1433 1433 1433
jmax 49 65 81 49 65 81 49 65 81

considering665, 1049 and 1433 in the x direction, respectively. The multigrid CS uses = 0.75 andry, = 1.1 as
relaxation factors related to Jacobi and LSOR, respegtivel

Figure 11 illustrates the execution time associated wiéhsimulation of the 9 cases presented in the Tab. 2. This
figure shows the sequential code behavior of the CS and FAggmdIimethods.

s CS
o FAS

execution time

a
o

I I I I I I I I I
4

5
mesh

Figure 11. Poiseuille flow - sequential multigrid comparati

Figure 11 shows that the FAS is faster than the CS for all ceested. The execution time for the both methods
increases with the number of points in théirection. It is noteworthy that there is no sense in cagyiat comparisons
between cases with different number of points inttdirection, since the total time simulation is different. Mover, to
evaluate the behavior of parallel multigrid methods ushefirst parallel strategy for compact finite difference datives,
the speedup and efficiency are presented by Figs. 12(a) byl 12

« CS2p
o CS4p
+ CSs8p 1
x FAS2p

o FAS4p
+ FASBp

¥

*
°
&

speedup
'S
efficiency

°

025 x FAS2p

I I I I I I I I I I I L I I I I L I
6

mesh mesh

(a) speedup (b) efficiency
Figure 12. Poiseuille flow - multigrid parallel comparativ&ng the first compact finite parallel strategy

It is observed a certain uniformity of the speedup valuesdfisth multigrid schemes analyzed. The rates, especially
with the use o2 and4 processing elements, shows very positive results. Thespestdup results, for all test cases, are
obtained through the CS parallelization. Efficiency ratese to or above the optimum are obtained with the usg of
and4 processing elements. The efficiency obtained by the FAS waasigood as the CS, and this can be related to the
communication time spent by the application of a Gaussebémtation in the multigrid FAS.

Through analysis aimed at the Figs. 11 and 12(a), it is plestitsee that the parallel CS even though more efficient

than the parallel FAS, demands a greater computational tfoeever, these results suggest a tendency to use thegbarall
CS method, in cases with a very large numbers of points.
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Regarding the second parallel strategy for the solutiorhefdompact approximations, the speedup and efficiency
measures are presented by Figs. 13(a) and 13(b).

« CS2p
o Cs4p
* Csgp
7" x FAS2p
o FAS4p
* FASS8p

°
a
*

°

speedup
'S
efficiency

x CS2p
o CS4p
2 . x x Csep

x x x X x x x * 0,25 x FAS2p
o FAS4p
A + FAS8p

mesh ° mesh
(a) speedup (b) efficiency
Figure 13. Poiseuille flow - multigrid parallel comparativ&ng the second compact finite parallel strategy

The results in question, considering the second strategraiclelization, presenting similar results to the pregio
case.

5.3 Poiseuille flow - comparative of parallel compact finite dference strategies

Comparisons between parallel strategies focused on cdrjgreorder differences approximations are described as
follows. The speedup and efficiency, considering only th& IRAultigrid method are shown by Figs. 14(a) and 14(b).
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(a) speedup (b) efficiency
Figure 14. Poiseuille flow - comparative of parallel comdadte difference strategies using multigrid FAS method

5
mesh

According to Figs. 14(a) and 14(b), the second paralletesisais superior to the first, for all the tests. The increase i
the number of processing elements implies an increase idiffieeence between speedup and efficiency rates of parallel
strategies in question.

6. CONCLUSIONS

In the present study it is conducted a parallel performanedyais directed to the numerical solution of partial diffe
ential equations aimed to investigate a two dimensionalrimaressible and isothermal flow of a Newtonian fluid4A
order Runge—Kutta method is adopted for time integratioa wbrticity—velocity formulation. The Poisson equation is
solved by multigrid methods and the spatial derivativestigeretized by high-order compact finite difference scheme
The algorithms are parallelized with Message Passingfade(MPI) using a 1D domain decomposition technique in the
main flow direction.

Regarding the solution of the Poisson equation the redutts shat the FAS multigrid method shows the best indices
of execution time for all the set of meshes tested. The isere&the communication points in the left part of the V cycle
affects the speedup and efficiency of the FAS method. It isiptesthat the CS method is more competitive for problems
with a large number of points. In respect the parallelizatibthe spatial derivatives calculation, the best use offoaing
resources and the reduction of communication points obdetimrough the second parallel strategy confirm the feégibil
in using this strategy.

Comparatives associated with the linear stability thebomsagreement with the numerical method against theotetica
results. As a result, for all cases testes, there are signifgains in the use of parallel strategies. In some casis ga
more than seven times may be observed with the use of 8 pingedsments.
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