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Abstract.The classic backward-facing incompressible step flow was studied. The importance of the three-dimensional
numerical simulation for this case was highlighted by comparison with two-dimensional results. Locations of detachment
and reattachment, as well as velocity profiles, were obtained as functions of Reynolds number. The Unified Finite Approach
Exponential-type Scheme (UNIFAES) was employed in the discretization of the advective and viscous fluxes of the Navier-
Stokes equations in primitive variables. Semi-staggered mesh was used. The momentum equations are integrated explicitly
after the solution of a Poisson pressure that enforces mass conservation. Richardson extrapolation is employed to estimate
the correct solutions. As should be expected, three-dimensional simulation provided better agreement with experiments
than two-dimensional.

Keywords: backward-facing step flow, Numerical Simulation, UNIFAES

1. INTRODUCTION

Backward-facing step flows represents a kind of problem with enormous importance in industrial applications. The
detachment and reattachment points in the flow and its structure determine, for example, the local heat and mass transfer
in a gas turbine. Understandably, the classic backward-facing incompressible step flow has been used extensively to test
numerical methods. The importance of this test case motivated experimental investigation in laboratory models as the
works of Armaly et al. (1983) and Lee and Mateescu (1998), which was chosen here for comparison purposes.

The two dimensional solutions tend to closely approach the numerical results until Reynolds numbers about 700. For
higher values, the distance between experiments and numerics tend to increase, which has been attributed to the three
dimensionality of the actual flow. The aim of the present work is to check this hypothesis.

2. METHODOLOGY

The Unified Finite Approach Exponential-type Scheme (UNIFAES) was employed in the discretization of the ad-
vective and viscous fluxes of the Navier-Stokes equations in primitive variables with the semi-staggered mesh. The
momentum equations are integrated explicitly after the solution of a Poisson pressure that enforces mass conservation.
Richardson extrapolation is employed to estimate the correct solutions.

2.1 Mesh

The present simulation uses the semi-staggered mesh structure, which combines vertex collocated velocity components
and cell-centered pressure, as indicated in Fig. 1.

This mesh, much less used then either the staggered mesh or the cell-center collocated mesh, was presented first by
Kuznetsov (1968). It was applied by Fortin and Teman (1971) and by Ladevèze and Peyret (1974) using the projection
method which, according to Peyret and Taylor (1983), seems to be more efficient in the MAC mesh, what may explain its
rare use.

However, a systematic comparison between the semi-staggered, staggered, cell-center collocated and vertex collo-
cated meshes in the lid driven hydrodynamic cavity test problem, with explicit time integration, Figueiredo and Oliveira
(2009a,b) indicated that the stability and the accuracy of the semi-staggered mesh is comparable to the staggered and the
cell-center collocated meshes.

Analogously to the collocated meshes, the collocated velocity components of the semi-staggered mesh simplify the
computation of the momentum fluxes, since the influence coefficients are the same for both momentum components. On
the other side, the semi-staggered mesh shares with the staggered mesh the simple closure of the pressure equations, by
maintaining the boundary velocities when taking the numerical divergence of the local momentum equation. Also, the
semi-staggered mesh, as well as the vertex collocated mesh, allows the use of entirely regular spacing of both velocity
components.

As both collocated meshes, the semi-staggered mesh produces oscillating pressure fields. A momentum interpolation
procedure analogous to the Rhie and Chow is possible, that smoothes the pressure field at the price of loosing the strict
observance to the numerical continuity equation. Alternatively, such procedure can also be used only as post processing,
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Figure 1. Semi-staggered mesh

without perturbing the solenoidal velocity field, in order to smooth the pressure field.

2.2 UNIFAES

The present work employs the Unified Finite Approach Exponential-type Scheme, UNIFAES, to compute the ad-
vective and viscous terms of the momentum equations. This scheme belongs to a class of schemes whose interpolating
functions are obtained as exact solutions of a one dimensional linear equation, which somehow approximates the equation
of interest. Let us consider the three-dimensional momentum transport equation in non-dimensional form, in terms of a
dummy variable φ :
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+Re
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+Re
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The exponential-type schemes use as interpolating curve the exact solution of the one-dimensional equation:

Reu
dφ

dx
− d2φ

dx2
= K (2)

This linear equation approximates the transport Eq.(1) around each boundary cell, by assuming the velocity to be
locally constant, as well as the cross advective and diffusive fluxes, transient and source terms of the partial Eq.(1),
which are represented by the non-homogeneous term. Such schemes could be expressively called Locally Analytic for
their conception. Indeed such name was adopted by one particular scheme of the class (LOADS). Alternatively they
may be called Exponential-type Schemes, since the exponential function appears in their interpolating curves and in their
influence coefficients.

The class of Exponential-type schemes founded upon one-dimensional generating equations started with the Allen
and Southwells finite differencing exponential scheme (Allen and Southwell, 1955). The methodology due to Allen was
rediscovered by other authors using finite differencing, finite element and, particularly, finite volume methods. A brief
review of such work is presented by Figueiredo and Oliveira (2009b), the present paper concentrates on the finite volume
schemes.

The first exponential schemes proposed in the finite volume approach (Spalding, 1972; Raithby and Torrance, 1970)
were based on a homogeneous generating equation associated to Eq.2, so loosing much of the similarity with the original
equation. At the price of greater algorithmic complexity and bigger computational time spending, the non-homogeneous
generating equation was recovered by the finite volume schemes Locally Analytic Differencing Scheme, LOADS, (Wong
and Raithby, 1979), Flux-Spline Scheme, (Varejão, 1979; Karki et al., 1989) and, at last, the Unified Finite Approaches
Exponential-type Scheme, UNIFAES (Figueiredo, 1997).

All those schemes are naturally upwinded (Calhoon Jr. and Roach, 1997), in the sense that the influence coefficients
of the upwind neighbor nodes become increasingly dominant as the cell Reynolds number increases, although the com-
putational molecule remains symmetric except at the limit for infinite Reynolds numbers.

All exponential-type schemes are asymptotically second order, but at high Reynolds numbers the Allen and Southwell
scheme and the simple Exponential Scheme approach the first order upwind scheme, justifying some criticisms to their
slow spatial convergence (Leonard and Drummond, 1975). However, the exponential-type finite volume schemes based
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on non-homogeneous generating equations, namely LOADS, Flux-Spline and UNIFAES, are effectively second order at
any Reynolds number, being not liable to Leonard and Drummond’s criticism.

The greater computational time spending of the exponential function compared to polynomial discretizations is another
source of criticism which, on one hand, motivated the development of approximations such as the Power-Law Scheme
(Patankar, 1980) and Padé approximants (Axelsson and Gustafsson, 1979). The Power-Law approximation was also
employed in UNIFAES (Figueiredo and Llagostera, 1999; Llagostera and Figueiredo, 2000b,a).

UNIFAES was initially submitted to a series of tests representing eigenfunctions of the linear advective-diffusive
transport equation on a uniform flow field (Figueiredo, 1997). It showed stability even at Peclet numbers as high as 109
and very good accuracy in all eigenfunctions, generally overcoming the central differencing, the simple exponential and
LOADS. It presented no significant effects of the flow-to-grid angle. The distance of UNIFAES to the other schemes
increased for crescent Peclet numbers. On the other side, all schemes tended to produce equally higher errors as the
function eigenvalue increased.

Then UNIFAES was submitted to the Smith and Hutton test problem, concerning the transport of a scalar in a pre-
scribed curved velocity field, for Peclet numbers up to 106 (Figueiredo and Llagostera, 1999). Again it presented very
good performance, generally overcoming the other schemes, except the central differencing in a range of Peclet numbers
where this scheme showed extremely high accuracy and unusual stability up to Peclet number 10,000. It also presented
very good performance in simple one-dimensional tests concerning grid irregularity (Llagostera and Figueiredo, 2000b,a).

Then, the Power-Law form of UNIFAES was applied to the thermal transport equation on a buoyant Darcian porous
flows involving natural and mixed convection in different geometries (Figueiredo and Llagostera, 1999; Llagostera and
Figueiredo, 2000b,a). Some comparisons with the simple Power Law scheme also showed the crescent superiority of
UNIFAES as the Rayleigh number increased.

Finally, the comparison of UNIFAES with central differencing and the simple exponential scheme was extended to the
case of the incompressible Navier-Stokes equations in primitive variables, considering all fundamental mesh structures,
employing the classic test problems of the 2D lid-driven cavity flow in the standard form (with uniform lid velocity) and
in the regularized form (that removes the singularity at the lid corners) (Figueiredo and Oliveira, 2009b,a). The reader is
also referred to such papers for details on the governing equations, on the method of solution and on the methodology of
Richardson extrapolation.

A simplified presentation of the Finite Volume Exponential-type Schemes for discretization of the advective and
viscous transport of momentum, particularly UNIFAES, is given here. Algebraic details are found in (Figueiredo, 1997;
Figueiredo and Llagostera, 1999).

	  Figure 2. Rectangular control volume with the compass notation

Figure 2 reproduces a 2D rectangular control volume with the usual Finite Volume compass notation, showing the
advective-viscous fluxes located at the intersection of its parallel coordinate and its orthogonal cell face. The combined
net advective and viscous flux

Aφ = Re
∂(uφ)
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+Re

∂(vφ)

∂y
+Re

∂(wφ)

∂z
− ∂2φ

∂x2
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∂y2
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∂z2
(3)

is integrated on the cell volume υ and is transformed, through to the divergence theorem, into the integral of the
advective-viscous flux through the cell surface. For all control volume locally analytic schemes, the integrated net flux is
given by:∫

υ

∫
Aφdυ ∼= aE(φE−φP )+aW (φW −φP )+aN (φN−φP )+aS(φS−φP )+aF (φF −φP )+aB(φS−φB)−ψ(4)
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where

aE/W = π(±pe/w)δy δz/δx± (5)

aN/S = π(±pn/s)δx δz/δy± (6)

aF/B = π(±pf/b)δx δy/δz± (7)

pe/w = Re ue/w ∆x± (8)

pn/s = Re vn/s ∆y± (9)

pf/b = Re vf/b ∆z± (10)

π(p) =
p

exp(p) − 1
(11)

ψ = [Ke∆x
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R =
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∆x±
or R =

δyn/s

∆y±
or R =

δzf/b

∆z±
(14)

In Eqs.(5) to (10) and (14), indexes e, n and f correspond to sign +, and indexes w, s and b to sign -.
The simple exponential scheme (Spalding, 1972; Raithby and Torrance, 1970; Patankar, 1980) is recovered by assum-

ing null K., so dismissing Eqs. (12) to (14). The complete equations are relevant for LOADS and UNIFAES, and, with
minor changes, for the Flux-Spline scheme.

In UNIFAES, the information about K is provided by the finite differencing approach that led to the Allen and South-
well scheme (Allen and Southwell, 1955). The Allen and Southwell exponential scheme computed the analogue of the
net advective and diffusive fluxes in non conservative form by employing the generating equation analogous to Eq. 2, but
centered on node P. Generalizing the Allen and Southwell scheme for irregularly spaced grids one obtains:

Kp = (φp − φE)Π+ + (φP − φW )Π− (15)

where Π± was put by Llagostera and Figueiredo (2000a,b) in a form adequate for using any approximation of the
function :

Π± =
Re up π(±p±u )

∆x±[π(−p−u ) − π(p+u )]
(16)

where

p±u = Re up ∆x± (17)

In uniform grids, Eq. (16) reduces to the original Allen and Southwell scheme:

Π± =
π(±p±u )

∆x2
(18)

In UNIFAES, the source term Ki,j,k
e , for instance, is found by linear interpolation of the generalized Allen and South-

well estimates ofKp on the nodes (i, j, k) and (i+1, j, k). Although the Allen and Southwell scheme is non-conservative,
its use in UNIFAES maintains numerical conservation because Ki,j,k

e = Ki+1,j,k
w , so that J i,j,ke = J i+1,j,k

w . The 3D
computational molecule around node (i, j, k) involves the immediate neighbors (i± 1, j, k), (i, j ± 1, k) and (i, j, k± 1)
and also the remote nodes (i ± 2, j, k), (i, j ± 2, k) and (i, j, k ± 2). At the cell boundaries neighbor to the domain
frontiers, is linearly extrapolated from the closest internal nodes, dismissing the remote node outside the domain.
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Figure 3. Sketch of the step geometry defining various geometrical parameters.

2.3 Numerical setup

The domain of study was the same of Lee and Mateescu (1998). The expansion ratio ER=(S+h)/h tested was 2.0. The
characteristic dimension D is the neck hydraulic diameter, D = 2h. The definition of Reynolds is the same of Armaly
et al. (1983) and is calculated as:

Re =
V D

ν
(19)

where V is the mean velocity at the entrance and ν is the kinetic viscosity.
The dimensionless values used were h=0.5, S=0.5, L=20 for 100≤Re≤600, L=30 for Re≥800, width W=20 and the

entrance channel c=5.0.
A parabolic profile representative of a fully developed entrance chanel flow was imposed in the inlet region, therefore,

the mean velocity at the inlet is 2/3 of the maximum inlet velocity. The walls are hipermeable and non-slip. Homogeneous
Neumann boundary condition were assumed for the velocity components at the domain outlet.

Two different sets of mesh sizes ∆x, ∆y and ∆z were simulated for each Reynolds number. For 100≤Re≤600, the less
refined one had ∆x=0.25, ∆y=0.025 and ∆z=0.5, in the most refined case ∆x=0.1666, ∆y=0.01666 and ∆z=0.333. For
700≤Re≤900, the less refined one had ∆x=0.15625, ∆y=0.015625 and ∆z=0.625, in the most refined case ∆x=0.125,
∆y=0.0125 and ∆z=0.5. The pair of numerical results for each case was used to estimate the numerical error by mean of
Richardson extrapolation.

Schematic location of the two recirculation zones that can be present in the flow and the three main points of detach-
ment or reattachment can be seen at Fig. 4.

	   Figure 4. Location of detachment and reattachment points

3. RESULTS

Figure 5 shows the profiles of the u velocity at z = 10.0 for three different x, x = 8.5, x = 12.5 and x = 20.0 in
function of entrance channel length for Re=600, remembering that the expansion step is located at x = 5.0. By this figure
it is possible to analyze the evolution of "u" velocity profile. At x = 8.5 we have only the first recirculation zone accting
in the bottom of the channel, at x = 12.5 this recirculation zone at bottom no more acte and the second one at the top can
be seen, this one has a small intensity when compared with the first one. And finally at x = 20.0 the flow takes an aspect
parabolic, with means the we are far enough form the step region and the flow begin to be developed.

Figure 7 shows the profiles of the u velocity at x = 10.0 for three different z, z = 1.25, z = 2.5 and z = 10.0 for
Re=700. As the with is 20.0, z = 1.25 is located near the lateral wall, z = 10.0 is located in the middle of the channel
and z = 2.5 between the two. At x = 10.0 for Re=700, we are at a zone where coexist the bottom and top recirculation
zone. The main purpose of this figure is to show the 3D characteristic of this flow, acutely in this region where we have
the two recirculation zone acting this characteristic is more pronounced. In the figure its possible to see comparing the
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Figure 5. Re=600, Profiles of u velocity at z = 10.0 for x = 8.5, x = 12.5 and x = 20.0.

curves to z = 1.25 and z = 10.0 that the y value to maximum value is different and the intensity of the recirculation is
smaller near the wall (z = 1.25) when compared with the middle of the channel (z = 10.0).
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Figure 6. Re=700, Profiles of u velocity at x = 10.0 for z = 1.25, z = 2.5 and z = 10.0.

Figure 7 shows the profile of the u velocity in function of the z for three different lines, the first one at x = 7.5 and
y = 2.5 inside the bottom recirculation zone, the second one at x = 7.5 and y = 7.5 just above the first bubble in the
bottom wall, finally, the third one at x = 12.5 and y = 7.5 represents a region just below the recirculation zone at the
top wall. Analyzing the three profiles it is possible to see the 3D characteristic of this flow appears in a special way in the
region near the recirculation zones and the lateral wall, where the u velocity varies with z.

Figure 8 shows the variation of the location of the reattachment point at the lower wall x1 as function of the Reynolds
numbers for three different z position (z = 2.0, z = 5.0 and z = 10.0). As its possible to see, the 3D characteristic of the
flow start to appear for Re=300, when the influence of the lateral wall in the flow, change the position of the reattachment
point for z = 2.0.

Variation of the location of detachment and reattachment points at the upper wall x4 and x5 as function of the Reynolds
numbers are plotted at Fig. 9 and Fig. 10 for three different z position (z = 2.0, z = 5.0 and z = 10.0). Fig.9 shows
a huge influence of the wall proximity in the dettachement point x4, the upper recirculation zone starts early to z = 2.0
when compared with the regions in the middle of the channel. This is duo, the proximity of the 2 two recirculation zone
(bottom and upper one), as said before, what reinforce the 3D characteristic of the flow in this zone. However, at fig.10 its
possible to see that the region where the upper recirculation zone finished is practically independent of z, as the influence
of the bottom recirculation zone is almost null.

Figure 11 shows the variation of the location of the reattachment point at the lower wall x1 as function of the Reynolds
numbers in the middle of the channel, comparing the present 3D data with a 2D simulation using a analogous methodology
of this work (Santos et al., 2010) and the original experimental data from Lee and Mateescu (1998).

The 2D and 3D simulations x1 values obtained for the middle of the channel are very similar. This is duo, the
small influence of the 3D characteristc of the flow in middle of the channel and the Reynolds number simulated that
not represent the turbulence flow ( Lee and Mateescu (1998) says that the transitional flow regime start at Re=1150).
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Figure 8. Variation of location of reattachment points at lower wall x1 with Reynolds numbers for z = 2.0, z = 5.0 and
z = 10.0.
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Figure 9. Variation of location of reattachment points at upper wall x4 with Reynolds numbers for z = 2.0, z = 5.0 and
z = 10.0.

Numerical simulation has a good agreement with the experimental data until Re=700, when both numerical simulation
results start to have bigger differences with the experimental results.

In order to evaluate the errors of previous calculation, Table 1, exposes the buble sizes obtained with both refinement
levels, together with the corresponding Richardson extrapolation considering second order convergence.

Variation of the location of detachment and reattachment points at the upper wall x4 and x5 as function of the Reynolds
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Figure 10. Variation of location of reattachment points at upper wall x5 with Reynolds numbers for z = 2.0, z = 5.0 and
z = 10.0.

Table 1. X1 values for the two different meshes and the corresponding Richardson extrapolation value

Re Mesh1 Mesh 2 Richardson Extrapolation
100 3.3863 3.2298 3.1046
200 5.4376 5.2721 5.1396
300 6.8929 6.8573 6.8289
400 8.3559 8.3492 8.3439
500 9.5146 9.5879 9.6466
600 10.4213 10.6720 10.8725
700 11.2253 11.1644 11.3337
800 11.9755 11.8759 12.1525
900 12.6993 12.5158 13.0256
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Figure 11. Variation of location of reattachment points at lower wall x1 with Reynolds numbers. Experimental data from
Lee and Mateescu (1998), presented 3D numerical data and 2D numerical data from Santos et al. (2010).

numbers in the middle of the channel are plotted at Fig.12 and Fig.13 . Experimental data from Lee and Mateescu (1998)
are compared with the present numerical simulations and with a 2D numerical simulations from (Santos et al., 2010).
Experimental and numerical data have a good agreement until Re=800, when x4 values of experimental data stabilize and
x5 increase quickly, resulting in a smaller recirculation zone when compared with the simulations.

Figure 12 (deattachement point x4) shows for Re≤600 a better agreement between 2D numerical simulations and
experimental results. For Re≥700 the 3D simulations is in a better agreement with the experimental data. As we can see
at Fig. 13, 2D and 3D simulations have obtained very close results for x5 location in the middle of the channel with a
good agreement with experimental data for 700≤Re≤800.
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Figure 12. Variation of location of detachment point at upper wall x4 with Reynolds numbers. Experimental data from
Lee and Mateescu (1998), presented 3D numerical data and 2D numerical data from Santos et al. (2010).
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Figure 13. Variation of location of reattachment point at upper wall x5 with Reynolds numbers. Experimental data from
Lee and Mateescu (1998), presented 3D numerical data and 2D numerical data from Santos et al. (2010).

4. CONCLUSIONS

The influence of the 3D simulation in the numerical simulation of the classic two-dimensional backward-facing step
flow was studied. Location of detachment and reattachment and velocity profile as function of Reynolds number were
obtained and compared with experimental data from Lee and Mateescu (1998) and 2D numerical data from Santos et al.
(2010).

The combination of the semi-staggered mesh with the UNIFAES discretization scheme was used in a first time in a
3D simulation and showed good stability and precision in all the cases presented here.

Results showed a small but not ignorable influence of the 3D simulation for the Reynolds number simulated in the
location of the detachment and reattachment points and in the size of the recirculation zones, in a special way in the region
near the lateral wall. However, the three dimensional numerical results remained practically as far from the experimental
results as the two dimensional numerical results. Therefore, the most plausible explanation for the disagreement between
2D numerical solutions and experimental must be discardable. Other possibility concern the effects of perturbations in
the flow, which is to be checked in a further work.
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