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Abstract. A numerical  analysis  of  a  thixotropic  fluid  flowing through  a  cylinder  between  two parallel  plates  is 
performed, using the constitutive equation recently proposed by de Souza Mendes (2009). The constitutive equation  
couples viscoelasticity and viscoplasticity, by means of a fluid structure parameter. The conservation equations of 
mass and momentum coupled with the constitutive equation are solved via the finite element method, based on a  
four-field Galerkin least-squares formulation in terms of the extra-stress, pressure, velocity and structure parameter.  
The effect of a rheological parameter, the shear modulus, on the fluid structure and on the flow pattern is investigated 
in order to evaluate the model performance in complex flows. 
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1. INTRODUCTION 

A large class of non-Newtonian fluids has a microstructure leading to a elastic behavior for lower levels of stress.  
Above a critical stress value, the yield stress,  this microstructure breaks,  causing a steep decrease in elasticity and 
viscosity levels, together with a pseudoplastic fluid behavior. Moreover, these fluids may also present a time-dependent  
viscosity: the viscosity changes with the time of shearing. If the viscosity decreases with time as the fluid undergoes a 
shear rate increase in a reversible process, the fluid is called thixotropic (Barnes, 1997). These fluids can be frequently 
found both in  nature  and  in  industrial  applications  such  as  polymer  melts  and  solutions,  paints,  mud,  detergents,  
cosmetics, gels, creams and pastes, foods such as yogurt and fruit juices, and solutions of stabilizers and thickeners.  

The aim of the present article  is  the numerical  investigation of a thixotropic fluid flowing through a cylinder  
between two parallel plates, using the constitutive equation recently proposed by de Souza Mendes (2009). Interesting 
reviews of the thixotropic behavior of fluids are performed by Mewis and Wagner (2009) and Barnes (1997), where 
thixotropy and modelling are described and discussed. The model proposed by de Souza Mendes (2009) is a tentative 
equation to predict the thixotropic behavior of complex fluids. It is based on the upper-convected Maxwell constitutive 
equation for viscoelastic fluids, but with a relaxation time and viscosity function dependent on a structure parameter, 
which indicates the level of structure of the material. The time dependency is taken into account in the evaluation of the 
structure parameter, by means of an evolution equation. 

The mechanical model is formed by the conservation equations of mass and momentum for incompressible fluids, 
coupled with the constitutive equation. In a first approximation, the temporal variation of the parameter structure shall 
be disregarded in the presence of terms accounting for its spatial advection and the buildup and breakdown of the  
material structure. Such an assumption leads to a simplification that transforms the equation of the structure parameter  
in  a  purely  hyperbolic  one,  which  certainly  requires  special  care  in  its  numerical  approximation.  The  numerical 
approach is based on a four-field Galerkin least-squares formulation in terms of the extra-stress, pressure, velocity and 
structure parameter.  This formulation is developed as an attempt to enhance the  stability of the classical  Galerkin  
approximation for differential viscoelastic flows, which major feature is to circumvent the compatibility conditions for  
the finite subspaces of primal variables, hence allowing the use of simple combinations of finite element interpolations,  
as  the equal-order  bilinear  Lagrangian one.  In  addition, owing to an appropriate  design of  its  least-squares mesh-
dependent terms, this formulation remains stable even for locally elastic-dominated flows, where the upper-convected  
derivative of the material equation plays a relevant role. The effect of rheological parameters on the flow pattern and on 
the structure parameter is investigated and discussed. The ratio between the channel height and the cylinder diameter is  
held fixed and inertia is neglected.  All the numerical results proved to be physically meaningful and in accordance with 
the related literature. 

2. THE MODELING
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In order to simulate creeping flows of thixotropic materials, a multi-field formulation composed by balance 
equations for mass and momentum, coupled with a thixotropic equation recently introduced by de Souza Mendes 
(2009), can be written as

divu=0 in 
div−∇pb=0 in 
 =2v Du in 

u⋅∇ =1
teq [ 1−a−1−ss

a 
ss


b

 
v ̇ 

c ] in 

u=ug on g
u

=g on g


=g on g


[−p1]n=th on h


∇⋅n=0 on h


   (1)

where u is the velocity vector, p is the hydrostatic pressure and  is the extra-stress tensor,  is the fluid density,

 is the fluid relaxation time that depends on the structure parameter  , D is the strain rate tensor, b is the body 
force  per  mass  unit,  teq is  a  characteristic  time  of  change  of  the  parameter  , a, b and  c  are  positive  scalar 

coefficients,  and ̇  are respectively the shear stress and the shear rate – namely the magnitudes of tensor  and 
D – th is the stress vector,  ug,  g and g are the imposed velocity, extra-stress boundary and structure parameter 

conditions, respectively. In addition, the fluid relaxation time  , the shear modulus G, the structural viscosity v ,  

the steady state of  the structure parameter ss , the steady state of  the viscosity ss  introduced  by  de  Souza 

Mendes  (2009) –  with  all  quantities  depending  on  the  structure  parameter  – and  the  upper-convected  time 
derivative of tensor   (Astarita and Marrucci, 1974 ) are given by 

=
v 
G 

   (2)

G =
G0

m
   (3)

v =0

∞



∞
   (4)
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   (5)

ss=[1−exp−
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0

][0−0 d

̇
e−

̇0

̇0 d


0d

̇
K ̇n−1]∞

   (6)

τ=∇ u−∇ u − ∇ uT    (7)

in which G0 is the shear modulus of the material totally structured, m is a dimensionless positive scalar, 0 and ∞

are the viscosity when the material is either totally structure =1 or is unstructured =0  respectively, 0

and 0d
are static and dynamic yield stresses respectively, ̇0d

is the shear rate value for which stress transition 

from 0 to 0d
occurs , K is the consistency index and n is the power-law coefficient.

2.1. A multi-field GLS approximation

A multi-field GLS formulation for structure fluid flows governed by multi-field problem defined by Eq. (1)-(7) can 
be introduced as: find the quadruple  h , ph ,uh ,h ∈ h×Ph×Vg

h×h such as: 
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B  h, ph ,uh ,h;Sh, qh , v h ,h=F Sh , qh , vh ,h ∀Sh, qh ,v h ∈ h×Ph×Vh×h    (8)

where 
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and
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with h×h×Ph×Vg
h  is the finite element space product for structure parameter, extra-stress, pressure and velocity,  

respectively, and the stability parameter x , Wi k and x taken as extensions of the ones introduced  
by Franca and Frey (1992) and Behr et al. (1993) for constant viscosity fluids.

3. NUMERICAL RESULTS

In this section, some GLS simulations of structured fluid flows are undertaken. The structured fluid flows around a 
cylinder – of radius R – that is confined to a planar channel of height H, .with the geometry presenting an aspect ration 
H/R ratio equal to 1:8 – see Fig. 1 for a detailed geometry and problem statement. The kinematic boundary conditions 
are the following: (i) no-slip and impermeability on channel wall and on the cylinder surface; (ii) symmetry conditio
∂x2

u1=u2=12=0  on channel centerline – since only half the channel is considered on numerical tests;  (iii) inlet 
fully-developed viscoelastic profiles for velocity and extra-stress,

u1
-=1.5u- 1−x 2

2/H 2 ; u 2
-=0

12
- =p −3 x2 /H 2 ; 11

- =2  p−3 x2 /H 22 ; 22
- =0

;  (11)

and  free-traction [− p1]n=0 at  channel  outlet.  For  the  evolution  equation  of  the  structure  parameter,  the 
following boundary condition are imposed: (i) unitary uniform profile at inlet channel; (ii) and, on all boundaries, null 
multi-directional gradients are prescribed, ∇⋅n=0 .
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 (a)

 (b)
Figure 1. Structure flow around a cylinder: (a) the problem statement; (b) a mesh detail.

The boundary conditions are (i) no-slip and impermeability on channel walls and cylinder surface, (ii) velocity and  
extra-stress symmetry conditions on the centerline, and (iii) fully-developed velocity and extra-stress profiles at inflow 
and outflow.

 (a)

 (b)

 (c)
Figure 2. Structure Parameter iso-bands: (a) G0=2 Pa; (b) G0=10 Pa; (c) G0=100 Pa.

Figures 2 shows structure parameter isobands throughout the channel, for G0=2-100 Pa, teq=1s, U=1 m/s, n=0.5, K=1 
Pa.sn 0=2Pa , 0d

=1Pa , 0=104 Pa.s , ∞=10−2Pa.s , m=0.1,  a=b=1.0  e  c=0.1.  It  can  be  noted  highly 
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structured regions – that is to say regions subjected to values of  close to unity – at channel inlet and around the 
centerline.  In  contrast,  regions subjected to  low values of  can be found near  the channel  walls  and close the 
cylinder. In addition, as the shear modulus increases, from 2 Pa up to 100 Pa, the structured material regions tend to 
decrease and conversationally  the unstructured regions tend to increase.  The topology of the unstructured material  
regions can be explained by the collapse of the material zones due to higher strain rates. Secondly, the monotonically 
increasing of the unstructured regions with G0 is due to the low degree of the fluid elasticity for such a situation; from 
the modified UCM viscoelastic equation (Eq. (1) and (2)), the more the shear modulus increases, the more the upper-
convected derivative of extra-stress decreases. 

 (a)

 (b)

 (c)
Figure 3. A blown-up view of unyielded regions around the cylinder: (a) G0=2 Pa; (b) G0=10 Pa; (c) G0=100 Pa.

In Fig. 3, the unyielded material regions for the flows illustrated in Fig. 2 are shown. It is worth noting a strong  
linking between both figures. For  G0=2  Pa  – the most elastic case – it can clearly be noticed a high-  -structure 
region (yellow zone) throughout the channel (see Fig. 2a) corresponding to an unyielded region in Fig. 3a. For G0=10 
Pa and 100 Pa, the same behavior repeats itself; unyielded regions in Fig. 3b and 3c can be related to similar (topology)  
unstructured regions in Fig. 2b and 2c. This linkage is expected since the elastic unstructured region are subjected to  
lower shear stresses and consequently the material can not overcame its yield limit. Yet the material is considerably 
unstructured, the stresess acting upon it are higher and it can flow as a power-law fluid.

4. FINAL CONCLUSION
 

In this work a multi-field GLS approximation for upper-convected Maxwell model is used to analyze the creeping  
flow of a thixotropic fluid around a cylinder between two parallel  plates.  The effect  of  the shear  modulus on the 
structure  parameter  and on the flow pattern is  presented and discussed.  The geometry is  held fixed and inertia  is  
neglected. The results obtained show that for highly elastic fluids (lower shear modulus G0) larger regions of structured 
(elastic) and unyielded fluid are found. Increasing the shear modulus it is observed that some structured regions are  
broken and yielded zones appear close to the cylinder wall. These preliminary results indicate that the model is valid to 
predict the behavior of thixotropic fluids, since all results are physically meaningful and in accordance with the related 
literature. However, further tests are being performed to confirm and validate the model.
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