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Abstract. In what follows, we present the dynamical model for a proposed class of mobile, multibody robotic systems which
are able to steer themselves around on the plane. We employ open-loop optimal control towards trajectory generation for
systems with unidirectional thrusting and compare to previously obtained results of systems with bidirectional thrusting
capacity. We show through numerical trials that the gain of performance of the multibody systems over the rigid body
with similar thrusting inputs is significantly greater when considering the unidirectional case.
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1. INTRODUCTION

1.1 System Definition

Definition 1..1 (Mobile Multibody System, Souza and Maruyama (2010)) Let the multibody system of Figure 1 be formed
by N rigid bodies connected to each other through articulated joints in the form of an open chain and subject to, at most,
N external forces fi, and with up to N − 1 joint torques Tj . Allowing the fi to represent propulsion actuators, the system
can be steered on the inertial space and freely position its center of mass.
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Figure 1. Mobile multibody system.

Systems of this class are simply kinematic chains composed of planar rigid bodies which are articulated by active hinges.
Systems of the mentioned class pertain to a myriad of applications, ranging from underwater and space robotics to behav-
ioral models for biomechanics research Ackermann and van den Bogert (2010). The above defined system differs from
those considered in the literature, see e.g. Rui et al. (2000), Dubowsky and Papadopoulos (1993), in regard to the distri-
bution of thrusters inputs: one in each system body, in contrast to a concentrated input structure. This property couples
system translational and angular dynamics. Our motivation for the following investigation finds its origin in the practical
problems of autonomous robotics. We employ open-loop optimal control towards trajectory generation for such systems
as described next.

1.2 Problem Statement

Consider the rigid body system with two thrusters, as defined in the Appendix, which we henceforth refer to as the
reference system or simply RS.

We intend to verify a gain of performance of the above multibody systems relative to the RS. The above class of
multibody systems can be viewed as a partitioned rigid body where kinematical constraints were removed and becomes
kinematically redundant, i.e., has more d.o.f. than the cartesian space. Our objective is to show superior multibody
system performance by exploiting the breaking of these kinematical constraints or its inherent redundancy. In this regard,
i.e., in the attempt to verify improvement of the multibody system performance over the RS, we carry out a numerical
investigation to seek optimal trajectories which minimize a certain functional dependent on systems inputs only.

This study serves as a preliminary evaluation of system actuation capacity as attention is given to both bidirectional
and unidirectional thrusting, defined by:

Bidirectional: fi ∈ [−1; 1] · fmax,
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Unidirectional: fi ∈ [0; 1] · fmax.

One sought for conclusion of this study extension is that multibody systems outperform the RS even more pronouncedly
when operating with unidirectional thrusting. Moreover, we carry out additional analysis to quantify the geometric phase
mechanism contribution in this performance augmentation.

Our evaluations are concerned with the generation of trajectories for the two-body (B2) and three-body (B3) systems
with fully active hinge joints where not only does the center of mass coordinates of the systems on the plane but also the
attitude coordinates of the rigid bodies comprising the systems have prescribed initial and final configurations. We also
generate trajectories with equal starting and ending configurations for the rigid body and contrast the results of all systems
with respect to a few cost functions detailed below. Discussion follows and attention is given to the multibody systems
gain of performance over the rigid body system through the variation of the input structure and internal dynamics of the
former systems. In like manner, other comparing functions involving the system barycenter trajectory and the thrusters
effort dispensed are used to obtain a more complete measure of this performance gain.

2. MULTIBODY SYSTEM DYNAMICS

Let rcm = (rx, ry) ∈ R2 be the location of the center of mass of a planar, N -body system w.r.t. the inertial frame.
For the i-th system body define the attitude angle θi relative to the inertial frame. Define the system mobile frame located
at the center of mass whose angular orientation θcm ∈ S1 is computed as a weighted average of the θi. The joint angles
φ = (φ1, . . . , φN−1) solely determine the system shape and are the coordinates of the shape space B, where B ⊂ RN−1.
We denote by q the system linear (rcm) and rotational (θcm, φ) coordinates on the configuration space Q and by p the
system translational and rotational conjugate momenta which yield an element z of the system n-dimensional phase space
and parametrize it by (q, p). The multibody system dynamics represented in input-affine form gives, Souza and Maruyama
(2011):

ż = f(z) +
m∑

k=1

gk(q)uk = f(z) + g(q)u, (m < n) (1)

where f(z) and {g1(q), . . . , gm(q)} are the drift and the m input C∞-vector fields, with input u. The mt thruster forces
fi are located transversally on the centroid of each system body and propel the system everywhere on the plane. We allow
bi-directional thruster actuation. The torques Tj drive N − 1 joint angles. Notice that m = mt + (N − 1). The structure
of the mt thruster input vector fields is

gi =




03×1

0(N−1)×1

Xvx(θcm, φ)
Xvy (θcm,φ)

Xpθ
(φ)

0(N−1)×1




,

where ui = fi, for i = 1, . . . , mt, and the N − 1 joint-torque vectors are written as

gmt+1 =




0
1
0
...
0




, . . . , gm =




0
0
0
...
1








(N − 1)

where 0 = 0(N+5)×1 and umt+j = Tj , for j = 1, . . . , N − 1. The B2 dynamical model is presented in the Appendix.
The RS, whose dynamics is detailed in the Appendix, has two thrusters located symmetrically on each side and at a

distance d from the center of mass as shown in Fig. 2.
In the attempt to make a fair judgement and pinpoint the sources of possible gain in performance, we define the

underactuated B3 system to have thrusters located exactly at the same place as those in the B2 system when both systems
are extended with φi = 0, see Fig 3. This rules out any dynamical advantage from thrusters location mismatch. A
few comparison cases of the modified underactuated B3 system (with equivalent thruster locations to the B2 system)
did show further significant Jobj and JPI performance improvement over the B2 system and minor improvement of the
trajectory. Hence, preliminary evaluations indicate that an extra elimination of kinematical restrictions enables further
gain in performance.
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Figure 2. Rigid body or reference system.
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Figure 3. Position of thruster forces for the RS and the 2, 3-body systems.

3. OPTIMAL CONTROL PROBLEM

Definition 3..1 (Optimal Control Problem - OCP) The optimal control problem (OCP) consists of searching for the op-
timal trajectories z∗(t) and controls u∗(t) that minimize a specified objective function, satisfy the equations of motion (1)
and (6), and the boundary and fixed final time T constraints which describe the system’s final position and orientation.

The objective function was chosen as a quadratic function on the system inputs, i.e., thruster forces fi and joint torques
Tj , and is given by

Jobj =
∫ mt∑

i=1

f2
i + w

N−1∑

j=1

T 2
j dt (2)

This choice of quadratic Jobj was made in order to avoid imposing input saturation (constraints) on the optimization
problem and incorrectly infer conclusions about system behavior on arbitrary maximum input values for systems with
different number of thrusters. We also encountered problems relative to numerical convergence with Jobj as a summation
of absolute thruster forces.

Motivation for this specific choice of cost function relies on the fact that, for space robotic applications, for example,
the energy needed for revolute joint actuation could benefit from renewable sources, such as the electricity generated from
existing onboard solar panels. Some currently used energy sources for thrusters1 are not renewable and electric propulsion
technology is still in early stage of developement2. and, hence, the energy for the thrusting inputs are critical and should
be minimized at the expense of increased effort for joint actuation.

The joint torques in (2) were weighted with penalty w. Different values for w verify how much the fi can be minimized
relative to the Tj . As expected, the higher the penalty w employed, the worse performance Jobj is obtained since the joint
torques were minimized more intensely along with the thruster forces and less can be gained by exploiting the system
internal dynamics performance.

In order to quantify the thruster effort and to compare the performance of the different topologies we make use of a
metric, labeled performance index (PI), defined by truncating Jobj as

JPI =
∫ mt∑

i=1

f2
i dt (3)

The length of the trajectory described by the center of mass serves also as a performance metric for comparison

1Such as gas jets or burning of hydrazine derivatives.
2Which could still benefit from the optimization methods being discussed; specially when working near the operational performance limit.
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between the different systems. This follows from

∆S =
∫

ds =
∫ T

0

√
v2

x + v2
ydt, (4)

where (vx, vy) is the velocity of the system center of mass.
The boundary conditions are specified so that the systems leave the initial configuration from and arrive at the terminal

configuration at rest (p = 0). The multibody systems initial and final shapes are constrained to mimic the RS with null
joint angles (φj = 0). This choice of boundary conditions allows for a direct comparison of the RS, B2, B3 systems: the
multibody system are allowed to vary internal dynamics arbitrarily given they begin and finish the trajectories like the RS.

The RS and multibody systems have the same total mass m and moment of inertia I when the multibody system has
φ = 0. The individual body mass mi and inertia Ii of systems B2, B3 are computed according to

mi =
m

N
and Ii ∝ m

N

(
L

N

)2

⇒ Ii =
I

N3
,

where N is the number of system bodies and L is the system characteristic length. This restricts the multibody systems
to the similar geometric and inertial properties as the RS and applies to multibody systems which have mass distributed
homogeneously with the length, e.g., system whose bodies are slender rods.

3.1 Numerical Implementation

Numerical computations are carried out with the PROPT commercial software package Rutquist and Edval (2010)
which uses collocation methods to translate the optimal control problem into a Nonlinear Programming Problem (NLP)
and solves the resulting NLP using a large-scale Sequential Quadratic Programming (SQP) engine. A Gauss discretization
scheme was used to create collocation points. A mesh refinement study showed that 80 nodes resulted in a sufficiently
fine mesh for the problem in question. The chosen trajectory final time T is of 10s. Other numerical parameters include
RS mass m of 10kg, d = 1m, and I = 10/3kgm2.

The terminal boundary conditions belong to a circle sector of radius 10m and centered at the origin of the inertial
frame, which corresponds to the initial starting point for the RS, B2, B3 systems. We select some points on this cir-
cular sector as final system center of mass destinations. We extend the results of the above reference to include points
parametrized by the angle α, which varies from 0◦ to −90◦ for the bidirectional case and from 0◦ to −180◦ for the unidi-
rectional case, with increment values of 15◦, as shown in Fig. 5(a). The unidirectional case mirrors this 1Q grid to the 4Q.
System final attitude θcm(T ) were also selected from a set which begins at −180◦ and ends at +180◦, with increments
of 15◦. These, along with the restrictions of final system velocity, compose the system terminal boundary conditions.
Additionally, we chose a objective function penalty w value of 0.1.

We employ two methods for generating the initial guess for optimal control u∗ for the RS with bidirectional thrusters.
The first consists in designing the necessary inputs for a piecewise rotation-translation-rotation trajectory. The first rotation
simply aligns the RS attitude with the direction of the terminal center of mass position. The second, rotates the RS to
coincide with the terminal RS attitude. The second method defines the guess for u∗ as an interpolation of initial and
terminal boundary conditions.

Using the above strategies as an initial guess for u∗ in the unidirectional case proved to be, in general, unsuited for the
RS optimal trajectory design since the optimization trials become unfeasible for many boundary conditions. In their stead,
RS initial guess were obtained from the u∗ of a previous, similar but simpler optimization trial of the many considered in
the above terminal conditions parametrization. The first designed trajectory is the trivial RS translation and not rotation.
The obtained optimal control u∗ for the RS was then used as the initial guess for the optimal control u∗ of multibody
system models with either bidirectional or unidirectional thrusters.

3.2 Trajectory Generation Results

Of the 175 OCP trials for the bidirectional case and 325 OCP trials for the unidirectional case for each RS and
multibody system, defined by the above mentioned boundary conditions, we summarize a few of the obtained results for
the JPI and ∆S functions for the RS, and the B2 and underactuated B3 systems in Table 2. Some values for the optimized
functional Jobj are presented in Table 1.

Trajectories for one of the considered trials is depicted in Fig. 5(b). Comparison of the JPI function for the bi and
unidirectional cases for the RS, B2 and B3 systems can be seen in Fig. 4.

4. GENERAL COMMENTS AND DISCUSSION

The above results show that the B2 system enables lower Jobj and JPI values for almost all considered boundary
condition trials if compared to those obtained for the RS, Fig. 4. We remark that this observed gain of performance is
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Figure 4. Rigid Body (RS) system JPI performance and B2, B3 multibody systems gain of JPI performance.
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Table 1. Objective function Jobj for the B2, B3 systems.

Grid B2 B3
α θcm(T ) Bi Uni Bi Uni

−180◦ - 456 - 118
−180◦ −90◦ - 297 - 98.7

0◦ - 192 - 85.5
90◦ - 297 - 104
−180◦ - 313 - 125

−135◦ −90◦ - 306 - 104
0◦ - 199 - 85.9
90◦ - 194 - 90.4
−180◦ 102 174 83.4 81.0

−90◦ −90◦ 76.6 353 70.7 103
0◦ 89.0 218 82.9 106
90◦ 76.6 110 70.7 69.6
−180◦ 108 115 71.6 66.6

−45◦ −90◦ 107 194 64.3 90.4
0◦ 105 269 64.1 92.8
90◦ 108 120 65.6 65.4
−180◦ 63.5 63.7 61.0 60.9

0◦ −90◦ 76.6 113 71.2 69.6
0◦ 60.0 192 60.0 85.7
90◦ 76.6 204 70.5 98.8

Table 2. Performance Index JPI and trajectory ∆S functions for the bi and unidirectional RS, B2 and underactuated B3
systems.

JPI ∆S

Grid Bi Uni Bi Uni
α θcm(T ) RS B2 B3 RS B2 B3 RS B2 B3 RS B2 B3

−180◦ - - - 1464 413 101 - - - 17.66 11.39 10.02
−180◦ −90◦ - - - 790 267 88.1 - - - 15.13 10.86 10.05

0◦ - - - 430 181 79.5 - - - 13.81 10.65 10.01
90◦ - - - 790 267 93.3 - - - 15.13 10.86 10.04
−180◦ - - - 981 279 104 - - - 15.60 10.74 10.01

−135◦ −90◦ - - - 834 261 91.7 - - - 15.09 10.86 10.09
0◦ - - - 414 178 80.0 - - - 12.83 10.49 10.05
90◦ - - - 418 176 82.6 - - - 12.99 10.39 10.02
−180◦ 217.0 93.3 76.2 463 157 75.1 10.32 10.04 10.00 12.58 10.16 10.05

−90◦ −90◦ 119.9 72.2 67.5 790 285 92.8 10.17 10.01 10.00 15.13 10.93 10.05
0◦ 214.9 80.5 74.8 611 207 94.9 10.37 10.01 10.00 14.36 10.69 10.09
90◦ 119.9 72.2 67.5 199 103 66.3 10.17 10.01 10.00 11.20 10.07 10.03
−180◦ 175.8 97.1 68.2 153 108 64.8 10.42 10.07 10.02 10.43 10.03 10.02

−45◦ −90◦ 114.4 101.9 63.2 418 176 82.6 10.29 10.03 10.02 12.99 10.39 10.02
0◦ 121.4 100.5 62.7 530 235 82.4 10.25 10.02 10.01 14.19 10.99 10.02
90◦ 149.6 105.3 64.0 186 113 63.6 10.38 10.38 10.02 10.33 10.07 10.02
−180◦ 70.1 62.9 60.6 73.3 63.1 60.8 10.01 10.00 10.00 10.01 10.00 10.00

0◦ −90◦ 119.9 72.2 67.6 199 102 66.4 10.17 10.01 10.00 11.20 10.08 10.03
0◦ 60.0 60.0 60.0 430 181 78.3 10.00 10.00 10.00 13.81 10.65 10.00
90◦ 119.9 72.2 67.4 464 173 87.3 10.17 10.01 10.00 13.11 10.64 10.05

solely attributed to the extra degree of freedom defined by the joint angle φ in the B2 system, given these systems possess
the same number of thrusters and geometric and inertial properties, for φ = 0, and thrusters are equally located on the
same d-parametrized positions. A further gain in performance over the B2 system is achieved by the B3 system since
an extra kinematic constraint is eliminated, enabling the use of two (φ1, φ2) joint angles for motion optimization. We
remark that the trajectories optimized for the unidirectional thruster input proved to be a much more demanding task than
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Figure 5. System trajectories on the plane.

−2 0 2 4 6 8
−10

−8

−6

−4

−2

0

2

x (m)

y 
(m

)

Figure 6. Snapshots of the B3 system along the trajectory on the plane for α = −135◦ and θcm = 90◦.

the corresponding bidirectional case, as can be seen from the greater effort (JPI ) values in Fig. 4 and from the required
longer computational run times of the former. In many instances, the systems are required to turn around (θcm → π)
in order to use the unidirectional thrusters to slow it down and reach the boundary condition at rest. Yet, while more
demanding, the unidirectional case provided an even further gain of performance of the multibody systems over the RS.
This can be observed in Fig. 4 by noting the greater distance of the B2,B3 functional surfaces from the RS in the graphs
of the column on the right.

This improvement of performance seems to be achieved by way of two apparently distinct mechanisms: 1) through a
more line-like trajectory, and 2) through the reduction of the system average angular displacement θcm along the trajectory.
Notice that this statement is possible because multibody system drift translational and angular motions are decoupled.
These dynamics, in contrast, become coupled through the input structure. This improvement tends to be more pronounced
when the boundary conditions demand greater angular displacements.

The difference of center of mass displacements ∆S for the B2 and B3 systems in the bidirectional case is, in many
examples, relatively insignificant and, thus, do not quantify a significant gain in performance. The displacement ∆S,
however, proved to be a more useful and important metric to quantify the increase of performance when contrasting the
B2 and B3 multibody system performance in the unidirectional case. Notice, from Table 2, that the B3 system is able
to reach destination on a shorter CM trajectory and, thus, displacement ∆S than the corresponding displacement of the
B2 system. Nevertheless, examination of the result tables indicate a progressive improvement, i.e., of shortening, of the
center of mass trajectories for almost all considered cases with the RS, B2, and B3 systems, see Fig. 5(b). Additionally,
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we observed that function values for greater penalty w are less optimal in terms of JPI than those obtained with the lower
values. This is because the greater the w, the smaller the performance transferred from force fi driven dynamics to the
torque Tj driven dynamics and, thus, multibody internal dynamics becomes less advantageous if compared to the RS
dynamics.

We additionally observed a trend indicating that optimal control u∗ implies expected optimal trajectories z∗ for the
considered design constraints even though a metric involving the trajectory was not contained in Jobj .

One other noteworthy advantage for the multibody system over the rigid body is that it is possible to maneuver the
former even with a single thruster by making use of the geometric phases. Generally, the system motion in the bundle
T ∗Q with a cyclic motion in the base space B undergoes a shift in a direction not belonging to B called a phase shift or
geometric phase, for zero total momentum. The magnitude of this shift is a function of the curvature of the connection,
i.e. a measure of how curved a space is, and the area enclosed by the path the system dynamics performs in B. This
shift is often given by an element of a group G, such as a rotation or translation group. Hence, changes in internal shape
generate a shift in the system overall orientation.

The geometric phase can be computed by evaluating the following expression, Bloch (2003); Souza and Maruyama
(2011):

∆θcm = exp
(
−

∫ 1

0

A(φ)φ̇(t)dt

)
= −

∫

Γ

A(φ)dφ (5)

where Γ is a closed path contour in the base or shape space, exp : se(2) → SE(2) is the exponential map and the
mechanical connection A which expresses the relationship between shape coordinates and system attitude is given by

A(φ) =
J(1, 2 : N)
J(1, 1)

where J is the system inertia matrix and is function of shape φ. This feature is, however, not possible with the RS and
B2 systems but only with multibody systems with 3 or more bodies. In fact, one can show even a single-thruster, 3-body
system is accessible3 from everywhere on the configuration space Q, irrespective of the position of this force on the
system. One could devise an algorithm exploiting the system holonomy to generate trajectories, although not arbitrary, on
the plane. The computed contribution geometric phases for the B3 system is depicted in Figs. 7 and 8. The surface gaps
in figures mean the geometric phase and dynamics phase (obtained from pθcm) cancel each other out.
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Figure 7. Geometric phases for the B3 system with bidirectional thrusters.

Although we believe that the Jobj along with ∆S and JPI are reasonable metrics to quantify and compare system per-
formance, nevertheless, a greater number of thrusters could contribute with greater angular momentum and with “turning”
the system instead of using its internal dynamics to do so. On the other hand, the index Jobj does target fi minimization
(even if in the quadratic sense) and a careful tuning of the penalty w in Jobj is essencial in limiting much or, ultimately,

3Check Bloch (2003) and the references therein for a geometric approach to system accessibility.
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Figure 8. Geometric phases for the B3 system with unidirectional thrusters.

eliminating the fi used for angular displacements. The underactuated B3 system did present a slightly worse performance
than the fully actuated B3 system, as expected.

A recurrent problem encountered in our analysis, and surely a most important issue in numerical dynamical opti-
mization problems, relates to determining whether the obtained numerical solutions are local or global. In general, for
non-convex problems, it is difficult to ascertain that the problem won’t get stuck at local minima. However, if we can
determine that any local solution for the 2-body system outperforms the global solution for the RS, then working with
the multibody system proves very advantageous. While determining whether the above RS optimum results is global or
not is still a demanding task it surely is quite easier to guess how this optimum solution should be than the corresponding
2-body system optimum. We believe the obtained RS trajectories are close to, if not, the global optimal themselves.

The kinematically redundant multibody systems can achieve improved performance standards relative to the rigid body
system performance, in particular compared to the RS considered. This, of course, depends on whether the multibody
system can maneuver these extra d.o.f. accordingly and minimize a specific cost index (PI). Hence, the number of inputs
present is decisive and underactuation, as observed with one considered version of the B3 system, can be detrimental to
system overall performance.

5. CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

In this note we undertook the task of planning trajectories through numerical optimal control evaluations for a few
multibody systems and compared the obtained results with those from the rigid body system for bidirectional and unidi-
rectional thrusting capacity.

The gain of performance of the 2-body system over the rigid body system is due to an elimination, or “breaking”, of
kinematical constraints. The gain of performance of the 3-body w.r.t the 2-body can be explained by the possibility of
turning the system, i.e., varying system overall attitude θcm through geometric phases and because of greater moment of
thruster forces due to greater distance of point of action of forces to the center of mass.

5.2 Future Research

Current research efforts concentrate on expanding the above results to a more complete set of trajectories and verifying
how close optimal results are to global, possibly through an analytical treatment. Attention will also be given to different
objective functions that better convey objectivity in these comparison interests.
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A Rigid Body and 2-Body System Models

Next, we proceed with the definition of a particular rigid body system.

Definition A.1 (Rigid Body System) Let a rigid body with mass m and inertia I have two thrusters located symmetri-
cally on each side and at a distance d from the center of mass. The system dynamics in inertial frame coordinates is given
by

ẋ = px/m, ṗx = − sin(θ)f1 − sin(θ)f2

ẏ = py/m, ṗy = cos(θ)f1 + cos(θ)f2 (6)

θ̇ = pθ/I, ṗθ = d(f2 − f1).

The equations of motion for the translational (trivial) dynamics of the 2-body system are:

ṙx =
px

m
, ṗx = sin(φ/2− θcm)f1 + cos(φ/2 + θcm)f2,

ṙy =
py

m
, ṗy = cos(φ/2− θcm)f1 − sin(φ/2 + θcm)f2.

System rotational dynamics on SE(2) are determined by

θ̇cm =
∂H0

∂pθcm

=
pθcm(1/2)

(Ĩ + K cos(φ))
, ṗθcm = − ∂H0

∂θcm
+ τp,

where di = d, Ĩi = Ĩ , K = εd2, and τp = (d/2)(cos(φ) + 1)(f2 − f1). The reduced rotational dynamics are given by:

φ̇ =
∂H0

∂pφ
=

2pφ

(Ĩ −K cos(φ))
, ṗφ = −∂H0

∂φ
+ T =

K sin(φ)
4

(
4p2

φ

(Ĩ −K cos(φ))2
− p2

θcm

(Ĩ + K cos(φ))2

)
+ T,

where T is the joint torque. The above expressions compose the drift f and input vector fields in (1). These equations of
motion degenerate to the rigid body, RS dynamics when the two bodies are extended (φ = 0) and at relative rest (φ̇ ≡ 0).
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