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Abstract. Strategic and high technology industries, such as defense, aerospace or automotive industries are demanding 
new and advanced materials in order to improve the structural response as well as to enhance their endurance. This is 
particularly true in the case of rotating blades that are subjected to severe environmental conditions such as high 
temperatures as well as mechanical conditions such as high rotating accelerations, centrifugal forces, geometric 
stiffening, among others. It is well known that flexible beams become stiffer when subjected to high speed rotations, 
because of the nonlinear geometrical coupling associated to the large displacements of the beam cross-section. In this 
work, an analysis is performed on the nonlinear planar vibrations of a functionally graded beam subjected to a 
combined thermal and harmonic transverse load in the presence of internal resonance. Adopting the direct 
perturbation MMS technique, the partial differential equations of motion of the beam are reduced to sets of first-order 
nonlinear modulation equations in terms of the complex modes of the beam.  The assumption of steady-state values of 
centrifugal loads is evaluated. It has to be said that there is a lack of information about modeling of rotating beams 
made of FGM under severe thermo-mechanical loads. This paper is intended to be a contribution on the subject. 
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1. INTRODUCTION  
 

Vibrations of rotating blades or beams have been a subject of constant research interest since they are applied in the 
design of helicopter blades, turbopropeller blades, wind-turbine blades and robotic arms. The most simplified 
representation of a rotating beam is a one-dimensional Euler-Bernoulli model. A uniform rotating beam of doubly 
symmetric cross-section is a special case (no torsional motion: i.e., out-of-plane (flapping) vibration and in-plane (lead-
lag) vibration are uncoupled). Owing to the stiffening effect of the centrifugal tension, one can expect the natural 
frequencies to increase with an increase in the speed of rotation. In several publications a cantilever beam under rotating 
speed has been considered and approximate methods such as Rayleigh-Ritz, Galerkin, finite element methods, etc., has 
been used to derive natural frequencies (Schilhansl, 1958; Leissa, 1981). However, the nonlinear dynamic analysis of 
rotating beam is rather rare in the literature (Pesheck et al. 2002a and b; Apiwattanalunggarn et al. 2003; Ozgur and 
Gokhan, 2009). Systematic procedures have been developed to obtain reduced-order models (ROMs) via nonlinear 
normal modes (NNMs) that are based on invariant manifolds in the state space of nonlinear systems (Shaw and Pierre 
1993, 1994; Shaw et al., 1999). These procedures initially used asymptotic series to approximate the geometry of the 
invariant manifold and have been used to study the nonlinear rotating Euler–Bernoulli beam (Pesheck et al., 2002a). 
Pesheck et al. 2002b, employed a numerically-based Galerkin approach to obtain the geometry of the NNM invariant 
manifolds out to large amplitudes. These procedures can be applied to more general nonlinearities over wider amplitude 
ranges, and have been applied to study the vibrations of a rotating Euler–Bernoulli beam (Pesheck et al., 2001). 
Apiwattanalunggarn et al. (2003) presented a nonlinear one-dimensional finite-element model representing the axial 
and transverse motions of a cantilevered rotating beam, which is reduced to a single nonlinear normal mode using 
invariant manifold techniques. They used their approach to study the dynamic characteristics of the finite element 
model over a wide range of vibration amplitudes. As it can be note, the interest of most of works about nonlinear 
dynamic of rotating beams are focus on the reduced-order model as the invariant manifold solution. Turhan and Bulut 
(2009) investigated the in plane nonlinear vibrations of a rotating beam via single- and two-degree-of-freedom models 
obtained through Galerkin discretization. They performed a perturbation analyses on single- and two-degree-of-freedom 
models to obtain amplitude dependent natural frequencies and frequency responses. In the last four references, the 
computational cost associated with generating the manifold solution and the efficiency of the resultant model was 
mainly analyzed. 

From the review of literature, it is found that the study of internal resonance in the area of cantilever rotating slender 
beam subjected to a harmonic transverse load has not yet been explored so far, neither in the context of composite 
materials nor in the context of functionally graded materials. The nonlinear modal interaction or the internal resonance 
in the system arising out of commensurable relationships of frequencies, in presence of parametric excitation due to 
periodic load can have possible influence on system behavior, which needs to be studied. 

In the present paper, we analyze the nonlinear planar vibration of a rotating cantilever FGM beam with harmonic 
transverse load in the presence of internal resonance. The model is based on one-dimensional Euler-Bernoulli 
formulation where the geometric cubic nonlinear terms are included in the equation of motion due to midline stretching 
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of the beam. The linear frequencies of the system are dependent on the rotation speed and this effect is used to activate 
the internal resonance. For a particular rotation speed the second natural frequency is approximately three times the first 
natural frequency and hence the first and second modes may interact due to a three-one internal resonance. For a 
comprehensive review of nonlinear modal interactions, we refer the reader to Nayfeh and Mook (1979), and Nayfeh 
(1996). The method of multiple scales (MMS) is used to attack directly the governing nonlinear partial differential 
equation of motion of the beam and reduced the problem to sets of first-order nonlinear modulation equations in terms 
of the complex modes of the beam. These modulation equations are numerically analyzed for stability and bifurcations 
of trivial and nontrivial solutions. The trivial state stability plots are presented. The modulation equations are also 
numerically integrated to obtain the dynamic solutions periodic, quasiperiodic and chaotic responses for typical system 
parameters. 

 
2. FUNCIONALLY GRADED MATERIAL AND ITS THERMAL PROPERTIES 

 
The laws of variation of the material properties along the wall thickness can be prescribed in order to bear in mind 

for different types of material gradation such as metal to ceramic or metal to metal (e.g. steel and aluminium). 
Functionally graded shells are usually considered to be composed by many isotropic homogeneous layers (Tanigawa, 
1995). In this case, a simple gradation based in a power-law is employed. The law of variation of the elastic and mass 
properties along the wall-thickness e is:   
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where, P(n) denotes a typical material property (i.e., density ρ or Young’s modulus E or Poisson coefficient ν). Sub-
indexes C and M define the properties of the material of the outer surface (normally ceramic) and inner surface 
(normally metallic), respectively. The exponent K, which is connected to the ratio of constituents in volume, can have 
different values that may vary between zero (i.e., a full ceramic phase) or infinity (i.e., a full metallic phase).  

It is assumed that the beam is subjected to a steady-state one dimensional (1-D) temperature distribution through its 
thickness. The steady-state 1-D heat transfer equation is expressed by:  
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where k is the coefficient of the thermal conduction. The boundary conditions are: 
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The solution of Eq. (4) can be obtained by means of the polynomial series. Therefore, T(n) is calculated as (Zhao et al. 
2007): 
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where, normally the upper limit of the summation is Ψ  ∞, however by means of an elemental numerical study one 
can prove that Eq. (4) may be finely approximated by taking just a few terms, or more practically, Ψ ≥ 5 as it was done 
by many researchers (Malekzadeh, 2009). 
Throughout the numerical simulation TM is taken 300 K. It is assumed that the properties of the FGM are temperature-
dependent and vary according to a law obtained experimentally. These are expressed in a general form as (Reddy and 
Chin, 1998): 
 

( ) ( )2 3
0 1 1 2 31 ,p n p p T p T p T p T−= + + + +                                                        (5) 

 
in which p is a temperature-varying material property in general (i.e. modulus of elasticity, or Poisson's coefficient, 
etc.), T is the absolute temperature [oK] and the coefficients pi are unique for a particular material and obtained by 
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means of a curve fitting procedure. Thus the material properties can be represented as a function of the thickness and 
the temperature. It is clear that p0 is the typical material property in absence of thermal effects. 

 
3. NON-LINEAR EQUATIONS OF MOTION 

 
We consider the dynamic response of a rotating box beam subjected to harmonic transverse loads (see Fig. 1). The 

origin of the beam coordinate system (x, y, z) is located at the blade root at an offset R0 from the rotation axis fixed in 
space. R0 denotes the radius of the hub (considered to be rigid) in which the blade or beam is mounted and which rotates 
about its polar axis through the origin 0. We assume that the motion is planar and the cross sections remains plane 
during transverse bending. A doubly symmetric cross-section box-beam is used and so out-of-plane (flapping) and in-
plane (lead-lag) vibration are uncoupled. Neglecting rotary inertia and the transverse shear, the non-linear equations of 
motion of a rotating beam yields (Machado et al. 2007; Librescu, 2006):  

 
( ) 2

0A u N A R x u 0ρ ρ′− − + + Ω = ,                                                             (6) 
 

( )   ( ) cos( )ivEI v N v A v F x tρ ϖ′′− + = ,                                                         (7) 
where N is axial beam force,  
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,                                                                (8) 

Ω is the beam rotation speed, ρA is the mass per unit length, EA and EI are the axial and flexural rigidity, ϖ is the 
excitation frequency, F(x) describes the spatial distribution of the applied transverse harmonic load, and TQ = α ΔT. 
Overdots indicate differentiation with respect to time and primes with respect to the axial co-ordinate. 

Substituting the axial beam force from Eq. (8) into Eq. (7) and neglecting the inertial effects along the longitudinal 
direction, the non-linear equations of motion of a rotating beam yields: 
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Finally, introducing a nondimensional quantities *  ,  *4

EI xt t x
LL Aρ

= = , adding damping μ(x) and dropping the 

asterisk, the Eq. (9) with the corresponding boundary conditions can be conveniently rewritten as: 
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Figure 1. A schematic description of the rotating box beam. 
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4. METHOD OF ANALISIS 

 
In this section, the asymptotic method of multiple scales is applied directly to the partial differential and the 

associated boundary conditions Eq. (10). We seek an approximate solution to this weakly nonlinear distributed 
parameter system in the form of a first-order uniform expansion and introduce the time scale Tn = εnt, n = 0,1,2,... A 
small parameter ε is introduced by ordering the linear damping and load amplitude as , f fμ εμ ε= = . Moreover, the 
displacement v(x,t) are expanded as: 

 
( ) ( ) ( ), , , , , ...1 0 1 2 0 1v x t v T T x v T T xε= + +                                         (11) 

 
Substituting Eq. (4) into Eq. (2) and equating coefficients of like powers of ε on both sides, we obtain 
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where /k kD T= ∂ ∂ . In this work, principal parametric resonance of first mode considering internal resonance is 
analyzed, involving the first two modes. Since none of these first two modes is in internal resonance with any other 
mode of the beam, all other modes except the directly or indirectly excited first or second mode decay with time due to 
the presence of damping and the first two modes will contribute to the long term system response (Nayfeh, 1996). 
Hence the solution to the first-order perturbation can be expressed by: 
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where φm(x) are the mode shapes of the rotating cantilever beam (see Eq. 15), cc. stands for the complex conjugate of 
the preceding terms and Ai are the unknown complex-valued functions.  
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In order to investigate the system response under internal and external resonance conditions, two detuning parameters σi 
are introduced: 3 ,    .2 1 1 1 2ω ω ε σ ϖ ω ε σ= + = + Substituting Eq. (14) to find the solution of Eq. (13), we get 
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where NST stands for terms that do not produce secular or small divisor terms. By means of the solvability condition 
we obtain the following complex variable modulation equations for the amplitude and phase. 
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5. RESULTS AND DISCUSSION 
 

For the analysis of the rotating beam subjected to principal parametric resonance of the first mode (i.e., ϖ ≅ ω1) in 
presence of 3:1 internal resonance, system parameters are taken as mentioned earlier corresponding to the 
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commensurable natural frequencies of the first and second mode of the system. There are no modal interactions 
involving other modes. The beam geometrical characteristics used in this analysis are the same employed by others 
authors (Fazelzadeh and Hosseini, 2007): L = 1.2 m, h = 0.0827 m, b = 0.257 m, e = 0.01654 m and R0= 1.3 m. The 
closed box beam is constructed with a metallic alloy (Ti6Al4V) and a ceramic (ZrO2), whose properties are given in 
Table 1. 
 

Table 1. Temperature depend coefficients of material properties for ceramic (ZrO2) and metals (Ti-6Al-4V). 
 

   Material                   P-1 P0 P1     P2 P3 

E (Pa) Ti-6Al-4V 0 122.7 x 109 -4.605 x 10-4 0 0 
 ZrO2 0 132.2 x 109 -3.805 x 10-4 -6.127 x 10-8 0 
v Ti-6Al-4V 0 0.2888 1.108 x 10-4 0 0 

       ZrO2 0 0.3330 0 0 0 
ρ (kg/m3) Ti-6Al-4V 0 4420 0 0 0 

       ZrO2 0 3657 0 0 0 
α (1/K) Ti-6Al-4V 0 7.43 x 10-6 7.483 x 10-4 -3.621 x 10-7 0 

       ZrO2 0 13.3 x 10-6 -1.421 x 10-3 9.549 x 10-7 0 
k (W/mK) Ti-6Al-4V 0 6.10 0 0 0 
       ZrO2 0 1.78 0 0 0 

 
For a volume fraction exponent K = 1 and TC = 600 K, the internal resonance is perfectly tuned when Ω = 4.607. The 

following dimensionless parameter has been considered in the numerical simulations 

.2 2 4
i i

A L
EI
ρω ω=                                                                           (18) 

where ωi is the ith natural frequency of the beam obtained from Eq. (18). The second natural frequency and three times 
the first natural frequency are plotted as functions of Ω in Fig. 2. The scaled natural frequencies for a rotating speed 
Ω = 4.607 are 1ω  = 8.9 and 2ω  = 26.7. The corresponding nonlinear interaction coefficients (defined in Eq. 17), for 
the specified rotating speed are: γ11 = 15.40, γ12 = 1353.19, γ21 = -176.485, γ22 = -2780.57, δ1 = -135.43 and δ2 = 5.56. 
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Figure 2. Variations of three times the first 1ω  and second 2ω  scaled natural frequencies with Ω . 
 

5.1 Steady-state motions and stability 
 
The equilibrium solutions of Eq. (17) correspond to periodic motions of the beam. Steady-state solutions are 

determined by zeroing pi´= qi´= 0 the right-hand members of the modulation Eq. (17) and solving the non-linear system. 
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Stability analysis is then performed by analyzing the eigenvalues of the Jacobian matrix of the non-linear equations 
calculated at the fixed points. The amplitudes a1 and a2 are obtained by means of the following expression: 

            , .2 2
i i ia p q i 1 2= + =                                                                   (19) 

The frequency-response curves are shown in Figs. 3a and b, for an internal and external resonance condition. The 
modal amplitude ai curves are obtained in function of the external detuning parameter σ2. In this case, the forcing 
amplitude is f1 = 0.025, modal damping di = 0.05 and internal detuning parameter σ1= 0.04. The response curve 
corresponding to the first modal amplitude shows a noticeable hardening-spring type behavior (Fig. 3a). The modal 
amplitude of the indirectly excited second mode is smaller in comparison with the first mode (Fig. 3b). In Fig. 3, solid 
(dotted) lines denote stable (unstable) equilibrium solutions and thin solid lines denote unstable foci. 

 

-0.4 -0.2 0 0.2 0.4 0.6 0.8

0

0.05

0.1

0.15

0.2

0.25

H2

SN1

SN2
H1

SN4

SN3

1a

2�

0

0.002

0.004

0.006

0.008

0.01

-0.4 -0.2 0 0.2 0.4 0.6 0.8

2�

2a

SN4

SN3

H2

SN
1

SN2

H1

(a) (b)

 

Figure 3. Frequency-response curves for: (a) first and (b) second modes, when f1 = 0.025, σ1 = 0.04 and di = 0.05. Solid 
(dotted) lines denote stable (unstable) equilibrium solutions and thin solid lines denote unstable foci. 

The response curves exhibit an interesting behavior due to saddle-node bifurcations (where one of the corresponding 
eigenvalues crosses the imaginary axis along the real axis from the left- to the right-half plane) and Hopf bifurcations 
(where one pair of complex conjugate eigenvalues crosses the imaginary axis transversely from the left to the right-half 
plane). As σ2 increases from a small value, the solution increases in amplitude and loses stability via a Hopf bifurcation 
at σ2 = -0.2570 (H1) and regains its stability via a reverse Hopf bifurcation at σ2 = -0.1598 (H2). Then, the response 
jumps to another branches of stable equilibrium solutions (jump effect), depending on the initial conditions. The 
dynamics solutions that emerge from this bifurcation will be analyzed in the next section.  There is an unstable solution 
happening between two saddle-node bifurcations SN1 and SN2 (σ2 = -0.1597 and σ2 = -0.1694). The reduction in 
amplitude of the first mode represents an increased in the second mode amplitude. Increasing σ2 beyond SN2, the stable 
solution grows again in amplitude until arriving to a saddle-node bifurcation SN3 (σ2 =0.8279), resulting in a jump of the 
response to another branches of solutions. The new stable branch is left bounded by a saddle-node bifurcation SN4 (σ2 
=0.2330).  

When the modal damping is reduced di = 0.025, the influence of this effect is shown in Figs. 4a and b, conserving 
the same forcing amplitude and internal detuning parameter values that the previous model. The frequency-response 
curves are similar to the previous case, and the modal amplitudes are larger. However, it can be seen that the influence 
of the first mode on the second mode response is smaller in the neighborhood of the Hopf bifurcation H1 and the saddle-
node SN2.   

The influence of the internal detuning parameter on the frequency-response is analyzed in Fig. 5, when the modal 
damping considered is di = 0.05, f1 = 0.05 and σ1 is far from the perfect resonance condition. Figures 5a and b shown 
that when σ2 increases from a small value, the frequency-response curves seem similar to the previous case. However, 
for large values of σ2 the stable equilibrium solution loses stability via a Hopf bifurcation at H3 and regains its stability 
via a reverse Hopf bifurcation at H4.  

 
5.2 Dynamic solutions 

 
According to the Hopf bifurcation theorem, small limit cycles are born as a result of the Hopf bifurcation. The born 

limit cycles are stable if the bifurcation is supercritical and unstable if the bifurcation is subcritical. Cycle-limit of the 
modulation equations correspond to aperiodic responses of the beam. In Fig. 6, a bifurcation diagrams for the orbits of 
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the modulation Eq. (17) in the neighborhood of the unstable foci when f1 = 0.025, σ1 = 0.04 and di = 0.05 (see Fig. 3). 
The software XPP-AUTO is used to obtain the dynamic solutions that emerge from H1. Full filled and empty circles 
denote branches of stable and unstable limit cycles. In addition, we present in Fig. 6 phase portraits in the p1-p2 plane 
characterizing the period-one limit cycles found on each branch. It is observed that a stable small limit cycle born due to 
the supercritical Hopf bifurcation at H1 (σ2 = -0.257). Then, as σ2  increases, the cycle limit grows and loses stability 
through a cyclic-fold bifurcation at CF1 (σ2 = -0.241). Consequently, the two-period quasiperiod response of the beam 
jumps to another two-period quasiperiod response. This stable branch is limited to the left and to the right by two 
cyclic-fold bifurcation CF2 and CF3 (σ2 = -0.2511 and σ2 = -0.1673, respectively).  Increasing σ2 after CF3 the dynamic 
response jumps to a periodic solution. 
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Figure 4. Frequency-response curves for: (a) first and (b) second modes, when f1 = 0.05, σ1 = 0.04 and di = 0.025. Solid 
(dotted) lines denote stable (unstable) equilibrium solutions and thin solid lines denote unstable foci. 
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Figure 5. Frequency-response curves for the first and second modes when di = 0.05, σ1 = 4 and  f1 = 0.05. Solid (dotted) 
lines denote stable (unstable) equilibrium solutions and thin solid lines denote unstable foci. 

On the other hand, as σ2 decreases past the supercritical Hopf bifurcation H2 (σ2 = -0.159835), the equilibrium 
solutions loses stability and gives way to a small-amplitude limit cycle. In Fig. 7, we show a schematic bifurcation 
diagrams for the orbits of the modulation equations, in the neighborhood of the Hopf bifurcation H2. As the parameter 
σ2 is reduced, the cycle limit grows, as shown in the Figure 8. It then goes through a sequence of cyclic-fold y doubling 
period bifurcation. When the stable solution encounters a cycle-fold bifurcation, the beam response jumps to a two-
period quasiperiodic motion. When σ2 decreases past CF in the last branch (denoted as VIII in Fig. 7), the beam 
response jumps to a periodic solution. 
As it was observed in the previous section, the dynamic behavior of the beam becomes more complicated for an internal 
detuning parameter σ1 = 4. The dynamic solutions for the case of f1 = 0.05 and di = 0.05 are analyzed (according to the 
frequency-response curves, Figs. 5a and b). In this case, there are four Hopf bifurcations, where H1 (σ2 = 0.04025) and 
H3 (σ2 = 0.756) correspond to supercritical Hopf bifurcation, while H2 (σ2 = 0.5667) and H4 (σ2 = 0.908) correspond to 
subcritical Hopf bifurcation. As σ2 increases from the left Hopf bifurcation H1, nine branches of solutions are found in 
the neighborhood of H1. A schematic diagram of these branches is shown in Fig. 8. It is noticeable that multiple 
attractors coexist between these branches. The relative sizes of branches of cycles limit in the neighborhood of the Hopf 
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bifurcation H1 are: 0.04025 < σ2  < 0.04713 on branch I, 0.06757 < σ2  <0.06762 on branch II, 0.1528 < σ2  < 0.1722 on 
branch III, 0.0447700 < σ2  < 0.0447733  on branch IV, -0.0148 < σ2  < -0.013866 on branch V,  -0.04594 < σ2  <  -
0.04541 on branch VI, -0.07981 < σ2  <  -0.079525 on branch VII, -0.4489  < σ2  <  -0.44818 on branch VIII and -
0.8389 < σ2  <  -0.826465 on branch IX. 
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Figure 6. Bifurcation diagrams, which limit cycle encounters between the Hopf bifurcation points when di = 0.05, σ1 
=0.04 and f1 = 0.025. H = Hopf and CF = cycle-fold bifurcation. (•••) Stable limit cycle, (○○○) unstable limit cycle. 

Solid (dotted) lines denote stable (unstable) equilibrium solutions and thin solid lines denote unstable foci. 
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Figure 7. A schematic of the dynamic solutions found in the neighborhood of the Hopf bifurcation H2, when di = 0.05, 
σ1 = 0.04 and f1 =0.025.  H = Hopf bifurcation, CF = cycle-fold bifurcation and PD = period-doubling bifurcation. (―) 

Stable and (···) unstable limit cycles. 

In the first branch, a small limit cycle born as a result of the supercritical Hopf bifurcation H1. Two-dimensional 
projections of the phase portraits of the limit cycle onto the p1-p2 plane at various pre and post-period-doubling 
bifurcation points are shown in Figures 10a-f. The period-one limit cycle (Figures 10a and b) grows and deforms and 
remains stable until a period-doubling bifurcation occurs PD2 (σ2 = 0.0462763). Then it undergoes a sequence of period 
doubling bifurcations DP4 (σ2 = 0.0470266), DP8 (σ2 = 0.0471067), DP16 (σ2 = 0.04713062), culminating in a chaotic 
attractor as shown in Fig. 11a (σ2 = 0.04718). As σ2 increases slightly, the chaotic attractor increases in size and collides 
with its basin boundary, resulting in the destruction of the chaotic attractor and its basin boundary in a boundary crisis. 
As a result, the beam response jumps to a far away attractor, as it can be seen in the time history of p1 in Fig. 11b. Two-
dimensional projection of the large attractor is shown in Fig. 12c for a σ2 = 0.19. Then, as σ2 is increased further, the 
large chaotic attractor undergoes a boundary crisis and tends to a periodic solution in the neighborhood of SN2 (σ2 = 
0.0193, see Figure 9). 
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Figure 9. A schematic of the dynamic solutions of branches I found in the neighborhood of the Hopf bifurcation H1, 
when di = 0.05, σ1 = 4 and f1 =0.05.  H = Hopf bifurcation, CF = cycle-fold bifurcation and PD = period-

doubling bifurcation. (―) Stable and (···) unstable limit cycles. 
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Figure 10. Two-dimensional projections of the phase portraits of the limit cycle found on branch I onto the p1-p2 plane, 
when di = 0.05, σ1 = 4, f1 =0.05 and σ2 = (a) 0.04146 (p-1), σ2 = (b) 0.04592 (p-1), σ2 = (c) 0.04669 (p-2), σ2 = (d) 

0.04708 (p-4), σ2 = (e) 0.04712 (p-8) and σ2 = (f) 0.04713 (p-16). 
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Figure 11. Attractor chaotic found in branch I, two-dimensional projection of the phase portrait onto the p1-p2 plane 
showing the chaotic attractor before and after the explosive bifurcation for (a) σ2  = 0.0478 and (c) σ2  = 0.19, and (b) 

time history of p1 after a crisis had occurred for σ2  = 0.0472. 
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6. CONCLUSIONS 

 
The nonlinear planar response of a cantilever rotating box beam to a principal parametric resonance of its first 

flexural mode is investigated. The beam is subjected to a harmonic transverse load in the presence of internal resonance. 
The internal resonance can be activated for a range of the beam rotating speed, where the second natural frequency is 
approximately three times the first natural frequency. Geometric cubic nonlinear terms are included in the equation of 
motion due to midline stretching of the beam. The FGMs thermo-mechanical properties vary smoothly and 
continuously in predetermined directions throughout the body of the structure. 
By means of the method of multiple scales applied directly on the partial-differential equation four first-order nonlinear 
ordinary-differential equations were derived, describing the modulation of the amplitudes and phases of the interacting 
modes. The resonant behavior is illustrated by frequency-response and amplitude-load curves for a functionally graded 
materials. The curves are generated using a pseudo arclength continuation scheme. Calculating the eigenvalues of the 
Jacobian matrix, the stability of these responses is assessed. The frequency-response curves exhibit a hardening type 
behavior. When the excitation frequency is slowly varied, the response may undergo saddle-node and Hopf 
bifurcations. On the other hand, when the internal detuning parameter is varied from its perfect condition, the 
frequency-response curves exhibit a more complex behavior. It was shown that this effect is also influenced by the 
decrease of the load amplitude parameter value. In this case, it was found that the modulation equations posses complex 
dynamics, including supercritical period-doubling bifurcation, the coexistence of multiple attractors, and various jump 
responses driven by cyclic-fold bifurcation, subcritical period-doubling bifurcations, and boundary crises. The limit 
cycle solutions of the modulation equations may undergo a sequence of period-doubling bifurcations, culminating in 
chaos. The chaotic attractors may undergo attracting-merging and boundary crises. 
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