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Abstract. Most industrial synthetic fluid behavior cannot be described by the Newtonian model – unable to 
characterize phenomena such as shear-thinning, non-null stress differences or memory effects. This article is 
concerned with stabilized finite element simulations for a viscoelastic fluid flowing through a slot. A multi-field 
Galerkin least-squares (GLS) method in terms of extra-stress, velocity and pressure is used to approximate the flows – 
which are modeled by considering the usual mass and momentum balance equations for incompressible fluids linked to 
the Oldroyd-B viscoelastic differential model. The GLS formulation circumvents the need to compatibilize pressure-
velocity (the so-called Babu!ka-Brezzi condition) and stress-velocity subspaces, allowing employing equal-order finite 
elements. The influence of viscolelastic and inertia effects on the flow patterns is considered by ranging Deborah 
number from 0 to 0.26 and varying Reynolds number from 0 to 20. The numerical results are able to characterize 
accurately viscoelastic flows subjected to inertia. 
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1. INTRODUCTION  

 
Most industrial synthetic fluids applications deal with fluids presenting a behavior that cannot be described by the 

linear (Newtonian) model, since the stress applied on the fluid is no longer directly proportional to the strain caused in 
the material, with the proportionality constant being known as the fluid viscosity. Non-Newtonian fluids may present 
complex phenomena such as shear-thinning, non-null stress differences or memory effects. The first one, responsible 
for the shear thinning of the viscosity, is usual in most non-Newtonian flows, being well described by the generalized 
Newtonian liquid (GNL) model (Bird et al., 1987). Despite its large use, the GNL model can predict neither memory 
effects nor the elastic non-null normal stress differences. In order to predict this behavior many viscoelastic differential 
models have been proposed in the last decades, among which the Maxwell-B and the Oldroyd-B models deserve special 
attention, due to their straight computational implementation and their good performance for low Deborah number 
flows. 

This article is focused on the numerical simulation of an upper-convected Oldroyd fluid – known as Oldroyd-B 
fluid – flowing over a slot (Cochrane et al., 1981) – a very well known benchmark employed in the pressure correction 
of fluid flows. For the particular case of viscoelastic fluid flows, such a flow is used to evaluate normal stress effects – 
being usually called a pressure hole problem (Sugeng et al., 1988; Tanner, 2000). The Oldroyd-B model, which may be 
viewed as a polymer solution composed by an elastic polymer dissolved in a viscous Newtonian solvent, diminishes the 
difficulty of handling numerically with an elastic Maxwell fluid – with a convective-type evolution equation – by the 
addition of a Newtonian solvent (Behr et al., 2004).  

Classical Galerkin approximation of incompressible flows shows some difficulties (Johnson, 1987), the first one is 
to match the finite element sub-spaces of velocity and pressure, satisfying the classic Babu!ka-Brezzi condition 
(Babu!ka, 1971; Brezzi, 1974). The second difficulty appears in multi-field formulations: the choice of the finite 
elements sub-spaces of stress and velocity. The third one would be the instability inherent to centered discretization 
schemes in addressing advective dominated problems, due to the asymmetry of the advective operator, that may cause 
an oscillatory behavior of Galerkin discretization, which can get worse due to the non-linearities present in the 
constitutive models for non-Newtonian fluids. 

The GLS method uses a least-squares formulation to build the perturbation terms, increasing the stability of the 
original Galerkin formulation, without harming its consistency. This methodology has already been largely used to treat 
structural problems and fluid flows (Franca and Frey, 1992; Franca et al., 1994). The additional terms come from a 
minimization of the least-squares of the residues of the Galerkin formulation, adding an upwind effect in the flow 
streamlines direction (Brooks and Hughes, 1982; Franca et al., 1992) in addition to modifying the Galerkin classic 
formulation, requiring neither the satisfaction of the inf-sup condition (Hughes et al., 1986) nor the compatibility of 
velocity and extra stress subspaces. This feature is particularly relevant when a viscoelastic model is considered, since it 
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lessens the difficulty of handling with the extra-stress by considering it as a primal variable. Also, the traction term is 
present in the GLS formulation, allowing natural imposition of free-surface boundary conditions (Behr et al., 2004). 

Finite elements multifield formulations have been largely employed for simulating flows of non-Newtonian fluids. 
Baaijens (1998), in a review article, discussed the developments of mixed finite elements in the approximation of 
viscoelastic flows, including stabilizing strategies. Behr et al. (2004) simulated an Oldroyd-B flow past a cylinder in a 
channel, varying the Weissenberg number and employing a GLS tree field formulation. Many researchers have 
simulated interesting geometries with viscoelastic flows employing finite volume methodologies. Alves et al. (2003) 
have simulated flows through a 4:1 sudden contraction of both Oldroyd-B and PTT fluids employing a fully implicit 
finite volume method, based on a time-marching pressure correction algorithm, presenting results for vortex size, vortex 
intensity and pressure drop. In a subsequent work, Alves et al. (2004), investigated the contraction ratio effect on PTT 
fluid flow though an abrupt contraction, combining a finite volume method with a high resolution scheme for the 
convective terms discretization, considering contraction ratios of 10, 20, 40 and 100. 

In this work, the flow of an Oldroyd-B fluid in a slot is simulated by a multi-field GLS formulation, in which the 
computational domain is partitioned using a bilinear Lagrangian finite element mesh with 3200 elements rendering 
19200 degrees of freedom. Such a combination (employing equal-order finite elements) violates the compatibility 
conditions of the classical Galerkin method involving the finite elements subspaces for stress-pressure-velocity. The 
numerical simulation was performed aiming at undertaking a sensitivity analysis, in order to evaluate the influence of 
the elastic and inertia effects on the flow pattern. These tasks are carried out investigating the Deborah (De) and 
Reynolds (Re) numbers, respectively, in relevant ranges i. e., from De=0 to De=0.26 and from Re=0 to Re=20; the 
former being limited by the discontinuity of the stress field introduced by the sharp corners of the geometry, and the 
latter by the usually high viscosity of the macromolecular fluids. 
 
2. MECHANICAL MODEL 

 
Mass and momentum conservation equations for steady-state incompressible isothermal flows are given by  

 
div u = 0
! !u( )u = "!p +div ! + f  (1) 

 
where the Cauchy stress tensor has been decomposed as !  = - p I+ " , p being the hydrodynamic pressure and !  the 
extra stress tensor; u the fluid velocity vector and f=#g the gravitational force per unit volume (g being the gravitational 
acceleration). In this work the extra stress tensor presents a viscoelastic behavior, according to the Oldroyd-B model; 
which may be viewed as an elastic Maxwell fluid – a polymer with extra-stress "1 – dissolved in a viscous Newtonian 
fluid with extra-stress "2, its constitutive evolutionary character being expressed as (Oldroyd, 1958; Behr et al, 2004) 

 
! = ! pI + "
" = "1 + " 2
"1 + #

!
"1 = 2$1D u( )

" 2 = 2$2D u( )
$1 +$2 =$

 (2) 

 
where $1= $p is the viscosity of the elastic polymer, % is its relaxation time, $2= $s is the viscosity of the viscous 
solvent, D(u) is the rate-of-strain tensor and the upper-convected derivative for steady-state regimen is expressed as 
 
!
! = !!( )u " !u( )! " ! !u( )

T
 (3) 

 
Thus, combining the mass and momentum balance equations with the constitutive assumption given by Eq. (2) and 

incorporating the boundary conditions, the mechanical model concerned herein for a multi-field boundary value 
problem, defined by the triple extra shear stress, pressure and velocity fields, and the associated system of contact and 
body forces, may be stated as: 
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! !u( )u"
#

$
%+!p & div! & 2"sD u( ) = f in '

! & " !!( )u & !u( )! & ! !u( )
T"

#(
$
%)
= 2! pD u( ) in '

divu = 0 in '
u = u g on * g
! & pI"# $%n = th on *h

 (4) 

where u, p, f, ! , #, %, $p, $s,, and D(u) have been previously defined and "g  is the portion of the boundary "  (of the 
region #) in which Dirichlet boundary condition is imposed, with ug representing a prescribed velocity field, while "h is 
the part of "  where Neumann boundary condition is imposed, being n the unit outward normal and th the traction 
vector. 
 
3. FINITE ELEMENT APPROXIMATION 

 
Based on the usual definitions of the subspaces for shear stress ($h), velocity (Vh) and pressure (Ph) (Behr et al., 

1993), it is possible to write a Galerkin least-squares (GLS) multi-field formulation by using the numerical strategy 
proposed by Behr et al. (1993) for fluids with constant viscosity and subsequently employed by Zinani and Frey (2008), 
considering a viscosity function dependent on the shear rate, which can be extended for viscoelastic flows. The GLS 
formulation for the problem defined by Eq. (4), is written as: Find the triple ("h, ph, uh)! "h # P h #Vg

h  such that: 
 
B ! h , p h ,uh ,Sh ,q h ,vh( ) = F Sh ,q h ,vh( )     ! Sh ,q h ,vh( ) " #h $ P h $Vg

h  (5) 

 
where  
 

B ! h , p h ,uh ;Sh ,q h ,vh( ) = 2! p( )
!1

! h
"# $Shd"+ 2!s D uh( )"# $D vh( )d"! D uh( ) $"# Shd"
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)
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$Sh
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and 
 

F Sh ,q h ,vh( ) = f ! vh
"# d"+ th !$h

# vhd $+ f !
"#

K %"h
& ! ReK( ) ! 'vh( )uh +'q h(

) *2!sdiv D uh( )*div Sh +,d"  (7) 

 
in which the stability parameters &(ReK) and '(ReK) are the ones proposed in Franca and Frey (1992), ( <<1 and  )  is 
set according to the suggestion of Behr et al. (1993). 

Substituting the shape functions on the GLS formulation given by the Eqs. (5)-(7), a semi-discrete equation given 
by R(U)=0 is obtained, in which  R(U) is the residual of Eqs. (5)-(7) and U is the vector of the degrees of freedom of 
the primal variables ! , u and p. The solution of this semi-discrete system was implemented by employing a quasi-
Newton method (Dahlquist and Bjorck, 1969), with the Jacobian matrix J(U) being updated at each iteration. The 
system of equations J(Uk)ak+1 = R(Uk) is solved to calculate the incremental vector ak+1, then the degree of freedom 
vector Uk+1 = Uk + ak+1 is updated, until a convergence criterion, namely the norm of R(Uk) smaller than a given 
tolerance, is achieved.  

The above-stated problem is solved, first for inertialess flows. In this case, the results are obtained by employing a 
continuation strategy on Deborah number. In the sequence, inertia variation is achieved by using a continuation strategy 
on Reynolds number.  
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4. NUMERICAL RESULTS  

 
In this section, the multi-field GLS approximation for the problem described by Eq. (4) – presented in equations 

Eqs. (5)-(7) – was employed for simulating an Oldroyd-B fluid flowing through a slot, depicted in Fig. 1. The numerical 
strategy has been described in the previous item. All results have been obtained by employing a finite element code 
under development at Laboratory of Computational and Applied Fluid Mechanics (LAMAC-UFRGS).  

No-slip and impermeability boundary conditions are imposed at all the solid boundaries, namely at the upper and 
lower walls and at the slot boundaries. At boundaries assumed far away enough from the hole, so that the flow across 
them is not affected by its presence, fully developed Poiseuille profiles are considered, allowing determining velocity 
and extra-stress profiles at both sections. 

 

  
 

Figure 1. Problem statement: flow over a slot. 
 
The viscoelastic flow governing dimensionless groups are Deborah and Reynolds numbers, defined, respectively, as 
 

De = !u
H

         Re = "uH
#

 (8) 

 
where u  represents the average velocity at the channel entrance section and H is the channel height. 

 

(a)    (b) 
 

Figure 2. Velocity for Re=0: (a) De=0; (b) De=0.26. 
 

Figures 2, 3 and 4 show the influence of viscoelasticity on an Oldroyd-B fluid inertialess flow through the slot 
depicted in Fig. 1. The velocity vectors depicted in Fig. 2 for De=0 and De=0.26 show that viscoelasticity variation has 
no influence on the velocity field, as observed by Huilgol and Phan-Tien (1997) – who have analytically determined the 
streamlines for a creeping flow across a slot. 

Observing Fig. 3, it may be noted that the symmetry is progressively broken, due to the increasing elastic effects; i. 
e. the stress distribution becomes less symmetric as Deborah number increases. It is important to emphasize the increase 
in the maximum values of stress at the corners of the slot with Deborah number increase, for De=0, "max=4.05; for 
De=0.1, "max=7.29; for De=0.2, "max=11.3 and for De=0.26, "max=14.2, as may be observed in figure 4. In order to better 
visualize the results, the larger values have not been accounted for when the stresses were depicted in Fig. 3. Fig. 4 
shows elevation plots for extra-stress considering the whole range of stresses. The larger values at the slot corners can 
be clearly visualized, mainly downstream the slot. Actually, Fig. 4 shows that the higher the viscoelasticity, the less 
symmetric are the extra stresses. 
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 (a)      (b) 

 (c)      (d) 
 

Figure 3. Extra-stress for Re=0: (a) De=0; (b) De=0.1; (c) De=0.2; (d) De=0.26. 

(a)    (b) 

(c)   (d) 
 

Figure 4. Extra-stress elevation plot for Re=0: (a) De=0; (b) De=0.1; (c) De=0.2; (d) De=0.26. 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 

 (a)    (b) 

(c)     (d)  
 

Figure 5. Velocity for De=0.26: (a) Re=5; (b) Re=10; (c) Re=15; (d) Re=20. 
 

 (a)   (b) 

 (c)   (d) 
 

Figure 6. Extra-stress elevation plot for De=0.26: (a) Re=5; (b) Re=10; (c) Re=15; (d) Re=20. 
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Inertia effect on the velocity may be observed by comparing figures 2b (De=0.26; Re=0), 5a (De=0.26; Re=5), 5b 

(De=0.26; Re=10), 5c (De=0.26; Re=15) and 5d (De=0.26; Re=20). Reynolds number variation is not sufficient to 
provoke significant variation in the velocity field. Actually, a very small influence of inertia may be observed, with the 
vortex eye moving slightly upwards as Reynolds number increases and remaining at the position x*=0 (the slot 
centerline). 

Considering a viscoelastic flow (De=0.26), the inertia effect on extra-stress may be observed varying Reynolds 
number from 0 (as depicted the elevation plot shown in Fig. 4d) up to 20, in which Fig. 6 show extra-stress elevation 
plots for (a): Re=5; (b): Re=10; (c): Re=15 and (d): Re=20. It may be noted that the inertia increase causes a discrete 
enhancement in the maximum stress values at the upper wall neighborhood and both upstream and downstream the slot. 
Inertia increase also enhances stress concentration at the slot corners. 

 

 

 (a)        (b) 

 (c) 
 

Figure 7. Shear stress for: (a) De=0 and Re=0; (b) De=0.26 and Re=0; (c) De=0.26 and Re=20. 
 

Figures 7a and 7b show the viscoelasticity effect on shear stresses. Besides provoking an increasing asymmetry of 
the flow with the Deborah number increase, the shear stresses values also increase. Comparing Figures 7b and 7c, the 
inertia effect on a viscoelastic flow may be observed. The symmetry is affected by Reynolds number increase, which 
also causes a global decrease on the stresses and increases the stress concentration downstream the slot corner. 

In order to validate the results, Figure 8 compares streamlines obtained in this work with the experimental results 
presented by Cochrane et al. (1981) for a convenient elastic test liquid – a dilute solution of polyacrylamide in a mixture 
of water and maltose syrup. The authors have carefully controlled the polymer concentration and the ratio of water to 
syrup, to minimize the dependency of the viscosity on the shear rate. In both figures the asymmetry both in the 
recirculating vortex and in the streamlines at the neighborhood of the slot may be clearly observed. 
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 (a) (b) 
 

Figure 8. Streamlines for De=0.2 and Re=10: (a) present work; (b) Cochrane et al. (1981). 
 

5. FINAL REMARKS  
 
A multi-field Galerkin least-squares finite element methodology, using as primal variables extra-stress, velocity and 

pressure, has been employed to approximate steady flows of an Oldroyd-B fluid though a slot. This stabilized 
formulation, characterized by a simple computational implementation, has adequately approximated viscoelastic flows 
and inertia flows, without satisfying neither the classical Babu!ka-Brezzi compatibility condition nor the compatibility 
between velocity and extra-stress subspaces. First, inertialess flows were considered, ranging Deborah number from 0 
to 0.26. In the sequence, inertia was accounted for by ranging Reynolds number from 0 to 20. When De=0 and Re=0, 
neither elastic nor inertia effects are present, so extra-stress and velocity profiles are symmetrical. The symmetry is 
broken and the more viscoelastic the material, the higher the asymmetry. Inertia effects in viscoelastic flows increases 
the stress concentration at the slot corners, especially downstream as Reynolds number increases. 

Furthermore, it must be emphasized that, thanks to the GLS methodology, the current simulations could be 
performed using an equal-order combination of finite element interpolations – more specifically, the bilinear ones – for 
all primal variables of the flow, namely extra-stress, pressure and velocity. In a straight comparison with the Galerkin 
method, such a combination, very attractive from the computation point-of-view, would simply not work. Another 
advantage over Galerkin, it is the ingenious scheme present in the GLS method to add selectively artificial diffusivity to 
advective- and diffusive-dominated flow regions, that allows achieving stable approximations even in high advective 
flows – a very attractive feature as elastic and inertia effects play a relevant role. 
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