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Abstract. The flow of a generalized Newtonian incompressible fluid in a permeable wall channel limited by two 
impermeable flat plates is studied by considering two distinct flow regions: the former representing the fluid and the 
latter the fluid flowing through a porous medium. A mixture theory model is employed in a local description of the two 
adjacent flow regions in which both the fluid and the fluid constituent of a binary mixture (representing the flow throgh 
the saturated porous matrix) are considered as power-law fluids. Compatibility conditions at the interface (pure fluid-
mixture) for momentum transfer are considered. Numerical simulations employing a Runge-Kutta methodology, 
coupled with a shooting strategy, have been performed and compared with some exact solutions. The shear-thickening 
influence was also investigated. 
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1. INTRODUCTION  
 

Ducts with permeable walls are present in many relevant engineering situations such as flow of perforation mud in 
oil wells and porous bearing lubrication. Transport phenomena in a permeable duct are studied by considering two 
distinct flow regions: one inside the duct where an incompressible generalized Newtonian fluid flows (the so-called 
pure fluid region) and another representing the duct's permeable wall – a saturated porous medium through which this 
generalized Newtonian fluid flows. In this later region – named as mixture region, a mixture theory approach is used, 
instead of the volume-averaging technique, employed in most of the works dealing with transport in porous media (see 
Alazmi and Vafai, 2000 and references therein). The Continuum Theory of Mixtures has been specially developed to 
describe multiphase phenomena. It models fluid saturated porous media by considering the fluid and the porous matrix 
as superimposed continuous constituents of a chemically non-reacting binary mixture – each of them occupying its 
whole volume. The mixture theory leads to an apparent independence among the constituents, requiring additional 
terms, playing the role of momentum and energy sources, to account for the thermomechanical coupling among the 
constituents in the balance equations. Thermodynamically consistent constitutive relations for these sources are used. 
Compatibility conditions at the interface pure fluid-mixture must be imposed in order to allow the solution of the 
problem. For instance, supposing no flow across the interface, the velocity must be zero on the solid parts of the 
boundary and should match the fluid diffusing velocity on the fluid parts of the boundary and the shear stress at the pure 
fluid region is balanced by a multiple of the partial shear stress at the mixture region. Numerical simulations, employing 
a fourth-order Runge-Kutta methodology coupled with a shooting strategy, have been performed and compared with the 
exact solution for a fluid flowing though a plane channel and also with the exact solution for a Newtonian fluid flowing 
through the permeable wall channel limited by two impermeable flat plates. These simulations show the influence of he 
shear thickening of the fluid on the behavior of the power-law fluid in the two adjacent flow regions. 
 
2. MECHANICAL MODEL 
 

The open sets 1Ω  and 2Ω , with boundaries 1∂Ω  and 2∂Ω represent the regions occupied by the pure fluid and the 
mixture, respectively. Assuming the porous matrix rigid and at rest, it suffices to solve mass and momentum equations 
for the fluid constituent in 2Ω . The mass balance equations, assuming absence of mass generation in the mixture region 
are given by (Gurtin, 1981; Atkin, and Craine, 1976; Rajagopal and Tao, 1995) 
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+"# (!v) = 0             in $1

!!F
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+"# (!FvF ) = 0        in $2

 (1) 

in which the actual fluid parameters – defined in 1Ω  – are ρ  standing for its mass density and v  for its velocity. In the 
mixture region 2Ω , the fluid constituent parameters are !F  its mass density – representing locally the ratio between its 
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mass and the respective volume of mixture and vF  standing for its velocity. The momentum balance is given by 
(Gurtin, 1981; Atkin, and Craine, 1976; Rajagopal and Tao, 1995) 
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where T represents Cauchy stress tensor (in 1Ω ) and TF is the partial stress tensor associated with the fluid constituent 
(in the mixture region 2Ω ). The body force per unit mass is represented by g everywhere while mF, defined in the 
mixture region 2Ω , is the momentum supply due to the interaction between the fluid and solid constituents. It arises 
from the possible existence of n distinct velocity fields in an n-constituents mixture at each spatial point, so that the net 

momentum supply to the mixture is zero, in other words, mii=1

n
! = 0 (in "2 ) , where i represents the i-th constituent of 

the mixture. Since the porous medium is assumed saturated by the fluid constituent in 2Ω  the field !F  is given by 
!F ="! , in which !  represents the porosity and !  stands for the actual fluid density. 

Constitutive relations for the stress tensor in 1Ω  and the partial stress tensor and momentum source in 2Ω  are 
required to solve the problem considering a generalized Newtonian fluid flowing in a domain !1"!2  (see Martins-
Costa et al., 2000 and references therein). 

In this work a power-law constitutive model is employed. The stress tensor for the power-law incompressible fluid 
flowing in 1Ω  (Bird et al., 1977) and the partial stress tensor for the fluid constituent, flowing in the region 2Ω , 
obtained by considering an analogy with the equation proposed for Newtonian fluids by Williams (1978), are given by  
 

T = ! pI + 2!(D "D)nD                            in #1

TF = ! p!I + 2"! 2#(DF "DF )nDF          in #2

 (3) 

 
in which p is the hydrostatic pressure acting on the fluid, !  and n are the classical power-law material parameters that 
characterize the fluid behavior which will be considered positive-valued in this work. If n=0 the fluid has a Newtonian 
behavior. Also, !  is the porous matrix porosity and !  is a scalar parameter depending on the porous matrix 
microstructure. Also, D and DF  are the strain rate tensors acting on the fluid and on the fluid constituent, respectively. It 

is important to note that the usual power-law equation, given by ! = 2K ( !! )mD  (Bird et al., 1977), would be recovered 

in 1Ω , for ! = 2(m!1)/2 K  and n = (m !1) / 2 . 
The momentum source mF, representing the interaction force acting on the power-law fluid constituent due to its 

interaction with the solid constituent (representing the porous matrix) is given by (see Martins-Costa et al., 2000 and 
references therein) 
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in which K is the porous matrix permeability.  

The problem requires not only boundary conditions at the impermeable boundaries but also compatibility 
conditions at the interface between pure fluid and mixture – namely between the regions !1  and !2  – defined by the 
set !"I #"1$"2 . Assuming no flow across the interface, the following relations are imposed on !"I  

 
v !n = vF !n = 0        on "#I

v =!vF                     on "#I

!Tn ! t = TF n ! t         on "#I

 (5) 
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where n is a unit outward normal to I∂Ω  and t is any tangent to I∂Ω . These compatibility conditions, based on the 
work of Beavers and Joseph (1967), subsequently confirmed by other authors (Nield and Bejan, 1992), have been 
obtained from the solution of thermodynamically consistent equations in both regions and do not suffer from the 
difficulty of combining the Navier-Stokes equation with the equation for the flow through the porous medium (Nield 
and Bejan, 1992). Equations (5) are discussed by Martins-Costa and Saldanha da Gama (1994), but it is worth 
mentioning that at the interface the fluid velocity is distinct from the fluid constituent velocity (modeled by a mixture 
theory viewpoint). 

Assuming a steady-state fully developed flow of a power-law fluid flowing though both the pure fluid and the 
mixture regions, the governing equations for the flow in a rigid porous medium within the context of Mixtures theory 
can be summarized as follows  
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!Tn " t = TFn " t                                                                                                            on #I

v = 0                                                                                                                             on #S1
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 (6) 

 
where !S1  and !S2 denote the impermeable surfaces for pure fluid and mixture, respectively and the last two equations 
of Eq. (6) are the classical no-slip boundary conditions imposed at these impermeable boundaries. 
 
 

 
  

Figure 1. Problem statement 
 
 

At this point some simplifying assumptions are made, so that the problem to be considered in this work, illustrated 
in Fig. 1, supposes fully developed steady-state flow between two impermeable flat plates in the horizontal direction, 
allowing gravitational effects to be neglected. Since no flow across the interface I∂Ω  is assumed, it comes that 
v=vx(y)=v and vF=vFx(y)=vF  which, could be expressed as v=vi and vF=vFi=wi. Also, making ! = "#$  and 
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 it can be shown that the system presented in Eq. (6) is reduced to 

 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 

!
dp
dx

+
2n +1

2n
!
dv
dy

2n
d 2v
dy 2

= 0                                  !H < y " 0

!
dp
dx

+
2n +1

2n
"
dw
dy

2n
d 2w
dy 2

!# w
2n
w = 0                   0 " y < L

v =$w                                                                           at       y = 0
#v
#y

= %$
#w
#y

                                                                  at       y = 0

v = 0                                                                              at       y = !H
w = 0                                                                             at       y = L

                                                                    (7) 

 
3. NUMERICAL PROCEDURE 
 

Considering the second equation of system (7), for the fluid flowing through the porous matrix, given by 
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                                                                                                                              (8) 

 
the following convenient redefinition is proposed 

 

z1 =w     ;         z2 =
dw
dy                                                                                                                                                            (9) 

 
Substituting these new variables in equation (8) it comes that 
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So, the following system of first order ordinary differential equations is obtained 
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Now, considering the first equation of system (7), given by 
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                                                                                                                                                  (12) 

 
a convenient redefinition, analogous to the one presented in Eq. (9), is proposed 

 

ẑ1 = v    ;         ẑ2 =
dv
dy

    

                                                                                                                                                        (13) 

 
Substituting these new variables in equation (12) it comes that 
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So, the following system is obtained 
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In order to obtain the velocity profiles at the channels, it is necessary to solve the following two-point boundary 

value problem:  Find z1:[-H, 0]! ! , z2:[-H, 0]! !  and  ẑ2 :[0,L]! !  and ẑ1 :[0,L]! !  that verify the following 
systems of ordinary differential equations 
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The problem stated in Eq. (16) is equivalent to finding the root of a scalar function represented as 
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                                                                                                                                                 (17) 

 
where for a given t ! ! , representing an initial estimate, the value !(t)  is  the value of the variable ẑ1  at point y=L  
obtained by solving the following initial boundary value problem 
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Essentially, this procedure is called a shooting technique with t being the initial estimate of the derivative !w / !y( )  

at the point y = !H . The initial boundary value problem may be approximated by many different techniques for initial 
boundary value problems in ordinary differential equations, such as the Rosembrock methods and its extensions to 
Runge-Kutta methods (Dahlquist and Bjorc, 1969). Also, the root of the function !  can be obtained by using distinct 
unconditionally convergent procedures, such as Regula-Falsi or Bisection methods (Dahlquist and Bjorc, 1969). It is 
important to remark that the above proposed change of variables is only adequate when z2 ! 0  and ẑ2 ! 0 . It is 
important to remark that the above proposed change of variables is only adequate when z2 ! 0 and ẑ2 ! 0 . It is possible 

to prove that z2 =
dv
dy

! 0,  " y  since 
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It is also possible to prove that if ẑ2 =
dw
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= 0  or dẑ2
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, since 
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The limitation of the change of variables can be circumvented numerically when ẑ2 = 0  using the previous relation. 
 
4. NUMERICAL RESULTS 
 
4.1. Validation 
 

Initially, to check the accuracy of the proposed procedure to circumvent the singularity when z2 = 0 , the problem is 
studied for different values of the material parameter n , considering absence of porous matrix – namely a simple fluid 
would be flowing in the both regions of the channel (which is equivalent of making ! ="  and ! = 0  in Eqs. (16) and 
(18)) and using a classic fourth-order Runge-Kutta method. In this case, the problem presents an analytical solution 
given by 
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Figure 2 shows a comparison between the above analytical solution and a numerical approximation, for different 

values of the material parameter n , ranging from 0 to 0.5 and considering dp / dx =10!3  and ! =10!3 . As observed no 
difference can be detected for all considered values of the power-law index, showing the adequacy of the employed 
numerical procedure. 
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As expected, as n increases the maximum velocity increases too, as a consequence of the shear-thickening 
increase. 
 

 
  

Figure 2. Flow of a power-law fluid in a plane channel 
 
 

The second step is to consider a power law fluid flowing through a porous matrix limited by two impermeable flat 
plates – namely a porous plane channel. Figure 3 shows numerical results obtained considering the following 
parameters: dp / dx = 10!2 Pa/m, ! = 10!3 Pa.sn, ! = 0.5 , ! = 1 , ! = "# = 0.5!10"3 Pa.sn  and K = 10!3 m-2. It may be 
noted that the velocity profile becomes flatter as n decreases.  
 

 
  

Figure 3. Flow of a power-law fluid through a porous plane channel 
 

 
4.2. Results for fluid flowing in two distinct flow regions  
 
 

 
  

Figure 4. Newtonian fluid flowing through a permeable wall channel limited by impermeable flat plates 
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First, a Newtonian fluid (n=0) flowing through the two distinct flow regions depicted in Figure 1 is considered. 
This problem presents the following exact solution (see Martins-Costa and Saldanha da Gama, 1994) 
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Figure 4 shows the velocity profiles in the two distinct flow regions, considering the approximation employing the 

numerical procedure described in this work (depicted by the continuous lines) and the analytical solution presented in 
Eq. (25). The results have been obtained for the following parameters: dp / dx = 10!2 Pa/m, ! = 10!3 Pa.sn, ! = 0.5 , 

! = 1 , ! = "# = 0.5!10"3 Pa.sn and K = 10!3 m-2. It is worth noting that both solutions are indiscernible within the 
precision of the graph.  

Now distinct shear-thickening fluids are considered. Figure 5 shows velocity profiles for both the pure fluid and the 
fluid constituent for distinct of the power-law parameter n – namely for n=0 (Newtonian), n=0.1, n=0.2, n=0.3 and 
n=0.5, and the remaining parameters are the same employed in Fig. 4. 

The fluid constituent maximum velocity increases as the shear-thickening increases (as the parameter n increases). 
The pure fluid maximum velocity is less influenced by the shear-thickening variation, than the results for the pure fluid 
presented in Fig. 2, due to the strong influence of the compatibility conditions. It is important to note that at the 
interface the fluid constituent velocity is twice the fluid velocity (since ! = 0.5  was considered in the simulations). This 
compatibility condition pushes away the fluid constituent velocity, preventing the formation of a velocity profile 
tending to a parabolic shape (as depicted in Fig. 3). For all considered values of n, an inflexion on the fluid constituent 
velocity curve is observed. For instance, for n=0, the inflexion is for y<0.2, while for n=0.3 the inflexion is for y>0.4.  
 
 

 
  

Figure 5. Flow of a power-law fluid through a permeable wall channel limited by impermeable flat plates 
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