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Abstract. The attitude determination based on GNSS is just an extension of the method for differential positioning with the carrier 

phase, since it enables the obtention of the relative position, with sub-centimeter-level accuracy, between a pair of antennas. 

However, multiple receivers are needed and a special configuration of the antennas, which is known as multi-antenna GNSS system. 

Two baselines composed by three antennas fully defines the Euler angles associated with the vehicle attitude, but the baseline 

determination requires the solution of the integer ambiguity problem, from a basic relation envolving also the carrier phase 

measurements. Least Squares (LS) methods are the most used techniques to solve the ambiguity problem. Two LS algorithms for 

solve the integer ambiguity problem are implemented and tested with realistic simulated data. 
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1. INTRODUCTION  

 

Carrier phase measurements are inevitably required in order to estimate high accuracy attitude parameters using 

GNSS. Since GNSS receivers provide very accurate measurements of fractional carrier wave cycles plus the total 

number of integer cycle counts from the start of tracking, carrier phase measurements are ambiguous by an unknown 

number of integer cycles, the so-called phase ambiguity, before they give meaningful range information for positioning. 

The carrier phase ambiguity resolution is a key problem which has to be solved in GNSS static and kinematic 

precise positioning. However, for the real time application the solution on-the-fly of the ambiguity is necessary, but this 

is not an easy task. The concept of ambiguity resolutions on-the-fly was first introduced by Seeber and Wübbena (1989) 

and Hatch (1989, 1990). Over the past few years, many different on-the-fly ambiguity resolution techniques have been 

developed. Among them are the ambiguity function technique (Remondi, 1984; Mader, 1990), the narrow-lane and 

extrawide-lane technique (Wübbena, 1989), the Hatch's least squares ambiguity search method (Hatch, 1989, 1990), the 

fast ambiguity search filter technique (Chen and Lachapelle, 1994; Landau and Vollath, 1994), Least Squares by 

Cholesky Decomposition (Landau and Euler, 1992; Lu, 1995), Least Squares Ambiguity Decorrelation Adjustment 

(LAMBDA) (Teunissen, 1994) and Mixed Integer Least Squares (MILES) (Chang and Zhou, 2006).  

The ambiguity function technique requires extensive computation time. For this reason, the ambiguity function 

method is not suitable for use in GNSS multi-antenna systems which aim at real-time applications. The extrawide-lane 

technique is primarily designed for working only with dual frequency P-code receivers, which are rarely used for 

platform attitude determination tasks. The most appealing techniques capable of use in GNSS multi-antenna systems are 

therefore the Hatch's least squares ambiguity search method, the fast ambiguity search filter method, Least Squares by 

Cholesky Decomposition, LAMBDA method and MILES. All of them are based on the least squares adjustment and 

upon the assumption that within a properly defined ambiguity search space and under normal error distributions, the 

correct ambiguity set will always be included in the search space and give the smallest sum of squares of carrier phase 

residuals among all the potential ambiguity sets but, this assumption is not necessarily true, as will be shown in this 

paper. 

Two methods were selected for implementation, namely, the Least Squares by Cholesky Decomposition and 

MILES. The Least Squares by Cholesky Decomposition has the advantage of using prior information of the 

construction of the platform to reduce the search space of phase ambiguity. The method for solving the ordinary integer 

least squares problem implemented by the MILES is a modification of the modified LAMBDA method present in 

Chang et al. (2005) and provides fast and numerically reliable routines to solve the ambiguity problem. These two 

methods were selected for performance comparison because of the intended application in real time GNSS/INS fusion 

without additional attitude aid, such as magnetometers, wich are difficult to calibrate and prone to external interference. 

Moreover, the attitude reading for composing the measurements of the navigator Kalman Filter has to come also from 

GNSS. In this case, accuracy and efficient computation are required in the real time ambiguity problem solution. The 

data used for testing the algorithms comes from Dai et al (2008) and are realistic simulated data. The paper is organized 

as follows in section 2 describes the methodology of implementation methods used, in section 3 the results are 

presented and section 4 presents the conclusions from the results obtained. 

 

 

2. METHODOLOGY 

 

The basic idea of attitude determination using GNSS carrier phase measurements is similar to the principle used in 

interferometry and differential positioning. The system consists of a reference or master receiver whose location is well 

known and one or more receivers embedded in the vehicle, known as slaves, from which the relative position is 
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obtained. The Differential Global Positioning System (DGPS) is based on the principle that receivers in the same 

vicinity will simultaneously experience common errors on a particular satellite ranging signal. In general, the user 

employs measurements from the pseudorange and carrier phase to remove such errors. For this to be resolved, the user 

must employ the same data from satellites that the used reference receiver. DGPS positioning equations are formulated 

in order to cancel such errors. Therefore, it is assumed that for a short baseline (few meters) the unit vectors from both 

receivers to a given satellite are the same. This is based on the fact that the baseline length is negligibly small compared 

to the distance between GNSS satellites and the user, approximately 22,000 km. This is shown in Fig. 1. 

 

 
  

Figure 1 - Interferometry principle 

 

 

The difference between the true ranges from satellite “p” (p-th satellite) to antennae A and B, or A and C, can be 

expressed as  
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where Rn is the baseline vector determined by antenna A and B, pe
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 is a unit directional vector from antenna A and B to 

satellite “p”, 
p
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p
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differenced observation equation can be expressed as (Fan, 2005) 
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where pq
ABDD  is the phase double-differenced measurement between antenna A and B for the satellites p and q, λ is the 

wavelength of the GNSS signal, 
pq
ABN )( 0  is the integer double-differenced carrier phase ambiguity, and 

pq
ABv  is the 

measurement noise. The use of double difference phase has significant advantages, such as removal of orbital and clock 

errors of satellites. 

If there are M satellites in view, all the measurements can be written in the following matrix from, 
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where Rn is a baseline vector in the local level system, H is the design matrix of line of sight from antennae to GNSS 

satellites in the local level system, V is the carrier phase difference-doubled measurement noise vector. In equation (3), 

if the ambiguities have been fixed to integers, there will be only 3 unknowns (three components of the baseline vector 
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Rn(xn, yn ,zn)). Therefore, if there are at least 4 satellites in view, there will be 3 or more independent double-differenced 

observations, and the baseline vector can be estimated. The next section presents summaries for the methods selected 

for in this paper. 

 

2.1. LEAST SQUARES BY CHOLESKY DECOMPOSITION 

 

The fixed positions between the antennas impose some geometrical constraints, which are to be met by the integer 

ambiguities and the most powerful and widely used seems to be the fixed baseline length (Lu, 1995). This method is a 

modification of the Hatch's least square ambiguity search method (Hatch, 1989, 1990) and the initial ambiguity search 

space for the slave GNSS antenna is usually defined within the uncertainty space corresponding pseudorange solution 

(Lachapelle et al, 1993). If the baseline length between the master and the slave antennas is known, as is the case, the 

potential solutions for the slave antenna are confined to the surface of a sphere whose radius is equal to the fixed 

baseline length. The Cholesky decomposition makes the search process for the phase ambiguity computationally fast 

and simple in derivation. A very recent improvement over Lu´s method is the Constrained LAMBDA (Teunissen, 

2011), in which the baseline constraint is considered in the search method. However, Lu´s method is still relevant in 

applications with very short baselines, as is the case in this paper, since the potential set has few candidates and is easy 

to generate. 

Suppose that four primary satellites have been chosen and the baseline vector from the antenna A (master) to the 

antenna B (slave) is represented for RAB. Then, Eqn. (3) can be modified as follows, 

 

WHRAB 0                                                                                                                                                                    (5) 

 

where 
ABDDNW   .  

The goal is to get the values of baseline vector components from knowledge of the values of phase ambiguity. For 

this Eqn. (5) can be written as 
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from which, by squaring, 
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where 2
ABR is the square of the known baseline length and AA

T
 is a 3x3 positive definite matrix, which can be Cholesky 

decomposed into the product of a lower triangle matrix L times its transpose, i.e. AA
T
=L

T
L. With this substitution, Eqn. 

(7) can be rewritten as 

 

   WLWLRRR
T

AB
T
ABAB

112  .                                                                                                                                     (8) 

 

Since L is a lower triangle matrix, its inverse L
-1

 is also a lower triangle matrix. Defining the quantities L, B, C and 

D as 
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Eqn. (8) then becomes 

 
2222 DCBRAB  .                                                                                                                                                     (13) 

 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 

Based on Eqn. (13), it can be immediately concluded that the following inequalities have to hold 
2dB                                                                                                                                                                               (14) 
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This is because the baseline length can not be longer than d and all the solutions are constrained on a sphere of 

radius d. From Eqn. (14), the ambiguity search range for the first ambiguity parameter 21
0 )( ABN  can be obtained as 
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For each integer ambiguity 21
0 )( ABN  within the range (16), w1 can be computed and therefore B is known. By using 

Eqn. (15), the ambiguity search range for the second ambiguity parameter 31
0 )( ABN  under 21

0 )( ABN  fixed is 
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Once 21
0 )( ABN  and 31

0 )( ABN  are set to integer numbers, w1 and w2 can be computed and hence the quantities B and C 

are known. The third ambiguity 41
0 )( ABN  can then be solved from Eqn. (13) as 
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with )( 41
33232131 ABDDlwlwlE  . 

Based on Eqn. (18), there are only two trial values for 41
0 )( ABN  (rounded to the nearest integers) to be tested for each 

integer trial set ))(,)(( 31
0

21
0 ABAB NN .  

From a statistical point of view, the agreement between the measured and adjusted observations to a chosen correct 

ambiguity can be qualified by the quadratic form residuals, vCv obs
T ˆˆ 1

, where v̂  is the vector of least squares adjusted 

observation residuals and obsC  is the covariance of the observations matrix. If the errors in observations are Gaussian 

and the tested ambiguity set is the correct, vCv obs
T ˆˆ 1

 will have a Chi-square distribution (Koch, 1989). Therefore, the 

testing for the correct ambiguity, known as ambiguity “acceptance” test, can be formulated as 
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where 2
1,  f

 is the Chi-square percentile corresponding to the degrees of freedom f and confidence level 1-α. Usually, 

f=n-4, with n being the number of satellites in view.  

Due to the insufficient geometry information and error effects, more than one potential ambiguity set may pass the 

Chi-square test at a certain epoch. In this case, each passed ambiguity set is saved and further tested using the 

observations from the following epochs. The quadratic form of residuals related to an ambiguity set that passed the test 

is also saved and accumulated with those from the following epochs. The test is then performed on the accumulated 

quadratic forms of residuals, which is called the “discrimination” test. As more epochs of observations are used, all the 

false ambiguity sets of the primary satellites will gradually be rejected except the correct one.  

In order to accelerate the convergence time and reduce the effect of the a priori carrier phase variance the ambiguity 

discrimination test is used. Such test is based on test statistic which is constructed by the difference between the 

minimum and second minimum quadratic form of the residuals in ambiguity identification. When the number of 

potential ambiguity sets is reduced to a relatively low number after the acceptance testing, the discrimination test is 

computed, as 
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If the left hand side of Eqn. (20) is greater than a preset threshold, the potential ambiguity set with the smaller 

quadratic form of residuals is selected as the correct ambiguity set. The determination of the threshold value usually 

depends on the error magnitudes and multipath effects on carrier phase and 2 to 3 is often used in practice (Wei, 1986; 

Landau and Euler, 1992; Lachapelle et al, 1993). 

 

2.2. MILES 

 

The MILES method solve the Mixed Integer Least Squares (MILS) in a way similar to the LAMBDA method 

(Teunissen, 1994), (de Jonge et al, 1996), but can be faster, as suggested by (Chang et al, 2007). Both methods return as 

solution the ambiguity value which presents smallest square residuals.   

For the MILES implementation, let the sets of all real integer m x n matrices be denoted by R
mxn

 and Z
mxn

, 

respectively, and the sets of real and integer n-vectors by R
n
 and Z

n
, respectively. Let ‖•‖ denote the 2-norm of a vector, 
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Given A   R
mxk

, B   R
mxn

 and y   R
m
, suppose that [A,B] has full column rank. A function produce p optimal 

solutions to the mixed integer least squares (MILS) problem 
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in the sense that a pair {x
(j)

, z
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 is the jth optimal solution if its corresponding residual norm    jj BzAxy   

is the jth smallest (note that some of these p residual norms can be equal), i.e., 
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where p is a parameter chosen at random. 

If the matrix A is nonexistent, Eqn. (21) becomes an ordinary integer least squares (ILS) problem 
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To solve the MILS problem, it is transformed into an ILS problem and a real upper triangular linear system of 

equations. By solving these two sub-problems sequentially, the MILS solution is obtained. Suppose A has the QR 

factorization 
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computed by Householder transformations (Björck, 1996). Then 
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Note that for any fixed z, we can chose x   R
k
 such that the first term on the right hand side of Eqn. (25) is equal to 

zero. Therefore, to solve de MILS problem, we first solve the ordinary ILS problem 
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to obtain the solution 
n

Zz ˆ , and then solve the upper triangular system 
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to obtain the real solution 
k

Rx ˆ . If we find p optimal integer solution to Eqn. (26), then we can obtain the 

corresponding p real solutions by solving Eqn. (27). Thus the key is to solve the ILS problem and for details see 

(Chang, 2006). 

 

 

3. SIMULATION RESULTS 

 

The data used to test the algorithms were obtained from Dai et al (2008), where the ambiguity problem is supposed 

to be solved from the outset. More precisely, the problem addressed by Dai is not the one considered here. The GNSS 

measurements have been acquired by using a NovAtel
®
 DL-4 receiver and IFEN NavX

®
 RF GNSS simulator. The 

simulator generates the RF signals according to the antenna position in ECEF frame specified by the user. The signals 

are then transferred to the GNSS receiver and the measurements are then converted to RINEX format. The antenna‟s 

positions are configured according to Fig. 2. 

 

 
Figure 2 - Antenna‟s positions in the platform frame, measured in meters 

 

The antenna C has been used in the simulation and test of the implemented algorithms. The results are presented in 

sections 3.1 and 3.2. 

 

3.1. LEAST SQUARES BY CHOLESKY DECOMPOSITION 

 

This method has three main design parameters: preset time period, threshold of the ratio test and chi-square value. 

These parameters determine the performance of the method and a poorly made choice can lead to unsatisfactory results. 

The algorithm was executed about two hundred epochs with a preset time period equal to ten epochs. There were nine 

satellites in view and the acceptance test was considered with a confidence interval equal to 95%. The threshold value 

of the discrimination test was chosen as 2.7 and results are shown in Fig. 3. 
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                                                                                                 III                                                                                                   

 

The estimated coordinates,   mR
T

AC 034.09422.6633.14 , correspond approximately to coordinate of the 

antenna   mC
T

07.029314.587 . The value obtained for the ambiguities corresponds to real values, 

namely  TACN 588  . To measure the quality of the estimate, Fig. 3.III shows the graph with the residuals of the 

estimated coordinates with few meters of errors. 

 

3.2. MILES 

 

In the MILES, in contrast to the LAMBDA method, it is not necessary to provide the cofactor matrix at the 

beginning of the integer search process. By comparing these 2 methods, the obtained results were similar. Basically, 

their success depends on the true integer ambiguity belonging to the potential set, i.e., the candidate ambiguity set 

obtained by these 2 methods. The number of elements in this set is controlled by the user, i.e., the user selects the 

number of integer solutions among which the true integer ambiguity is to be searched for. If the measurement noise is 

large, or there are few visible satellites and/or epochs or few candidates number is selected, then the true ambiguity may 

be missed, which implies failure in the baseline estimation, regardless of the validation procedure. 

Once the set containing the possible integer ambiguities is obtained, via MILES or LAMBDA, there is the problem 

associated to the selection of the best integer estimate. The usual procedure is the one already adopted by the Lu‟s 

method: statistic and ratio test. This procedure is prone to failure, and a more direct and a less user dependent solution 

has been proposed by (Li et al, 2008), which can be summarized as follows: by using SVD, separate the integer 

ambiguity estimates in 2 parts: iN , where “i” stands for independent, containing the 3 components which produces the 

smallest condition number for the remaining    33  mxm  normal matrix, where m is the number of ambiguities, and 

dN , where “d” stands for dependent, containing the remaining  3m  components. A float estimate for iN  is obtained 

by using the available data and the searching is performed for iN , by using either MILES or LAMBDA. For each 

integer estimate, the corresponding dN  components are estimated, as float. If the dN  estimate is far from an integer 

vector, the dN  estimate is immediately dropped out. This approach has 2 main benefits when compared to the usual 

Figure 3 - I) Estimated positions of the antenna C; II) Estimated Ambiguity; III) Residuals between true and 

estimated antenna C coordinates 
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procedure for integer ambiguity validation: 1) the search space is always 3 dimensional, regardless of the number of 

visible satellites, and 2) the test for deciding which is the correct dN  is carried out by using a very well conditioned 

normal equation. 

We now consider the performance of both MILES and LAMBDA for estimating the baseline, with the data from 

(Dai et al, 2008). A potential set of integer solutions with 1000 candidates, for 10 epochs, is generated by the MILES 

and LAMBDA in around 0.27s, by using MATLAB. With the (Li et al, 2008) method this time is reduced to 0.052s. 

The presence of the true ambiguity in the potential set, which is critical to the correct baseline estimation, is now 

verified. By using the potential set with 1000 candidates, the MILES and LAMBDA methods produced similar results, 

but the true ambiguity vector belongs to the potential set only between samplings 78 and 106, as shown in Fig. 4, where 

the behavior of the last component of the integer ambiguity vector is shown. 
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Figure 4 - Last component of the integer ambiguity vector. Estimation starts at t=10s, 

since 10 epochs are used. 

 

This means that any validation method would have to indicate failure outside this interval. The conclusion here is: 

the data is quite noisy, hence 10 epochs are not enough for providing the correct ambiguity, even with a potential set 

with 1000 candidates. The behavior of the method proposed by (Li et al, 2008) is similar, but has the advantage of 

indicating failure of the validation procedure straightway, simply by looking at the float values of dN  as was 

verified in the simulations.  

In order to smooth the noise, the number of epochs could be increased, but this has the inconvenient of reducing the 

recovery time in the event of cycle slip. Therefore, the only option left, due to the high noise, is to increase the number 

of candidates in the potential set. This difficulty was already expected, since the original least squares problem is badly 

conditioned because only double-differenced carrier-phases are used. 

 

 

4. CONCLUSIONS 

 

From the results it is possible to conclude that, with the present data, the Least Square by Cholesky Decomposition 

performed better than the MILES, fixing correctly the ambiguities and thereby providing correct antenna positions 

estimates. This is because the method makes use of a more efficient technique, for short baselines, in the building of the 

potential set. The MILES provides a number of candidates which can be selected by the user, packed accordingly to the 

residues amplitude. In a favorable scenario, i.e., small noise, the true integer ambiguity belongs to the potential set even 

if few candidates are considered. For large measurement noise the number of necessary candidates can be too high, 

which implies unacceptable computational load for real time application. This also holds true for the LAMBDA 

method. However, the MILES performance does not depend on the baseline length, since the search procedure is not an 

enumeration, but an integer optimization. In this sense, it can provide an initial estimate for the Least Square by 

Cholesky Decomposition in applications where the baseline is not very short. Since in this work the main reason for 

estimating the baseline is in devising an attitude IMU/GNSS fusion by using GNSS attitude reading, the length of the 
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baseline is known. In this work this information is explored by the Cholesky Decomposition method, but not by 

MILES. Therefore, its performance could be improved by solving a mixed integer least squares problem with the 

baseline length constraint. Regarding the LAMBDA method, the first approach along this line seems to be Teunissen et 

al. (2011). 
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