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Abstract. The goal of this work is to propose an alternative measure to compute the shear stress amplitude in critical 

plane multiaxial criteria. In the setting of High Cycle Multiaxial Fatigue the critical plane is usually defined as the 

material plane experiencing the largest amplitude of the shear stress vector path. Usually such amplitude is 

characterized by the radius of the minimum circle circumscribing the shear stress history in a material plane. Here, an 

alternative measure which considers the maximum circumscribing hull  is considered. 

The computation of the shear stress amplitude by the Maximum Rectangular Hull (MRH) was conducted for available 

experimental data involving proportional and nonproportional stress paths . A genetic algorithm was used to search 

the critical plane. Such algorithm is based on evolutions concepts and is capable to find the critical plane without the 

need to determine the equivalent shear stress amplitude in “all” material planes. The estimates were improved for 

most data when the shear stress amplitude was computed in terms of the maximum rectangular hull. The Genetic 

Algorithm not only reduces the computational cost associated with the search of the critical plane but also provides 

accurate values of the maximum shear stress amplitude. 
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1. INTRODUCTION  
 

Structural or mechanical components are usually subject to complex service loading, which produces a multiaxial 

state of stress that must be, in a number of cases sustained for a high number of fatigue cycles (HCF). Under such 

conditions the use of stress based models are appropriate to estimate the component durability. In this setting, critical 

plane models, as first proposed by Findley (1959) and later by others (Fatemi & Kurath (1988), McDiarmid (1991), 
Susmel & Lazzarin (2002), Carpinteri et al. (2009)) have gained significant attention from the academia and also from 

the industrial sector. Critical plane models are extremely attractive from a mechanical standpoint, as criteria developed 

within this framework do not only provide the fatigue strength estimates of the component, but also indicate the location 

and direction expected for early crack initiation. Although a precise definition for the critical plane will be provided in 

another section of this manuscript, here we should advance that a material plane is considered to be the critical one 

when an appropriate combination of shear and normal stresses reaches a maximum value. This means that an intensive 

search process is necessary to find such a plane in a material point. Considering that real components have been often 

designed with the aid of Finite Element Models, containing thousands or hundreds of thousands nodes, it is then 

possible to realize the computational cost associated with the determination of the critical plane in each of these nodes 

to find the global maximum. To reduce this cost numerical methodologies have been proposed elsewhere (Susmel, 

2010), however they usually provide local maximum too. The aim of this work is to propose an optimization method 

based on Genetic Algorithms, which associated with an alternative measure for the equivalent shear stress amplitude in 
a material plane (Araújo et al., 2011), will provide a strong reduction in the computational cost required to the locate the 

critical plane. 

 

2. GENETIC ALGORITHMS 
 

Genetic algorithms (GA) are holistic optimum search algorithms based on the biological concepts of evolution of 

species and they were first proposed by John Holland (Goldberg, 1989). The basic principle of these algorithms is to 

operate on an initial random population of individuals evaluating their fitness, selecting the best fitted and allowing 

them to reproduce in order to form the next generation, (as showed in Fig.1). 

The algorithm is initialized with generation of a set of individuals randomly in bitwise fashion. It follows that the 

algorithm is straightforward: in each generation all chromosomes are evaluated (using function f on the decoded 
sequences of variables); select a new population with respect to the probability distribution based on fitness values and 

alter the chromosomes in the new population by mutation and crossover operations; when no further enhancement is 
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observed, the best chromosome represents an (possibly the global) optimal solution. Generally the program is stopped 

after a fixed number of iterations (generations). 

The crossover operator, which, in this work, corresponds to mating, performs information exchange between the 

best fitted individuals to obtain the new generation. In practice, one crossover point is randomly chosen, the individual 

chromosomes are broken in this point and the recombination of the broken parts forms the two new individuals. The 

long term effect of this operator is to evolve the population to the best combination of the initial randomly generated 

individuals, which means that the best information about the objective function optimum present in the initial random 

population will be reached. However, if the initial random population does not contain information, or schema, about 

the global optimum, the evolving process may converge to a local optimum. To avoid this, it is necessary to add new 

random information during the evolving time. In this work, this is accomplished by the mutation operator, which 

randomly chooses an individual, a mutation point in its chromosome and changes the numerical value found there. 
Since this operator introduces new information in the population evolving process, it increases the probability of 

information about the global optimum to be included in the population, and consequently, to be selected. 

 

 

Figure 1. Flowchart of a genetic algorithm. 

 

However, if mutation occurs too frequently, which means a high probability of mutation occurrence, the evolving 

process can be slowed or, even, prevented. Therefore it was adopted a low mutation probability and an elitism selection 

strategy, in which some of the best individual of a given generation will always be cloned to the next generation, in 

order to preserve the best solution from the mutation operator. Elitism can rapidly increase the performance of GA, 

because it prevents losing the best found solution.  

 

3. BASIC CONCEPTS OF EQUIVALENT SHEAR STRESS AMPLITUDE 
 

Consider a material plane ∆ characterized by its unit normal vector n, passing through point O of a mechanical 

component submitted to a multiaxial cyclic loading (Fig. 2a).  
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Figure 2. (a) Specimen under multiaxial loading, (b) spherical coordinates ϕ and θ which characterize the material 

plane, (c) stress vector t(t) acting on a material point O and describing a stress path Φ, and (d) its normal, σ, and shear, 

τ, stress components in a material plane ∆. 

 

This vector is defined by its spherical coordinates ϕ and θ (Fig. 2b). Cauchy´s theorem states that the stress vector 
t(t) on ∆, which describes a stress vector path Φ during a time period (Fig. 2c) is given by 

 

( ) ( ) ,t t=t T n             (1) 

 

where T(t) is the stress tensor at time instant t. The normal and shear stress components of the stress vector t(t) (Fig. 

2d) are: 

 

( )( ) ( ) ,t t= ⋅σ T n n n            (2) 

and 

( ) ( ) ( ),t t t= −τ T n σ            (3) 

 
where the dot in Eq. (2) stands for the scalar product. While the computation of the amplitude and mean values of 

σ(t) is a straight-forward task, as such a vector varies in magnitude but not in direction, the same cannot be said about 

the calculation of these quantities associated to the shear stress vector path, ψ, described by τ(t) in the material plane ∆ 

(Fig. 2d) during a time period. 

 

4. NEW DEFINITION OF CRITICAL PLANE IN STRESS-BASED MULTIAXIAL FATIGUE MODELS AND 
ITS IDENTIFICATION 

 

The critical plane related to stress-based multiaxial fatigue criteria has been classically defined by a number of 

authors as the material plane where the shear stress amplitude reaches its maximum value (Carpinteri et al., 2009, 

Carpinteri and Spagnoli, 2001, Dang Van, 1973, McDiarmid, 1991 and Susmel & Lazzarin, 2002). 
This is in line with the physical nature of fatigue damage and the mechanics of plastic flow, where, at least for 

ductile engineering materials, cracks are observed to initiate in slip band regions associated to shear motion between 

crystal planes. However, such a definition constitutes an ill-posed problem in numerical terms, since there are cyclic 

stress histories for which a number of material planes present maximum and identical values of τa. As an example, Fig. 

3(a) shows a graph of τa for each material plane, identified by the coordinates (ϕ, θ) in a multiaxial state of stress given 

by test # 20, Tab. 1 ( σx(t) = 242 sin ωt [MPa] and τxy(t) = 121 sin (2ωt – π/2) [MPa]). It can be clearly observed that 

there are four material planes with rigorously the same τa value. 

To further illustrate such a characteristic, the graph of τa vs σn,max  in each material plane (planeincrements ∆ϕ = ∆θ = 

1º) for the above multiaxial state of stress is plotted in Fig. 3(b). Such a graph shows that there are a number of material 

planes experiencing essentially the same τa, with maximum stress normal to the plane varying from 70 MPa to 270 

MPa. 
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Figure 3(a). Equivalent shear stress amplitude in a number 

of material planes (ϕ,θ) for a multiaxial stress history 
(corresponding to test 20 in Table 1) 

(b) τa v σn,max for the material planes containing the 

highest shear stress amplitude for a multiaxial stress 
history (test # 20, Table 1,  σx(t) = 242 sin ωt [MPa] and 

τxy(t) = 121 sin (2 ωt – π/2) [MPa]). The same τa for 

different values of σn,max 

 

On the other hand, there may be cases where the multiaxial state of stress presents a plane containing a unique 

highest value for τa but there is a wide variation of normal stress values around the shear stress as is the case in the load 

history represented by  σx(t) = σy(t) = 250 + 205 sin ωt [MPa] and  τxy(t) = 96 sin ωt [MPa], see Fig. 4).  

Notice however that, as is displayed in such a figure, the differences in τa values for a number of other material 

planes are negligible, but not regarding the σn,max value. Thus, in this case, would the crack prefer to nucleate and grow 

in the plane, where τa is the highest? The above examples illustrate the need for a better and well-posed definition for 

the damage parameter to be used to determine the critical plane. In this setting, it is claimed here that the fatigue 

damage is more severe in a plane, where (i) τa is close to its highest value (but not necessarily the maximum) and (ii) 
σn,max  is more significant. 

 

 
Figure 4. τa v σn,max for some material planes containing the highest shear stress amplitude for a multiaxial stress 

history (σx(t) = σy(t) = 250 + 205 sin ωt [MPa], and σxy(t) = 96 sin ωt [MPa]). Differences in τa values (notice the 

scale in the τa axis) are neglible, but not in σn,max. 

 

This essentially means that, to determine the critical plane, we first need to select a set of candidate planes, here 

defined by the ones, where τa reaches at least 99% of its maximum value 
max

a
τ   (this is the adopted tolerance, tol), being 

the critical one the plane (amongst the candidates), where the maximum value of σn,max  is attained. In mathematical 

terms, the identification of the critical plane is as follows: 

 

• Step 1: Find the maximum equivalent shear stress amplitude among all material planes: 
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( ){ }max

,
max , ,

a a
φ θ

τ τ φ θ=           (4) 

• Step 2: Select the candidate planes within the established tolerance:  

Candidate Planes = ( ) ( ) ( ){ }* * max max, , : ,a a atolφ θ φ θ τ τ φ θ τ= − ≤ ≤      (5) 

• Step 3: Identify the critical plane among the candidate planes as the one, where the maximum normal stress is 

maximized:  

Critical Plane ( ) ( ){ }
* *

* *

,max
,

, max , .
C C

n
φ θ

φ θ σ φ θ=         (6) 

 

5. ALTERNATIVE METHOD TO COMPUTE THE EQUIVALENT SHEAR STRESS AMPLITUDE IN A 
MATERIAL PLANE 

 

There are a number of available techniques to compute in material plane such as Maximum Chord, Maximum 

Projection, Minimum Circumscribed Circle (MCC) and Minimum Ellipsoids (Bernasconi, 2002). The MCC is the most 

popular methodology to compute τa which was proposed by Dang Van (1973) and later by Papadopoulos (1994).  

Recently, a new and an alternative method to compute the equivalent shear stress amplitude, τa, was proposed to 

characterize the fatigue damage under multiaxial loadings (Araújo et al. 2011). In such method the equivalent shear 

stress amplitude is given by the Maximum Rectangular Hull (MRH) of the shear stress vector path in a material plane   

as follows. The halves of the sides of a rectangular hull with orientation φ (with  respect to τi) bounding the shear stress 

path, ψ, can be defined as follows (Fig. 5a): 

( ) ( ) ( )
1

max , min , , 1, 2.
2

i i i
tt

a t t iϕ τ ϕ τ ϕ = − =
 

       (7) 

For each φ-oriented rectangular hull one can define its amplitude as 

( ) ( ) ( )2 2

1 2 .a a aτ ϕ ϕ ϕ= +           (8) 

Then, the equivalent shear stress amplitude is the one which maximizes Eq. (4), as is illustrated in Fig. 5b: 

( ) ( )2 2

1 2max .a a a
ϕ

τ ϕ ϕ= +
 

  

Figure 5. (a) Half sides a1(φ) and a2(φ) of a rectangular 
hull with orientation φ bounding the shear stress path ψ  in 

a material plane. 

(b) the Maximum Rectangular Hull (MRH) for ψ. 

 

The Maximum Rectangular Hull of the shear stress path requires no more than simple axes rotation in two 

dimensions in order to calculate τa since the hull is rotated on the material plane. 
 

6. THE MODIFIED WÖHLER CURVE METHOD FOR  HIGH CICLE MULTIAXIAL FATIGUE 
CRITERION 
 

In order to evaluate the impact of the equivalent shear stress amplitude, determined by the Maximum Rectangular 

Hull (MRH) method on the estimation of the multiaxial fatigue strength, it is necessary to invoke an appropriate model. 
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Carpinteri et al. (2009) observed that the multiaxial High-Cycle Fatigue behavior of metallic materials could 

successfully be estimated by using a simple τa vs 
,maxn aσ τ relationship. The model has been described by Susmel and 

co-workers in a series of articles (Carpinteri et al., 2009, Fatemi and Kurath, 1988 and Susmel, 2010). Briefly, the 

MWCM can be formalized as follows: 

( ) ( ),max
, ,

nC C C C

a

a

σ
τ φ θ κ φ θ λ

τ
+ ≤          (9) 

In the above equation, τa (ϕ
C,θC) is the equivalent shear stress amplitude in the critical plane (ϕC,θC) (as is defined in 

the previous Section), σn,max is the maximum stress perpendicular to this plane, and the parameters  κ and λ are material 
constants that can be obtained from two fatigue strengths generated under different loading conditions. For instance, if 

the uniaxial, f-1, and the torsional, t-1, fully-reversed plain fatigue strengths (at 2 X 106 loading cycles) are used to 

calibrate Eq. (9), such constants turn out be (Carpinteri et al., 1989): 

1
1 1and .

2

f
t tκ λ−
− −= − =           (10) 

Still concerning Eq. (9), it is possible to define a variable 

( ),max
, ,

n C C

a

σ
ρ φ θ

τ
=            (11) 

that is a normalized measure of the influence of the mean normal stress on the multiaxial analysis 

 

In order to evaluate the performance of such a multiaxial mode when values of τa computed by  the MRH method 

are fed into, the following error index can be adopted: 

( )
( ) ( ),max, ,

% 100

nC C C C

a

aEI

σ
τ φ θ κ φ θ λ

τ

λ

+ −

= ⋅         (12) 

 

A negative value of the above error index indicates that fatigue failure should not occur up to 2 X 106 loading cycles. 

It is interesting to observe also that, from an engineering point of view, a negative value of the index indicates the fact 

that the structural component dimensions could be reduced down to the limiting condition given by EI(%) = 0 

 

7 . COMPUTATIONAL SEARCH OF THE CRITICAL PLANE 
 

In this work, the numerical search for the critical plane was carried by two methods. The first one, named Plane 

Increment Method (PIM), is characterized by an exhaustive plane by plane search, through “all” material planes for a 

specific stress history in a material point. In this method the material plane search starts by fixing θ and varying ϕ in 

incremental steps ∆ϕ = 1º. The process continues until the varying angle reaches 180°. Then θ is also incremented in a 

step ∆θ =1º and the search process restarts until θ= 180°. This essentially means that 32.400 material planes need to be 

investigated.  

The second method to find the critical plane considers the use of a Genetic Algorithm (GA). It requires that the 

variables are coded according to the concepts of chromosomes, genes, individuals and generations that make up an 

element or part of the solution in the search domain. The chromosome (as a potential solution) is represented by a 

binary string of length 
2

1 im m=∑  where m1 bits map into a value from the range of ϕ ∈ [0, π] and m2 bits map into a 

value from the range of θ ∈[0,π]. An individual will be the binary representation of a concatenated bit string consisting 
of both ϕ and θ representing the angle of a material plane.  

The determination of the critical plane by the PIM method is a computationally expensive but rather trivial task. The 

code simply requires a comparison command to select the candidate planes and finally the critical one (Equations 4 to 

6). In GA there are no structures for comparison, since the choice of the best individual (solution) is made by constant 

evaluation and selection of individuals who have the best features. Consequently, it was necessary to establish a 

function that simulates a tolerance around the maximum shear stress amplitude value and, at the same time, should 

consider the contribution of normal stress on the fatigue resistance. For this purpose, a fitness or simply Fit function was 

defined as: 

,max( ) ( ) ( ) ,a nFit i i iτ ξσ= +           (13) 

where: 

Fit( i ) is objective function that prescribes the optimum solution; 

( )
a

iτ  is the amplitude shear stress  on the each material plane i ; 

,max ( )n iσ  is the maximum normal stress for ( )
a

iτ  and; 
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ζ is a weight factor, here set as ζ = 0.01.  

 

The parameter ζ was calibrated in a previous work by Inácio (2008). This value proved appropriate to compute the 

critical plane without compromising the physical understanding that cracks usually start in Stage 1, i.e, on planes of 

high shear stress. 

The chromosome length, l, is associated with the level of precision in the solution. To find, l, one can apply the 

following relation: 

max min

2log 1
x x

l
tol

− 
= + 

 
          (14) 

where xmax = π  and  xmin, = 0 

Adopting tol = 0.003º (9.55 x 10-4rad), xmax = π  and  xmin, = 0, a 10 bits string (phenotype) is obtained. Therefore, 

each individual (material plane) will be represented by a 20 bits chromosome, as to define a material plane one needs 

two variables, ϕ and θ. 

The size of a population (number of individuals) can not be too small to compromise the quality of results neither 

extremely big to increase the computational cost and so invalidate its use as an optimization process. It was found that a 

population consisting of 40 individuals and 40 generations provided an appropriate tradeoff. The mutation rate was 

1/15. All these values were set based on the studies conducted by Dantas (2009). 

Although the hull provide an invariance in the case of proportional loading or when the ellipse is a good 

approximation to the stress paths, a study was conducted to identify a minimum number of rotations of the hull to 

calculate the amplitude of shear stress for a attractive computational cost. In this regard, ∆φ = 9º or 10 rotations to the 

hull is sufficient to assure better accuracy of results, regardless of load histories (not proportional and asynchronous) 
(Dantas, 2009). The load history was discretized in 32 time intervals for each 2π period. 

 

8. EXPERIMENTAL DATA FROM THE LITERATURE AND RESULTS 
 

To compare the performance of the GA with the PIM in estimating fatigue strength biaxial fatigue experimental data 

for six different steel alloys have been collected from the literature. These data were produced by Nishihara and 

Kawamoto (1945), Mielke (1980), Kaniut (1983), Heidenreich et al. (1984), Froustey and Lasserre S. (1989) and are 

reported in Tab. 1. They correspond to tests on hard metals, as defined by Papadopoulos  (1994)  under synchronous 

and asynchronous sinusoidal combined loadings. The following nomenclature is adopted in Tab. 1: the subscript a 

stands for the amplitude of stresses; σx and σxy are the normal and the shear stresses, respectively, whereas λxy is the 

frequency ratio between the signal of τxy and that of σx, and βxy is the phase difference. The stress values reported in Tab. 

1 correspond to the maximum combination of stresses that the specimen can stand without failing (up to a limit of 2 x 
106 loading cycles). Fatigue strength under fully-reversed bending f-1 and torsion t-1 in correspondence to 2 x 106 

loading cycles are also provided in Tab. 1 for each material. Figures 6a and 6b show some typical stress paths and 

loading histories to synchronous and asynchronous data, respectively.  

Genetic Algorithm is random, i.e., its use to optimize the same problem twice, in exactly the same way, will provide 

two different responses (unless the exact optimum is found). Notice that in GA one cannot provide the same initial 

population since it is randomly generated. To test the convergence and ability of the method to provide reliable results 

despite of its random nature we chose to run three consecutive times tests numbers 1 (proportional, synchronous), 3 

(non-proportional, synchronous) and test 12  (non-proportional asynchronous). In all these cases results proved that the 

largest difference in τa and σn,max for a same test was 0.1 MPa and 2 MPa respectively.  

  
Figure 6(a). Some examples of stress paths and loading histories for synchronous (tests 1 and 2) and (b) asynchronous 

data (tests 12 and 21). 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

Table 1. Experimental data and fatigue strength properties (for different steels tested under combined loadings). 

Test# σxa τxya λxy βxy 

Material: Hard steel; f-1=319.9MPa; t-1=196.2MPa 
1 138.1 167.1 1 0 

2 140.4 169.9 1 30 

3 145.7 176.3 1 60 

4 150.2 181.7 1 90 

5 245.3 122.6 1 0 

6 249.7 124.8 1 30 

7 252.4 126.2 1 60 

8 258.0 129.0 1 90 

9 299.1 62.8 1 0 

10 304.5 63.9 1 90 

Material: 34Cr4 steel; f-1=415.0 MPa; t-1=259.0 MPa 
11 263 132 4 0 

Material: GGG60 steel; f-1=275.0 MPa; t-1=249.0 MPa 

12 186 93 0.25 0 

13 185 93 4 0 

Material: 30NCD16 steel; f-1=585.0 MPa; t-1=405.0 MPa 

14 285 285 0.25 0 

15 290 290 4 0 

Material: 39NiCrMo3 steel; f-1=585.0 MPa; t-1=405.0 MPa 

16 259.5 150.0 2 0 

17 266.0 153.6 3 0 

Material: 25CrMo4 steel; f-1=340.0 MPa; t-1=228.0 MPa 

18 210 105 0.25 0 
19 220 110 2 0 

20 242 121 2 90 

21 196 98 8 0 

 

Figures 7(a) and 7(b) show τa and σn,max values determined the PIM and the GA. In both cases τa is obtained by the 

MRH. It is noticed that the GA provides values equal or slightly higher than those determined by the PIM. This can be 

explained by the fact that the GA is searching more planes than the PIM and hence can provide more accurate values for 

the these stresses in the critical plane. 

 

 

Figure 7(a). τa values determined by applying MRH 
method for PIM and GA process 

(b) σn,max values determined by applying MRH method for 
PIM and GA process 

 

For the sake of comparison, the results obtained in terms of the EI(%) by the GA and PIM are plotted in the same 

graph for the data set being analyzed (Fig. 8). Note that, the computed EI values by both methods are quite similar. 

However, the computational costs are significantly different as depicted in Fig. 9. This graph shows the computational 

time necessary to determine the critical plane by the PIM and GA. The Analysis was divided in two groups depending 
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on the frequency ratio between τxy and σx, λxy.  For load stories where λxy is smaller than 1 it is necessary to divide the 

stress history in 2π/λxy. This will increase a lot the computational cost for both methods when compared to tests where 

λxy is greater than or equal to 1. It can be seen that the calculation carried out by the GA provides results around 100 

times faster than the ones by the PIM.   In the cases where  λ ≥ 1 the processing time is so small that it can hardly be 
visualized in such scale. 

 

Tests were carried out in a PC, 2MB of RAM, AMD Athlon ® 64 X2 Dual Core Processor 3600 +. The algorithms 

of PIM and GA were implemented in the commercial package Matlab ®. 

 

 

Figure 8. Variation of the Error Index (EI) for each test considering the GA and PIM. 

 
 

 
 

Figure 9. Computational cost to determine the Critical Plane by PIM and GA methods considering the λxy values. 

 

7. DISCUSSION AND CONCLUSIONS 
 

To find the critical plane using a classical PIM a great number of material planes are usually investigated, turning 

time processing prohibitively expensive, mainly for practical design of mechanical components based on Finite Element 
Analysis, where usually thousands of nodes will need to be considered. On the other, to conduct the search process in 

just few planes may lead to inaccurate results. Further, as discussed previously, it is usual do find stress histories where 

the definition of the critical plane lead to the existence of local maximum problems. The genetic algorithm proved to be 

an appropriate optimization tool in such cases. When compared to the PIM it showed the ability to consistently find the 

global optimum solution without the danger of getting stuck at some local maximum. In the PIM we adopted precision 

of 1º in determining the critical plane. Large plane increments could have been tried to investigate the accuracy of the 

method. However, as we sought to compare the accuracy of the results provided by the GA, a small plane increment 

was chosen but so that the analysis would not to extrapolate the processing time. Comparisons showed the GA is 

capable to find the critical plane not only with great accuracy but also 100 times faster than the PIM as described. 
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