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Abstract. The Perfect Matched Layer (PML) method is presented and optimized. It is shown that the implemented 
optimization increases the effectiveness of the absorbing layer. Furthermore, PML’s effectiveness is analyzed with 
respect to its defining constants. Such analysis allows for faster tuning of PML method to any given setup. Further 
results show that side effects are very sensitive to the number of grid points used in the absorbing layer, with better 
results found for wider layers. 
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1. INTRODUCTION 
 

The appearance of fast processing computers and the continuous advances in numerical analysis have allowed new 
developments in acoustic wave modeling. Over recent years, many articles dealing with numerical simulations of wave 
propagation using finite difference, finite element and boundary integral methods have been published (Durran 1999).  

A problem that has been widely discussed in papers is how to express the radiation condition mathematically at a 
boundary which is only at a finite distance from the energy source (Sommerfeld 1949). The boundary condition should 
allow travelling disturbances to pass through the limits of the domain without generating spurious reflections that 
propagate back toward the interior, which may eventually override the original emitted seismic signals.  

A simple way to work out this problem is enlarging the computational domain, therefore delaying the backward 
reflections. This approach, though commonly used, requires large numerical meshes and, consequently, great CPU time. 
Berenger (1994) proposed the PML method for solving electromagnetic and elastic wave equations as a more efficient 
alternative. The method is based on designing a new matched medium intended to absorb - without reflection - the 
incident waves at any frequency and at any incidence angle.  

This work aims at performing effectiveness tests for an optimized PML method in a finite-difference time-domain 
(FDTD) scheme applied to acoustic wave modeling. The objectives are to generate data that will help fine-tune the 
PML method more efficiently, obtain high absorption rates with as narrow an absorbing layer as possible, and obtain an 
optimized version of the PML method. 

The PML method in its original form is presented and optimized so that wave reflection along the boundaries of the 
domain is reduced. It is shown that the implemented optimization of the PML method increases the effectiveness of the 
absorbing layer. It is also shown that absorption is very sensitive to the number of nodes in the absorbing layer, and that 
wider layers yield better results. Furthermore, it is shown that the PML method ideal set of constants vary in a relatively 
predictable way that can be used to shorten the amount of time needed to tune the method to each setup. 
 
2. PERFECT MATCHED LAYER 

 
2.1. PML method in its original form 
 

Berenger (1994) introduced the PML method as one of the ways to abate spurious reflections on the computational 
domain. A set of non-physical equations is applied along the boundaries of the domain so that the energy from the wave 
is abated at the boundaries rather than reflected back into the domain.  

If it were to be used on a continuous domain, the PML method would only require an infinitely narrow region along 
the boundaries to yield complete absorption. This is not true, however, for discrete domains such as the ones used in the 
finite difference method. In that case, such a region must be a given number of nodes wide, in which the PML method 
resembles other absorbing boundary methods such as the Damping Zone (Cerjan et al. 1985). 

For acoustics, in the PML absorbing layer the 2D continuity and linearized Euler equations are given by (Whitham 
1999), 
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where ρ, p and  are, respectively, the medium density, the acoustic pressure and the velocity vector; α is the 
attenuation coefficient; B (=ρc2) is the medium bulk modulus; c is the medium wave or, for acoustic waves in particular, 
sound-speed. 

ur

The attenuation coefficient α is the distinguishing feature between these equations and their non-PML counterparts. 
It is given by Eq. (3) (Berenger 1994, Fan and Liu 2000), 
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where rPML is the maximum absorption rate and the exponent k is used to change the rate of absorption along the 
absorbing layer. δt is the time step, nPML the number of nodes in the absorbing layer and i is an integer that indicates 
how far into the layer a given node is (1 ≤ i ≤ nPML).  Thus, α ranges from 0 at the first node in the absorbing layer 
(where x(i)/x(nPML) is equal to 0) to ln(10)/Bδt at the boundaries of the domain (where x(i)/x(nPML) is equal to 1). 

Equations (1) and (2) can be differentiated in time and space and combined to yield a single PML acoustic wave 
equation: 
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2.2. Optimized PML method 
 

The attenuation coefficient α is defined so that the maximum rate of absorption and the way absorption is applied 
can both be changed. Therefore, the PML method can be tuned to the conditions that are being simulated in order to 
yield the best results for those conditions. 

The reason why the PML method must be tuned is because applying absorption creates differences in acoustic 
impedance in the absorbing layer. That means that as a wave front enters the absorbing layer, it meets different media at 
each new node it reaches. Therefore, some reflection will occur within the absorbing layer, which is obviously 
undesirable. Since the difference in impedance between adjacent nodes in the absorbing layer increases with the 
absorption rate, extremely high absorption rates would cause a great amount of reflection within the absorbing layer. As 
a result, tuning the PML method to each domain is the only way to make sure that the best compromise between 
absorption rate and reflection within the absorbing layer is achieved. 

Though α originally carries a polynomial function whose exponent is k, there is no limitation as to what kind of 
function is to be used to change the behavior of the absorbing layer. Thus, α can be written in a generic form as, 

 
( ) ( )[ ]ixfci PML=α . (5) 

 
This allows for more flexibility and ease in working α to achieve the best possible results in terms of absorption. 

Throughout this paper, the value of cPML that yields the most absorption for a given setup will be referred to as “best 
cPML”. 

The need for impedance matching means that exponent k must be such that the difference in impedance is the 
smallest possible between each consecutive node in the absorbing layer. However, if k is such that too little absorption 
is imposed, the overall absorption will not be ideal, which would also occur if cPML were set too small. 

This leads to the logical conclusion that the wider the absorbing layer, the smaller cPML should be and the smoother 
the function defined by k. That way, there will be more room for absorption to occur, which makes it worth it to focus 
on avoiding large difference in impedance from node to node. Conversely, if the absorbing layer is narrow, a more 
aggressive setup will yield better results. 

Figure 1 shows a set of possible functions for α. Functions are not, however, limited to the ones shown on the figure. 
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Figure 1. A set of possible functions for α. 
 
3. METHODOLOGY 
 

The numerical method is based on a two-dimensional, 10th order in space and 2nd order in time, finite difference 
scheme (Virieux 1986). In all simulations, the same Ricker type source was placed at the center of the domain. Several 
different setups were tested by changing α and the number of nodes in the absorbing layer. The actual domain was a 
square with sides ranging from 50 to 600 nodes long, while absorbing layers from 20 to 100 nodes wide were used. In 
order to ensure numerical stability, the nodes were each 5 meters apart and the time step was set to 0.2 milliseconds. 
Wave speed was set to 3000 m/s and the medium density to 1000 kg/m³. 

Wave energy is measured by taking the sum of the squared amplitudes of all nodes in the 600-grid domain for each 
time step: 
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where U is the acoustic pressure at node (x,y,t). 

Another way of measuring energy can be obtained by summing the results from the first measure for every time 
step: 
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While the first approach only requires that the domains under comparison be identical in length and width, the 

second one imposes that they be identical in time span too. On the other hand, comparing numbers is more 
straightforward than comparing curves. 

 
3.1. Relationship between cPML, domain size and the width of the absorbing layer 
 

Assessing the relationship between cPML, domain size and the width of the absorbing layer can be very time 
consuming, since several combinations of the variables in their respective ranges have to be simulated. However, such 
an analysis can be greatly simplified by introducing the dimensionless number, 
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This approach allows for relevant information to be obtained with relatively fewer simulations. Furthermore, it 

makes it possible to make predictions about the ideal value of cPML for a larger domain or absorbing layer based on 
information obtained from a smaller counterpart, whose simulation is much less time-consuming. 
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hus, four different domains (50, 75, 100 and 150 nodes) were run with three different values of Z (1/5, 2/5 and 
ould then be reached by comparing the twelve different results. The same exponent k was used for 

ll the simulations, k = 2. 

 
Figure 2 shows the ideal value of cPML for each combination of domain size and Z. Results show that the best cPML is 

very sensitive to the number of points in the absorbing layer, being almost constant as Z increases. 
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4. RESULTS 

 
 

Figure 2. Best cPML for each domain size for k = 2. 
 

Since it is expected that the best c  decreases as the number of nodes in the domain and/or the absorbing layer 
inc der in se

PML
rease, the range of values that one needs to consi arching for the best cPML can be reduced by analyzing 

smaller domains beforehand. This is an important result, because larger domains require considerably more time to 
simulate. 

Figure 3 shows the computed total energy E for 101 ≤≤ k , where k is an integer; the attenuation coefficient α is 
given by Eq. (3). Note that for this case reflection is minimized as 4→k . Therefore absorption rates are also very 
sensitive to the polynomial function employed, at least for considerably large absorbing layers. As the number of PML 
nodes decreases, numerical results show that the polynomial function becomes less effective for reducing reflection 
sin  a transition zone no longer exists. Consequently, cPML is the most important PML method optimization parameter 
when the absorbing layer is relatively narrow. Figure 4 compares time-domain seismograms computed with and without 
the optimized PML absorbing layer. Fig. 4b clearly shows that a high absorption rate was achieved. 

 

ce

 
Figure 3. Exponent k versus total energy E. 
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Figure 4. Time-domain seismograms computed (a) without and (b) with the optimized PML absorbing layer. 

 

b)
 
 

 
 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 

. CONCLUSIONS 
 

method; it was shown that the best cPML 
doe , indeed, diminish as the absorbing layer and the domain increase in size. 
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The PML method was optimized to reduce wave reflections at the borders of the FDTD 2D computational domain. 
It was found that optimizations increase the effectiveness of the absorbing layer. Results also show that side effects are 
very sensitive to the number of grid points used in the absorbing layer, with better results found for wider absorbing 
layers. The relationship between the ideal constants of the PML method and the sizes of the domain and of the 
absorbing layer was analyzed in order to allow faster optimization of the PML 
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