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Abstract. This paper deals with chaotic motion in atomic force microscopy, modeling the behavior of the cantilever  

using partial-differential equations and using the Lennard-Jones potential to describe  the interactions between the tip 

and the sample. The discretization of the system is achieved via Galerkin method and the dynamic of chaotic behavior 

is characterized by reference to phase portraits, time history, and maximum Lyapunov exponent. The method of 

harmonic balance is used to find a periodic solution with a periodical orbit and the stabilization of the system is 

achieved via State-Dependent Riccati Equation (SDRE), that drives the chaotic motion represented in the phase 

portrait to the periodical solution found, and the state feedback linear control method keeps the motion in the 

periodical orbit. 
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1. INTRODUCTION  

 

Atomic Force Microscope (AFM) is a powerful tool in scanning probe microscope, its application includes 

manipulation of carbon nanotubes, DNA, imaging and actuation in nano-electronics, etc. (Rützel et al., 2003). In AFM, 

a micro-cantilever with a tip at its free end vibrates and sends a signal to a photo detector, the acquired images come 

from this movement and the scanning process starts.  

 

 
 
 

Figure 1 – Schematic of tapping mode atomic force microscope (Bowen and Hilal, (2009)). 

 
The micro-cantilever has three modes of operation: non-contact, contact and tapping mode operation. Tapping mode is 

the most common type of operation, where the contact between tip and the sample may occur. To generate the images, 

the micro-cantilever vibrates near from its resonance. By this fact, the micro cantilever may exhibit chaotic behavior 

under certain circumstances. According to the literature, Sebastian et al. (2001) used a model with one-degree-of-
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freedom, with linear coefficients to describe attractive and repulsive forces of the system. Garcia and San Paulo (2000) 

used the spring-mass equation to describe the micro-cantilever behavior, and used the theories of DMT and van der 

Waals forces to describe tip-sample interactions. After years, Misra and Danckowits (2007) proposed a model to 

represent the interactions between tip and the sample, and used event-driven method to stabilize the resonant behavior. 

Chaos is a common phenomena in AFM. When this type of behavior occurs, the images are affected, what is not a 

desirable outcome. Mathematical modeling is commonly used to understand the behavior of the AFM micro-cantilever. 

Numerical simulations and analysis of the obtained figures are essential to project a control method to stabilize the 

system. This paper utilizes the mathematical model proposed by Rützel et al (2003) which consists of using the 

Bernoulli equations to describe dynamics of the micro-cantilever, and the Lennard Jones potential to describe the tip-

sample interactions. In modeling process, a partial-differential equation occurs and is discretized using the method of 

Galerking. By using phase portrait, time history, Lyapunov exponents and Poincare maps, is possible to observe the 

chaotic behavior of the system. This chaotic behavior is observed in a limited interval of time, fact that interferes in the 

scanning process.  

In general, AFM is modeled with nonlinear ordinary differential equations, those Nonlinear systems can be identified as 

weakly non-linear and strongly non-linear. In AFM, the weakly nonlinearities appears in non-contact mode and 

traditional perturbation methods like the average method and multiple scale method can be used (Nozaki et al, 2010; 

Aime´ et al. 1999; Boisgard et al. 1999; Nony et al. 2001; Couturier et al. 2002). Tapping mode operation is identified 

as a system with strong nonlinearities (Rützel, et al), by this fact, the use of those perturbation methods is a complex 

job. First, because analytical solutions for nonlinear system are unknown in most cases, and second, the perturbation 

methods are more difficult to implement (Guran, 1997). 

In this paper, the method of Harmonic Balance (Nayfeh, 1995) is used to find a periodic solution. This method was 

choosing because it can deal with systems with strong nonlinearities. To stabilize the system and to drive it to the 

periodic motion, the State-Dependent Riccati equation (SDRE) control method (Fenili and Balthazar, 2010) is used and 

state feedback control keeps the system stabilized.   

The paper is organized as follows:  In section 2, the governing equations of model are obtained, by modeling the micro-

cantilever behavior and modeling the interactions between the tip and the sample. Numerical simulations show the 

chaos in the system. In section 3, Harmonic Balance is used to find a periodic solution to the system, and SDRE and 

linear state feedback control methods are used to stabilize the system. The section 4 contains the conclusions about this 

paper and some projects to future works are mentioned. 
 
 

2. THE MATHEMATICAL MODELLING 

 

 

The Euler-Lagrange equation is used to describe the dynamics of the micro cantilever and Lennard-Jones potential is 

used to represents the interactions between the tip and the sample. L is the cantilever length, ρ is mass density, E is the 

Young’s modulus. The area moment of inertia I of the cross-section area A is chosen in the analysis. The beam is 

clamped at x=0 and free at x=L. The micro cantilever deflection is u(x,t*), * *( )Z w L   is the equilibrium gap 

between probe tip and sample, and the piezoelectric is modeled by ( *)y t Ysin t   (Qin-Quan, Chen, 2006). 

 

 
 

Figure 2 – A schematic of the (a) initial, (b) intermediate, and (c) current configurations associated with the 

micro cantilever deformation (Qin-Quan, Chen, 2006). 
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2.1 Modeling of cantilever deflection. 

In this case is assumed that the behavior of the micro cantilever is similar with the beam behavior, than Euler–Bernoulli 

equation is used to describe the relationship between the beam deflection and the applied load (Witmer, 1991-1992):  

 
4 4

4 4

( , *) *( )
( )

u x t w x
EI EI q x

x x

    
    

    
      (1) 

 

The dynamic of the beam is represented by the Euler-Lagrange beam equation: 

 
2 22 2 2

2 20

1 ( , *) 1 ( , *) *( )
( ) ( , *)

2 * 2

L u x t u x t x
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

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                                    (2) 

 

The first term represents the kinetic energy, the second term represents the potential energy due to internal forces and 

the third term represents the potential energy due to the external load. The Euler-Lagrange equation is used to determine 

the function that minimizes the functional S. For a dynamic Euler-Bernoulli beam, the Euler-Lagrange equation is 
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                                                            (3) 

 

Simplifying (3): 

 

2 4 4

2 4 4
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
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                                                                         (4) 

 

Where q(x) represents the distributed load over the micro-cantilever length.  

 

2.1 Boundary conditions: 

 

Equation 4 is a fourth order partial differential equation and boundary conditions are needed to find solution ( , *)u x t .  In 

this case, the load ( )q x  is represented in a piecewise manner, load isn’t a continuous function. Representation of point 

load as a distribution using the Dirac function in this model results: 

 

 
2 4 4
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With: 
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The partial differential equation is: 

 

 ( , *) ( '''' *''''( )) ( )Au x t EI u x q x x L     
                                                                                         

(5) 

 

In the next section, ( )q x  is modeled as attraction/repulsion force derived from Lennard-Jones interaction potential 

(Witmer, 1991-1992): 

 

2.2 Modeling tip surface interactions. 

 

Lennard-Jones does not model the real contact mechanics encountered in tapping mode AFM, but it represents a generic 

tip-surface-interaction potential (Rützel, Lee, Raman, 2003). According to Basso et al (2000) and Israelachvili (1991), 

the representation of interaction forces between the probe tip of radius R and the sample surface, with a gap z is: 
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Where A1 and A2 are the Hamaker constants, and represents repulsive and attractive potentials respectively. The 

Hamaker constants are given by 2

1 1 2 1A c    and, 2

2 1 2 2A c   .The gap z is represented with 

* ( , *) sin( *)z u L t Y t    , than the Lennard-Jones potential is: 

 

1 2
, 8 2180( * ( , *) sin( *)) 6( * ( , *) sin( *))
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P
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     
        (6) 

 

Finally, using equation 6 in equation 5, and substitution of q(x) by PL,J, is possible to obtain the governing equation of 

the system: 
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2. ( ) sin *x L A Y t    
                                                                                                                                               

(7) 

 

Discretization 

 

Next consider the situation when the excitation frequency Ω is close to the lowest frequency of the micro-cantilever. 

Under near-resonant forcing, and in the absence of additional internal resonances, only one mode of the micro 

cantilever is assumed to participate in the response (Qin-Quan and Chen, 2007):  
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1 1( , *) ( ) ( *)u x t x q t                                                                                                                                      (8) 

 

Where 
1( )x  is the first approximate eigenfunction. Substitution of (8) into (7), multiplication of (7) by 

1( )x , 

subsequent integration over the domain, and the introduction of a modal damping consistent with the Q factors listed in 

table table1 (appendix 2) yields the single-degree-of-freedom model: 
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A positive y is the micro cantilever tip displacement towards the sample, nondimensionalized by the equilibrium gap 

between the tip and the sample,
11C , 

12C , 
1d  and 

1E , are non-dimensional parameters acquired by the Si-Si system 

under consideration.  In this case, η is the vibration amplitude of the dither piezoelectric actuator nondimensionalized 

by the equilibrium gap width.  

 

 

Table 1 -  Properties and dimensions of the micro cantilevers (Rützel, Lee and Raman, (2006)). 

 

Descriptions  symbol                 Si–Si(111) case   Si–polystyrene case 

length    L   449 μm                  154 μm 

width    b   46 μm    13.7 μm 

thickness  h   1.7 μm    6.9 μm 

tip radius   R   150 nm    20 nm 

material density   ρ   2 330 kg m
−3

   2 330 kg m
−3 

static stiffness   k   0.11 N m
−1

   40 N m
−1 

elastic modulus   E   176 GPa   130 GPa 

1st resonance   f1   11.804 kHz   350.0 kHz 

Q factor (air)   Q   100   100 

Hamaker (att.)   A2   1.865 × 10
−19

J   1.15072 × 10
−19

 J  

Hamaker (rep.)   A1  1 1.359 6 × 10
−70

 J m
6
  0.838 873 × 10

−70
 J m

6
 

   

 

A positive y is the micro-cantilever tip displacement towards the sample, nondimensionalized by the equilibrium gap 

between the tip and the sample. Y is the vibration amplitude of the dither piezoelectric actuator nondimensionalized by 

the equilibrium gap width. 

Writing equation (10) in state space forma and considering the following substitutions: yx 1 , yx 2 . The differential 

equation (9) can also be represented in state space: 

 

1 2

6
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x x
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                                                                            (10) 
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2.3 System with chaotic behavior 

 

 

Numerical simulations with (10) using software Matlab, integrator ODE45, step length h=0.001, parameters; 

1 0.01d  ,
1 0.148967B   , 5

11 4.59118 10C    ,
1 1.57367E  , 12 0.149013C  , η=0.9 and 1  , with initial conditions 

(0) 0.2x  and (0) 0x   follows:  
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           Figure 3 – Phase portrait of chaotic behavior. 
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           Figure 4 – Time history of chaotic behavior. 
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   Figure 5 – Poincare maps with strange attractor. 
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    Figure 6 – Lyapunov exponents with positive 

 

In figures 3 and 4, irregular behavior is detected. In figure 5, Poincare maps show strange attractors and in figure 6, 

with
51.2 10t   , Lyapunov exponents obtained the follow results: 1 2 30.010154,  0.020146,  0      . In fact, is 

possible to observe that chaotic behavior occurs in the studied interval of time.  

 

 

3. THE CONTROL METHOD  

 

The SDRE nonlinear regulator produces a closed-loop solution, which is locally asymptotically stable (see details on: 

(Mracek and Cloutier, 1998; Banks et al., 2007). We remarked that the procedure for drive the tip position to a desired 

point or trajectory, via SDRE technique, considers successive optimal solutions for static equations and stabilize the 

system by the feedback control (Shawky et al., 2007). The goal is to use the control U, so that the response of the 

controlled system is a periodic and asymptotically stable orbit. Next, the periodic desired orbit is obtained via Harmonic 

Balance method. 
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3.1. Harmonic Balance method 

 

The main idea of the method is to consider a periodic solution of (9) in the following form (Nayfeh, 1995): 

 

0 1 1 2 2cos( ) ( ) cos(2 ) (2 ) ...y A A t B sen t A t B sen t                             (11) 

  

Next, consider (11): 

 

0 1 1cos( ) ( )y A A t B sen t              (12) 

 

Considering initial conditions 
0(0)y y  and 

0(0)y y ,  follows: 

 

With 
0(0)y y , 

 

0 1 0A A y               (13) 

 

and  
0(0)y y  

 

1 0B y               (14) 

 

Considering  (13) and (14) and substituting the expansion (12) in (9), then equating coefficients of constant terms equal 

to zero, the terms of cos( )t  and sin( )t  equal to zero too, we find the following constants terms: 

 

0 1 0A B       (15) 

 

Considering (12), (13) and (14) with the initial conditions: (0) 0.2y   e  (0) 0y  is obtained: 

 

0.148967 0.348967cos( )y t       (16) 

 

Next, in figure 7, is possible to observe the periodical orbit represented by equation 16, this orbit is a possible solution 

of system represented by the equation 9: 
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        Figure 7 – Periodic orbit obtained by the  

                          Harmonic Balance 
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            Figure 8 – Time history periodical solution 

 

3.2.  Application of proposed control method 

 

The control proposed in this paper follows the principle of using two controls. The feedfoward control in order to 

maintain the system (10) in desired orbits (16) and state feedback control to bring the system to the desired orbit. 

Considering the nonlinear system (10) represented as follows: 
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( )x A x x F      (17) 

 

Where nx R  is the state vector, n nA R   is a dependent state matrix, F is the nonlinear vector of terms not state 

dependent. 

With control, the system (10) is: 

 

( )x A x x F U                                         (18) 

 

With: 

 

fU u u                                                          (19) 

 

fu is the feedfoward control: 

By using 
0(0)x x , and substituting (19) in (18), the system (18) can be represented by: 

  

( )x A x x Bu       (20) 

 

Where: B   nxmR is a constant matrix, and u is the state feedback linear control. The state feedback linear control u can 

be found by using the State-Dependent Riccati Equation Method (SDRE). 

Writing the dynamical system defined by (10) in the form of (18): 

 

1 2

2 1 1 2

x x

x x d x F


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       (21) 

 

where: 
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  
      (22) 

 

Introducing control (19), in system (21), follows that (Shawky et al.,2007): 

 

1 1

2 1 2

0 1 0

1 1

x x
u

x d x

       
        

        
     (23) 

 

The system in the form (24) implies that the origin is an equilibrium point, a condition which allows apply the SDRE 

control to achieve the control u (Shawky et al., 2007). 

The matrices A and B are represented by: 

 

1

0 1

1
A

d

 
  

  
, 

0

1
B

 
  
 

          (24) 

 

The state feedback control is obtained from: 

                                
1( ) ( ) ( ) ( )Tu R x B x P x K x e       (25) 

 

with: *( )e x x  , *x  represents the desired orbit (16) and )(xP  is the State-Dependent Riccati Equation solution: 
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1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T TP x A x A x P x P x B x R x B x P x Q x      (26) 

 

defining: 
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3
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Q
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, -510R      

                                            

The cost functional to be minimized through the SDRE control is given by: 
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Next, in Figure 8 can be observed efficiency of the proposed control system to bring the chaotic behavior to the desired 

orbit (16), in Figure 9 can be observed the phase portrait considering the application of the control (18) in (10). 
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As can be seen in figures 9 and 10, is possible to observe that the proposed control was effective and with easy 

implementation. The simulations also shows that the error between the desired orbit and the obtained obit, by using the 

control matrices Q and R, was 000015.0max *  xx for 100t . Is important to note that the error be reduced by 

adjusting the weighting matrices Q and R in LQR control used, and is possible to affirm the controlled system is 

globally stable. 

 

 

4. CONCLUSIONS 

 

The method of Harmonic Balance (Nayfeh, 1995) was successfully applied in the system and a periodic orbit was found 

(fig. 7 and 8), the SDRE control method was easily implemented, and was possible to drive the chaotic behavior to the 

periodic one. Finally state feedback linear control kept the system stabilized with small error. 

As seen in this paper, chaos in the system was detected in a limited interval of time, there are no guarantees that chaotic 

behavior occurs when t  , but even in a limited interval of time, chaos prejudices the obtaining of images. The 

presence of chaos can lead to errors while imaging samples using dynamic AFM are achieved, thereby introducing an 

element of deterministic uncertainty in nanometrology (Hu and Haman, 2006). In future papers, basins of attraction and 

bifurcation diagrams will be used to a deeper analysis of the system that represents the tapping mode Atomic Force 

Microscopy model. 
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