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Abstract. In this paper, we proposed a Non-Ideal Energy Harvester (NIEH), where the excitation force is an electric 

motor, with eccentricity and limited power supply, called non-ideal system. In the passage through resonance region, 

when the frequency of the excitation force it is near the natural frequency of the supporting, the Sommerfeld effect 

occurs and we found a chaotic behavior. We showed by numerical simulations, the presence of high energy orbits in 

chaotic region where the maximum power harvested was reached. 
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1. INTRODUCTION  

 

In the last years, we have been seeing a large development of miniaturized devices as sensors, actuators, flexible 

electronics circuits and implantable biosensors. Nowadays, the technology Microelectromechanical Systems (MEMS) 

and Nanoelectromechanical Systems (NEMS) have permitted the development of so called smart devices. Also today, 

components developed in micro and nano scale are yet incorporated in all kinds of electronic devices, in accordance 

with (Cottone, 2007). 

 

Because of necessity of an energy source smaller and more efficient, for design of systems based in these new 

technology, the research on Energy Harvesting, has increasing substantially as an example, see: (Priya and Inman, 

2009). 

 

In works of (Chtiba et al., 2010 and De Marqui Jr., 2009) among others authors, they concluded that the best model 

to build energy harvesting devices is by using piezoelectric materials. So, many researchers have concentrated their 

efforts on finding the best configuration for these systems and to optimize its power output. 

 

In agreement with (Sodano et al., 2004; Anton and Sodano, 2007) in the process of Energy harvesting, the electrical 

energy is obtained through of conversion of mechanical energy, created by an ambient vibration source by a type of 

transductor, as a piezoceramic thin film. 

 

Several different electromechanical coupling mechanisms have been developed for harvesting devices in according 

to (Triplett and Quinn, 2009). 

 

 In works of (Triplett and Quinn, 2009), the authors introduced in their model of energy harvesting system, the role 

of nonlinearities in the electromechanical coupling, during the design process, because the constitutive laws of 

piezoelectric materials, which exhibits a strong dependence, between the applied strain and electric field in the 

piezoceramic material as shown by (du Toit and Wardle, 2007; Twiefel et al., 2008). Those nonlinearities have 

considerable importance in the system response. So, the inclusion the role of nonlinearities in the electromechanical 
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coupling has permitted that the power the output prediction can be improved and system performance can be optimized, 

as well. 

 

Figure 1 represents the model of Non-Ideal Energy Harvester (NIEH) proposed by us, which consists in a 

cantilevered beam with applied piezoelectric layers, in the free end is attached an electric motor with of unbalanced 

mass and in clamped end the piezoelectric elements are connected to an electrical load. 

 
Figure 1. Idealization of the non-ideal energy harvester 

 

This research considered the energy source with limited power supply, like in real motors. 

 

 We say that the energy source is non-ideal, against an ideal source, in which the amplitude and frequency are 

independent of the movement and response of the structure. 

 

 Our experimental research detected the Sommerfeld Effect: as the motor accelerates to reach near resonant 

conditions, a considerable part of its output energy is consumed to generate large amplitude motions of the structure and 

not to increase its own angular speed. For certain parameters of the system, the motor can get stuck at resonance not 

having enough power to reach higher rotation regimes. If more power is available, jump phenomena may occur to 

considerably regimes of higher motor speed near resonance, no stable motions being possible between these two. 

 

The non-ideal systems theories can seen details in: (Kononenko, 1969), (Nayfeh and Mook, 1979), (Balthazar et al., 

2003), (Dantas and Balthazar, 2007) and (Felix et al, 2009), without undeserved. 

 

The main goal of this paper was to analyze the model of a non-ideal energy harvester proposed by us using 

numerical simulations and shows results obtained. 

 

2. NON-IDEAL ENERGY HARVESTER MODEL  

 

 
Figure 2. Mathematical model of the non-ideal system 

 

 

2.1. Non-ideal structural mathematical modeling 

 

  

The mathematical model of the (NIEH) as shown in Fig. 2 is represented by the following governing equations of 

motion: 

0

( ) ( )
( , ) ( , , , )

U x d x
Mx f x x q F r m

x C
 


   


 

 

0( ) ( ) ( , , , , )I H L R x r m                                                      (1) 
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Where the quantity 
1 0M m m   is the total mass of the (NIEH), x  is displacement of the (NIEH),   is angular 

displacement of the rotor, ( , , , )F x r   expresses  the action of the source of energy on the oscillating system (angular 

velocity of motor, that  is not constant), parameters r  is the eccentricity and 
0m  the mass of unbalanced shaft of the 

electric motor, 
2

0I J m r   is the moment of inertia of the rotor. The function ( , , , )R x r   represents the action of the 

oscillating system on the source of energy. The function ( )H   is the resistive torque applied to the motor and the 

function ( )L   is the driving torque of the source of energy (motor). Note that, usually, the inductance is much smaller 

than the mechanical constant time of the system and, then in stationary regime, we can take ( )L   as (linear) 

1 2( ) ( )L H u u     , where are 
1u  related to voltage applied across to the armature of the DC motor, that is, a 

possible control parameter of the problem and 
2u  is a constant for each model of DC motor considered. The 

function ( , )f x x  is the linear and non-conservative part of the restoring force, while 
( )U x

x




 is its conservative part (U  

is the potential, or strain energy).  

 

The function ( , )f x x  and the potential U  are defined as: 

 

( , )f x x cx , 
2 4

1 2

1 1
( )

2 4
U x k x k x                                                                                                                 (2) 

 

 P1 and P2 are de thin film piezoelectric applied layers.  In agreement with (Triplett and Quinn, 2009), the electrical 

charge developed in the coupled circuit given by q. The term 
( )d x

q
C

 represents the piezoelectric coupling to the 

mechanical component, with a strain-dependent coupling coefficient ( )d x . The voltage V  across the piezoelectric 

material has the form: 

 

 
( )d x q

V x
C C

                                                 (3) 

 

Here the C represents the piezoelectric capacitance and with V Rq   the (NIEH) coupled governing equations of 

motion are: 

 3 2
1 2 0

( )
cos sin

d x
Mx cx k x k x m r q

C
                                 (4)                

 

   0 1 cosI m rx                                                                     (5)                    

 

( )
0

d x q
Rq

C C
                                                                                   (6) 

 

Where c is the linear damping coefficient and 1k is the linear stiffness coefficient 2k is the non-linear stiffness 

coefficient. 

 

2.2 Non-dimensionalization 

 

Considering the following non-dimensional parameters: 

 

 1
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 1k
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M
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d u d r
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 
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,lin

r
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  ,nlinrd                                            (7) 

         

The dimensionless piezoelectric coupling coefficient used by us was approximate by (Triplett and Quinn, 2009), as 

ˆ( ) (1 ),d u u   where the piezoelectric coefficient divide in linear part, represented by   and non-linear part 

defined by , so we may reduce the equations of motion to: 

 
3 2

1 1 2" ' (1 | |) "cos ' sinu u u u u v                 

 

" ( ') "cosu                                                                                                                                                     (8) 

 

' (1 | |) 0v u u v       

 

After defined the variables as: 1x u , 2 'x u , 3x  , 4 'x  , 5x v , the (NIEH), may be rewritten in state 

space representation as: 

 

1 2

3 2

2 2 1 1 1 1 5 1 4 3 2 4 3

3 4

4 4 2 3

1 1 5

5

(1 | |) cos sin

( ) cos

( (1 | |) )

x x

x x x x x x x x x x

x x

x x x x

x x x
x

     

 







       



  

 


                                                     (9) 

 

We will obtain the following first order differential equations to the (NIEH), making some algebraic manipulations: 

 

1 2x x  

 

       3 2

2 2 1 1 1 5 1 5 2 4 3 1 3 1 2 4

1
sin cosx x x x x x x x x x x                      

 
 

 

3 4x x                                   (10) 

 

       3 2

4 1 2 4 3 2 1 1 1 5 1 5 2 4 3

1
cos sinx x x x x x x x x x x                     

 
 

 

 1 1 1 5

5

x x x x
x

 



  
                                                           

  

Where: 

 
2 2

1 31 cos x                                                                                                                                                       (11) 

 

With the voltage previously defined as V Rq   the power harvested from the mechanical component is
2 /V R , so 

the non-dimensional electrical power harvested from the system is identified by (Triplett and Quinn, 2009) as: 

 
2P v                                                                                                                                                            (12)    
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3. NUMERICAL SIMULATIONS RESULTS 

   

In this work, numerical simulations were carried out in Matlab using as the numerical integrator ode113, Adams-

Bashforth-Moulton PECE solver algorithm with variable step-length. For all numerical simulations performed, were 

considered the initial conditions equal to zero. And all numeric simulations were done over the dimensionless time 

range 0 5000.    

 

We  analyzed  the (NIEH), proposed by us, excited by a non-ideal source using the same values to damping, 

stiffness linear and non-linear, linear and non-linear piezoelectric coupling coefficients, non-dimensional electrical 

coefficient and smaller parameter  , in accordance com the work of (Triplett and Quinn, 2009).  

 

0.50;  1.00;  1 0.25;   1.00;  1.00;  1.00;  0.10;                                                                     

 

The specific parameters of excitation to (NIEH) were defined in agreement with work of (Warminski and Balthazar, 

2003). 

 

1 0.40;  2 0.40;  0.60;                                                      

 

In this work, the characteristic parameters of DC motor are: 

 

1 0 30;   2 15;                                                                     

 

Figure 3 shows the phase portraits of the (NIEH), with control parameter 
1 assuming the values 15 and 23, chaotic 

behavior is found and with 
1  assuming the values 10 and 26, periodic solutions were encountered in the steady state 

motion. 

 
 

Figure 3. Phase Portraits of the (NIEH): with (a) 
1 =10; (b) 

1 =15; (c) 
1 =23; (d) 

1 =26; 

 

With the phase portraits in third dimension depicted in the Fig. 4 over time, can be noticed the existence of high 

energy orbits when the (NIEH) is in a chaotic regime of vibration with the control parameter 1 = 23. Such orbits are 

desirable because in them one can achieve maximum power output of the system.  
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Figure 4. Phase Portraits in Third Dimension of the (NIEH): with (a) 
1 =10; (b) 

1 =15; (c) 
1 =23; (d) 

1 =26; 

 

 
 

Figure 5. Time Histories of the (NIEH) displacement: with (a) 1 =10; (b) 1 =15; (c) 1 =23; (d) 1 =26; 
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Displacements of the cantilevered beam are depicted in the Fig. 5 where it can be seen the large amplitude vibration, 

with increasing of control parameter
1 , and quasi-periodic, chaotic and periodic motions of the model were 

encountered. In chaotic regimes the maximum peaks of displacement are reached. 

 

 
 

Figure 6. Time Histories of the (NIEH) charge: with (a) 1 =10; (b) 1 =15; (c) 1 =23; (d) 1 =26; 

 

The electrical charge also suffers the influence of vibration of the structure because it is strongly coupled with the 

beam. The responses by the motions of charge with increasing of the value of control parameter are depicted in Fig. 6. 
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Figure 7. Poincare Sections of the (NIEH): with (a) 
1 =10; (b) 

1 =15; (c) 
1 =23; (d) 

1 =26; 

 

The Poincare sections are displayed in Fig. 7 where as the control parameter is increased, it can be noted that the 

system passes through a quasi-periodic attractor before the resonance region, with more voltage applied to the motor in 

an attempt to pass through resonance, the system gets stuck in a chaotic attractor, and with a further increase in the 

value of control parameter, the system response is taken to a periodic attractor. 

 

Figure 8, exhibits the existence of the Sommerfeld effect in the displacement of the (NIEH) due to increasing of 

voltage of DC motor (control parameter
1 ). This occurs at the moment, where the rotation frequency of the DC motor 

(rotational velocity ) is close of the natural frequency of the system ( 1)  and thus it can be captured by the 

resonance, or by increasing the voltage to the motor passage through resonance jumping to another point of equilibrium. 

 

After the passage through resonance region, increases in the motor speed with increasing the control parameter does 

not increase the displacement of the structure satisfactorily. 

 

In the figure the arrows indicate the point where occurs the jump phenomena and the point where it appears chaotic 

behavior in the system due to the fact that the energy source is interacting, with the structure.     

 

 
Figure 8. Sommerfeld effect and chaotic behavior of the (NIEH) 

 

The maximum non-dimensional power harvested, was found over the high energy orbits, in the resonance region 

and inserted into the chaotic motion as shown in Fig. 9.  

 

With the increasing of the value of the control parameter
1 , the maximum power is then reached, but as the energy 

source interacting with the structure is limited, the maximum power harvested is not constant along the time.  
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The numerical simulations shown that, the maximum power harvested in the (NIEH) occurs in the peaks over the 

chaotic motion.  

 

 
 

Figure 9. Maximum non-dimensional power harvested of the (NIEH):  

With (a) 
1 =10; (b) 

1 =15; (c) 
1 =23; (d) 

1 =26; 

 

Figure 10, in left side shown the high energy orbits to the (NIEH) with increment of the control parameter 
1 and in 

right side a zoom in region of maximum peaks, where the best value achieved for the maximum power harvested is 

demonstrated. 

 

 
 

Figure 10. High energy orbits of the (NIEH): in (a) along increments of control parameter
1 , 

 in (b) a zoom of High energy orbits 
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4. CONCLUSION 

 

The Non-Ideal Energy Harvester  proposed by us in this paper, shows that the energy source of limited power tends 

to influence in the response of the structure of the electromechanical device, leading to energy losses, instable motions 

where a chaotic behavior occurs.  

 

Due to the existence of the Sommerfeld effect, the maximum power harvested, is not constant in the regions near 

where the jump phenomena happened. 

 

We show that not only in the region of resonance are the best orbits for energy harvesting. And it is possible to take 

advantage of the chaotic dynamics of the model and find high-energy orbits in the middle of chaotic motion. 

 

In future works, a strategy of control and reducing of Sommerfeld effect, can be implemented in order to keep the 

motions of the (NIEH) in a desirable orbit, so stabilizing the maximum power harvested in output of system.   
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