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Abstract The objective of this investigation is the numerical simulation of the flow over an inclinated thin flat plate. In 
this complex flow the existence of laminar-to-turbulent transition, boundary layer separation, leading edge bubble and 
reattachment turns the numerical prediction a considerable challenge. Leading edge bubbles found in flat plate flow 
will usually exist in stabilization fin of missiles and rockets, and these bubbles have significant influence on the 
pressure distribution and lift generated by such fins. The shape and structure of the separation region itself has 
significant impact on the pressure peak near the leading edge which is the primary  contributor to the lift on a fin. The 
influence of the leading edge bubble extends well downstream of the reattachment point and the interaction between 
the leading edge bubble and the trailing edge separation region is poorly understood. The purpose of the present work 
is to analyze the influence of the angle of attack on the leading edge bubble and the reattachment point. This is a part 
of a simulations series of the incompressible flow around a thin flat plate with a leading edge and an infinite wingspan 
at small incidences. Simulations were accomplished for inclination angles of the flat plate varying from 1 to 5 degrees 
with a Reynolds number of 2.13  10e5. The solutions are obtained through the Reynolds Averaged Navier-Stokes 
(RANS) equations for the two-dimensional steady state flow, using the Spalart-Allmaras and SST - models. These 
RANS models assume isotropic modeling of the Reynolds tensor. The results are compared with available wind tunnel 
experimental data. 
 
Keywords: flat plate, shallow incidence, RANS, reattachment. 

 
1. INTRODUCTION  
 

This paper is a numerical investigation of the incompressible turbulent flow around a thin flat plate with a sharp leading 
edge and an infinite wingspan from 1 to 5 degrees (Fig. 1a). The flow around a thin plate at small incidence angles 
presents a very complex structure, presenting laminar-to-turbulent transition, boundary layer separation, leading edge 
bubble, reattachment, relaminarization and a secondary recirculation bubble.  

The study of the flow around the thin flat plate at shallow incidence can help in the design of fins and wings for 
projectiles and missiles. The flow around an inclined flat plate with a sharp leading edge, as shown in Fig. 1a, induces a 
long and thin bubble, denominated “thin aerofoil bubble” (Gault, 1957). The boundary layer around the leading edge is 
very thin, and it is expected to separate immediately, due to the flow direction change. As shown in Fig. 1a, there is a 
dividing streamline which separates the main bubble from the outer flow and which rejoins the surface at the 
reattachment point. If the incidence angle is sufficiently small (usually smaller than 6 degrees), the flow reattaches at 
the upper surface at a point which moves gradually downstream with increasing incidence angle. For greater angles, 
there is no reattachment point, and the bubble enlarges downstream into the wake (Newman and Tse, 1992). Due to the 
fixed separation point the flow is insensitive to a change in Reynolds number, and transition will occur soon after 
separation (Crompton, 2000). 

 

                       

                                 (a) Simplified model                                                                                 (b) Sketch of the secondary bubble  

 
Figure 1. Simplified model of long and thin bubble. 

 
After the separation, the shear layer suffers transition very close to the leading edge. The turbulent shear layer 

increases quickly and has a high entrainment rate; it then reattaches (reattachment point XR) further downstream and 
bifurcates. Part of the flow is directed to upstream to feed the shear layer. The resultant backflow reduces the pressure at 
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the surface and helps to bend the shear layer back to the reattachment point. The remaining flow is driven downstream 
where reverts gradually to an attached turbulent boundary layer before reaching the trailing edge (assuming there is 
enough length left after reattachment). 

The fluid flowing upstream the plate is subject to a strong favorable pressure gradient and subsequently it 
accelerates and reaches a maximum reversed velocity at approximately half way back along the length of the bubble. 
This favorable pressure gradient has a stabilizing effect on the reverse flow boundary layer and a significant drop in 
turbulence intensity is recorded over this region. Corresponding to this drop in turbulence intensity, the velocity 
gradient near the surface reduces and the boundary layer profiles become more laminar-like; the favorable pressure 
gradient induces a relaminarisation (reverse transition). 

Near the front of the separation bubble the pressure gradient is adverse to the reverse flow and consequently the 
laminar-like boundary layer is prone to separate. Crompton (2000) observed a small secondary separation bubble in his 
experiments near the leading edge of the plate. This second very small bubble is schematically illustrated in Fig. 1b and 
it is very hard to be predicted by RANS models. The length of this separation bubble varies with both incidence angle 
and local Reynolds number. The local  Reynolds number dependence is caused by the relaminarisation process in the 
reversed flow boundary layer which itself is dependent on the local velocity. 

Due to the presence of those several flow structures, this type of problem poses a severe challenge to the ability of the 
turbulence models to predict the flow. The simulations were accomplished with models based in the Reynolds Average 
Navier-Stokes equations (RANS), with high Reynolds number.  

This complex flow around a plate at the shallow incidence has been experimentally investigated by Crompton 
(2000). Detailed velocity and turbulence statistics were measured in wind tunnel for the leading edge bubble with the 
use of Laser Doppler Anemometry (LDV) for inclination angles of the flat plate varying from 1 to 5 degrees with a 
Reynolds number based on the chord c equal to 2.13  105. He showed that the Reynolds number did not influence the 
flow. The turbulence models performance are evaluated by comparing with Crompton’s experimental data (Crompton, 2000). 

A few numerical works can be found in the literature, employing the same flow conditions and geometry as Crompton 
(2000) like Collie et al. (2008), Sampaio et al. (2006), Rezende et al. (2008) and Rezende and Nieckele (2009).   

Collie et al. (2008) studied the flow considering incidence angles  equal to 10 and 30, with the following two 
equation turbulence RANS models:  (Wilcox,1998) and SST  (Menter, 1994), in a two dimensional domain. 
Collie was not able to obtain results for  = 5o and affirmed that RANS models would not be capable to capture the 
secondary recirculation bubble. 

Sampaio et al. (2006) proposed the Forced Sub-Grid Model for Large Eddy Simulation (f-LES) to investigate the 
problem with a three dimensional transient formulation. Due to limited computational resources, Sampaio et al. (2006) 
simulated only the inclination angle θ  = 10  in a reduced domain and relatively coarse mesh. Although better results 
were obtained in relation to the RANS models predictions, it was concluded that a more refined mesh was needed and 
the RANS models were no capable of capturing the secondary bubble. 

Rezende et al. (2008) employed the Reynolds Stress Model - RSM (Launder, 1989) and the v2f model 
(Durbin,1995) to capture the turbulence anisotropy, for θ = 1o . Better predictions were obtained with the RSM model 
only for the second order statistics, while poor results were predicted with the v2f model, especially for high Reynolds 
numbers. This work also concludes that the RSM and v2f models present difficulties for simulation with other θ angles. 

Rezende and Nieckele (2009) simulated the problem through the Large Eddy Simulation - Dynamic Smagorinsk 
Model (Germano et al., 1991; Lilly, 1992) for θ = 1o . In this case, it was used a refined mesh near leading edge and 
parallel processing, obtaining better results for 1 degree incidence angle. 

 Based on the results and conclusions of the previous papers, this paper investigates numerically new results for 
the flow for θ = 1 to 5 degrees using two different methodologies: Spalart-Allmaras (Spalart and Allmaras, 1992) and 
SST model. The mesh was significantly refined mesh, in order to guarantee y+ ≈ 1 at the first grid point near the 
plate. The one-equation Spalart-Allmaras model was chosen due to its outstanding performance in aerodynamic 
problems, while the two-equation SST model was selected because it presented the best result with the RANS 
methodology in previous investigations (Rezende et al, 2008). 

 
2. MATHEMATICAL MODEL 
  

The Reynolds-averaged approach is based on decomposing the velocity as uuu   where u is the average 
velocity vector and u' the velocity vector fluctuation. The average continuity and momentum equation (RANS), for a 
steady state incompressible flow is given by  

0 = u       ;       )u'u'(u)()uu(     2

p                                                                     (1) 

where  is the density,  is the cinematic viscosity, is the molecular viscosity, p is the pressure. Equation (1) has 
the same form of the Navier-Stokes equation, but now it has an additional term, the turbulent Reynolds stress 

term, u'u' , representing the influence of the fluctuation on the average flow. In order to close Eq. (1), the turbulent 

Reynolds stress can be modeled based on the Boussinesq hypothesis, where the turbulent stress is obtained through an 
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analogy with Stokes law, i.e., the stress is proportional to the deformation rate. The turbulence models selected to be 
investigated at the present work are described next. 

 
2.1. SST  k-ω MODEL 
 

The Shear-Stress Transport (SST)   RANS model (Menter, 1994) was proposed for aeronautical flows 
simulations with strong adverse pressure gradients and separation by combining the and  models. For boundary 
layers flows, the  model is superior to the  model in the solution of the viscous near-wall region, and has been 
applied with success in problems involving adverse pressure gradients. However, the  model requires a non-zero 
boundary condition on  for non-turbulent free-stream, and the calculated flow is very sensitive to the specified value 
(Menter, 1994). It has also been shown (Cazalbou et al , 1993) that the -ε model does not suffer this deficiency. 
Therefore, the SST model blends the robust and precise formulation of the  model close to walls with the free-
stream independence of the model outside the boundary layer. To accomplish this, the model is written in terms 
of the specific dissipation rate, ω. Then, the standard  model and the transformed model are both multiplied by a 
blending function and both models are added together. This blending function F1 is zero (leading to the standard  
model) at the inner edge of a turbulent boundary layer and set to a unit value (corresponding to the standard model) at 
the outer edge of the layer.  

The turbulent eddy viscosity is formulated as follows: 
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where  S = ( 2 ijS  ijS )0.5  is the modulus of the mean rate-of-strain tensor ijS , and F2 is the blending function for the 

turbulent eddy viscosity in the SST model, d is the distance to the wall. The turbulent kinetic energy  and specific 
dissipation rate  of the SST model (Menter, 1994) can be determined by the solution of its conservation equations, 
where the set of closure constants for the SST model are calculated using a blend between the constants 1 of the 
standard  and and 2 of the  model as  =F1 1 +(1 - F1) 2. 

 
2.2. SPALART-ALLMARAS MODEL   
 

Developed by Spalart and Allmaras (1992), this is a model relatively simple that solves a transport differential 
equation for the turbulent viscosity and, therefore, it requests smaller computational effort. The Spalart-Allmaras model 
was designed specifically for aerospace applications involving wall-bounded flows and adverse pressure gradients. The 
differential equation is derived by using empiricism, arguments of dimensional analyses and selected dependence on the 
molecular viscosity. For this model, the turbulent Reynolds stress is modeled without the last term of Eq. (3), as  

tijji S2uu               (3) 

The eddy viscosity is defined as 
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where f1 is a viscous damping function used to treat more appropriate the buffer layer and viscous sublayer. The transport 

equation for the working variable ~  is given by (Deck et al, 2002) and  = 7.1 . 1C

 
3. RESULTS   
 

The thin flat plate proposed by Crompton (2000) was modeled with the geometry described in Fig. 2. The plate has a 
chord length c of 160 mm and a span of 800 mm giving an aspect ratio of 5, which is sufficient to supply nominally 
two-dimensional flow. 

The reattachment length was found by Crompton (2000) to be independent of Re above 105, where Re is defined as 
Re = U c /, where U  is the free stream velocity, and c the chord length. The wind tunnel investigation was carried at 
Re = 2.13  105 and this Reynolds number is used to compare the turbulence models and the experiments. Attack 
angles, θ = 1 to 5 degrees, are available in experimental data in 1 degree intervals. At inclination of 5 degrees the flow 
is separated for the majority of the length of the plate. The LDV measurements for the mean velocity and a few 
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turbulent quantities over the plate are available at Crompton´s study (2000).  
Figure 3 shows the computational domain used in simulations, which was defined based on the work of Collie 

(2008). At the inlet, the cartesian components of velocity are set according to the angle of attack and the turbulence 

intensity of the freestream defined as 22 U/)3/2(U/)wwvvuu)(3/1(     is set as 0.05%, as 

measured in wind tunnel (Crompton, 2000). Constant pressure equal to the freestream p was set at the outlet. 
 

 

 
 
 
 
 
 
 
 

 
 

Figure 3. Domain details. Figure 2. Thin flat plate dimensions. 
 

The mesh was created with 1.5  105 cells, a slightly larger number of points than employed by Collie (2005), based 
on a grid convergence study performed by him. The distance of first node above the plate was designed as 6.25  10-5 c 
(c is the length of the chord) to guarantee y+=(s/)0.5 y/ around 1, which is the value indicated for both RANS, where 
s is the wall shear stress.       

To flow field was determined with the commercial software Fluent (2006) with both models described in section 2. 
This code is based in Finite Volume Method. Simulations were obtained with the QUICK scheme (Leonard, 1979), 
which is second order.  The pressure-velocity coupling was handled by the SIMPLE algorithm. The system of algebraic 
equation was solved with the Multgrid method (Hutchinson and Raithby, 1986). The problem was considered 
converged when the maximum residue of all equations was smaller than 10-6.  
 
3.2. Reattachment length 
 

Table 1 presents the reattachment lengths (XR) for the flat plate at 1o, 2o, 3o, 4o and 5o incidence angles, obtained by 
turbulence models. 

Table 1 – Normalized reattachment lengths (XR) and respective errors. 
 

 XR / c 
(θ=1o) 

error XR / c 
(θ=2o) 

error XR / c 
(θ=3o) 

error XR / c 
(θ=4o) 

error XR / c 
(θ=5o) 

error 

Experimental  
(Crompton, 2000) 

0.140  0.272  0.470  0.728  0.942  

SA 
(present work) 

0.152 8.4 % 0.278 2.2 % 0.463 1.5 % 0.712 2.2 % 0.956 1.5 % 

SST 
(present work) 

0.146 3.9 % 0.292 7.4 % 0.440 6.3 % 0.735 1.0 % 0.906 3.8 % 


(Collie, 2005) 

0.184 24 % - - 0.510 8.4 % - - - - 

SST  
(Collie, 2005) 

0.149 5.8 % - - 0.437 6.4 % - - - - 

f-LES  
(Sampaio et al. 2006) 

0.136 3.0 % - - - - - - - - 

LES Dinamic 
(Rezende & Nieckele, 2009) 

0.141 0.6 % - - - - - - - - 

 
The prediction accuracy of the reattachment lengths for this flow is strongly dependent on the ability of the 

turbulence model to represent the complex flow structure described; however the mesh refinement also plays a crucial 
part on this performance. It can be seen in Table 2, that the worse prediction was obtained with  model due to its 
deficiency in accurately predicting the free stream flow. Although the Spalart-Allmaras model predicted a better results 
than the  model, Rezende & Nieckele (2009) showed that this model is not able to predict the normal turbulent 
fluctuations. Since the SST model blends the precise formulation of the model close to walls with the free-
stream independence of the model outside the boundary layer, smaller errors in the Xr values were obtained. Note 
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the improvement in the result reached here with the SST model in relation to the one obtained with the same model 
by Collie et al. (2008), which shows the influence of a more refined mesh. Finally, For the inclination angle equal to 1o, 
it is evident in Table 2 that the LES Dynamic model, with more refined mesh, provided the best result, not only because 
it can capture the large structures, but also the transfer of energy between scales and its dissipation at the small scales. It 
is believed that the f-LES prediction needs a more refined mesh to produce accurate Xr  result. 

3.2. Mean velocities profiles  

The mean velocities profiles obtained with SST and Spalart-Allmaras (SA) models for the incidence angles θ = 1o , 
2o, 3o, 4o and 5o are compared with the experimental data de Crompton (2000) at three stations in Figs. 4, 5, 6, 7 and 8, 
respectively. All stations are located inside the bubble for θ = 3o, 4o and 5o, but for θ = 1o and 2o the third station is 
outside the bubble. For the θ=1o case, the LES results (Sampaio et al, 2006a) are also included in Fig. 4. 
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Figure 4. Velocities profiles for incidence angle θ =1o . 
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Figure 5. Velocities profiles for incidence angle θ =2o . 
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Figure 6. Velocities profiles for incidence angle θ =3o. 
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The reversed flow in the leading edge bubble experiences relaminarisation and the boundary layer begins to show 
very laminar features. The velocity profiles, in the two initial stations ( x/c = 0.031 ; 0.125) of Figs. 4 and 5, and in all 
other stations of Figs. 6, 7 and 8, which are inside the bubble, show that the experimental data has a more laminar 
profile in comparison with the RANS turbulence models results which all experience a sharp increase in velocity over 
the near-wall region, specially the SA model. To simulate the process of relaminarization an appropriate transition 
model is required which is not provided by the RANS models investigated, consequently these models predict greater 
velocity gradient in this wall region. On the other hand, for the θ=1o case, the LES results (Sampaio et al, 2006) showed 
an excellent agreement with experimental data for the two first stations inside the bubble (Figs. 4a and b). However, the 
agreement deteriorates at station 3, outside the bubble (Fig. 4c), where the velocity recovery is slower, while the RANS 
models predict a faster recovery. Collie (2008) attributes this difference between the turbulence models and 
experimental results to the influence of wind tunnel in the boundary layer, however, this assessment is difficult to 
quantify. Sampaio et al (2006) attributed the discrepancy the LES model with the experimental data at this station to the 
mesh refinement. The present paper prefers to explain the discrepancies of the RANS models to their inability to 
capture the anisotropy of flow near the wall.    
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Figure 7. Velocities profiles for incidence angle θ =4o . 
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Figure 8. Velocities profiles for incidence angle θ =5o . 
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                    Figure 9 - Streamlines for SST model - 4o               Figure 10 - Streamlines for SST model - 5o 
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Figures 9 and 10 shows the streamlines corresponding to the predictions of SST model. It can be verified that the 
SST model was able to predict the second recirculation bubble, which is observed experimentally. The Spalart-Allmaras 
model not presents the secondary and it is directly related to the more turbulent velocities profiles observed in the 
results of those simulations, inducing the flow inside the bubble to be more resistant to the second separation, keeping 
the reverse boundary layer attached to the plate inside the main bubble. Comparing the streamlines obtained with the 
SST model, it can be seen that the presence of the secondary bubble displaces the center of the main recirculating 
bubble downstream. 

 
3.2. Pressure Distributions 
 

The pressure distribution is analyzed through the pressure coefficient defined as 
 

)./()( 250   UppCP          (5) 
 

where p is the static pressure, p and U are the freestream pressure and velocity.  
Figure 11 presents the variation of the pressure coefficient along the plate for θ =1o. Again the RANS models SA 

and SST are compared with the experimental data. These results confirm the discussion of the previous section, i.e., the 
turbulence models overpredict the velocity magnitude near the wall, therefore, as expected the pressure distribution is 
underpredict. In Figure 11, the LES results of Sampaio et al. (2006) were also included. It can be seen a pressure peak 
displaced from the leading edge as the experimental data, however the pressure peak was also underpredicted as the 
RANS results. Further, the pressure coefficient drop of LES is steeper and delayed, in relation to the experimental data. 
Both RANS models underpredicted the pressure coefficient downstream of the reattachment point, where the LES 
results for =1o was quite good. 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
exp
LES
SA
SST

       

C
P
 

Figure 11. Pressure Coefficient for angle of attack  1o 
x/c

 
Figures 12 and 13 presents pressure contours near the leading edge, obtained with SST model, where the stagnation 

point in the lower side of the plate can be clearly seen. A visible suction can also be seen inside the bubble region, in the 
upper side of the plate, by the significant pressure reduction. 

                 

 
  Figure 12. Isolines of constant pressure for 2o                                Figure 13. Isolines of constant pressure for 4o 

 
 In the interior of the thin airfoil bubble the pressure is mainly determined by the shear layer curvature, in other 

words, stronger streamline curvature will lead to smaller pressure. Due to the difficulty of the turbulence models to 
predict with accuracy the transition position and resolution of the secondary bubble, these models demonstrate an 
inferior and flatter suction peak. Larger discrepancies between the predictions and the experimental data are observed as 
he angle of attack increases. These discrepancies are associated with the inability of the models to predict the complex 
flow inside the bubble. Large angles of attack are associated with longer bubbles; therefore, worse predictions are 
obtained. These results encourage the investigation of these higher angles with LES, in spite of being much more 
expensive. 
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3.3. Second order statistics 
 

The turbulent second order statistics uu   predicted with SA and SST are compared with the experimental data in 

Figs. 14, 15, 16, 17 and 18 for the five angles of incidence. For =1o, the LES results of Sampaio et al (2006) are also 
included in Fig. 14, where it can be seen that at the first station the production of turbulence is underpredicted resulting 

in smaller uu  , being overpredicted at x/c=0.125, what is in agreement with the displaced pressure peak observed in 

Fig 8a. After the reattachment point, its predictions are superior to the RANS predictions. 
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Figure 14. Second order statistics for angle of attack 1o . 
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Figure 15. Second order statistics for angle of attack 2o . 
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Figure 16. Second order statistics for angle of attack 3o . 
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The Spalart-Allmaras model uses a viscous damping function to better represent the buffer layer and viscous 
sublayer, but this feature results in a major damping of entrainment rate and consequently smaller turbulence levels 
inside the bubble, which are visible in all stations for the three cases shown in Figs. 14, 15, 16, 17 and 18. 

The SST model simulates more turbulence in the shear layer than the Spalart-Allmaras model. For turbulent 
boundary layers the SST model uses standard in the near-wall region and then blends to the standard  model 
across the outer region of boundary layer. Nevertheless inside the thin airfoil bubble the SST model blends across 
the inner region of the bubble so that the equation is solved across the shear layer. Therefore it appears that the 
equation predicts a lower dissipation of turbulence which leads an over prediction of turbulence in the separated shear 
layer. Thus the increase of turbulence is a direct result of the equation which actually improves SST results. This 
effect is partially compensating for the model’s inability to predict the increase in the turbulence entrainment.  
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Figure 17. Second order statistics for angle of attack 4o . 
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Figure 18. Second order statistics for angle of attack 5o . 

 
4. CONCLUSION 
   

In this work, the turbulence models of SST (Menter, 1994) and Spalart-Allmaras (1992) were applied to calculate 
the incompressible flow over a flat plate with a sharp leading edge, with small inclination angles. Five different angles 
were investigated  =1o from 5o. The results obtained were compared with experimental data of Crompton (2000). For  
 =1o the solution was also compared with available LES results (Sampaio, 2006).  

The mean profiles velocities presented reasonable agreement with the experimental results; however the details of 
the recirculating bubble were underpredicted in size and over predicted in magnitude. Qualitatively the profiles are the 
same for the different angles of attach indicating the presence of similarity. The prediction of the reattachment length 
was improved with the increase of the angle of attack; on the other hand, the pressure distribution over the plate has 
deteriorated. The LES model prediction was slightly superior in relation to the pressure distribution for =1o, as well as 
the second order statistics. Although a better prediction of the reattachment length was obtained with the SA model, the 
overall results of the SST were better. The Spalart-Allmaras model did not capture the second recirculation bubble and a 
correct entrainment in the boundary shear layer, causing deviations in the velocity and pressure field in the bubble 
region. The SST model predicted this structure for  = 40 and  50, contradicting the conclusions of Collie et al. (2008) and 
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Sampaio et al. (2006). 
The difficulty to capture the entrainment of the separated shear layer, encourage the investigation of the problem 

with more demanding models such as LES and DNS.  
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