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Abstract.Structural synthesis with dynamic response is usually very expensive due to the cost of a typical dynamic response
finite element analysis. Considering the high number of required structural analysis cycles during the structural synthesis
the final computational cost can grow very much and perhaps become prohibitive. A considerable reduction of the
optimization cost can be made by using the transformation of the dynamic applied load into equivalent static loads,
appropriately obtained for the problem at hands. The present work aims at the evaluation of doing the structural synthesis
of an aeronautical panel of isotropic material under dynamic load and submitted to constraints on displacement, stress
and dynamic buckling, by transforming the dynamical loads into equivalent static loads to obtain optimal design at a
smaller computational cost.

1. INTRODUCTION

The most existing structures are subjected to loads of dynamic nature. Buildings, bridges, cars, trains and airplanes
have somehow in their mechanical structures dynamic forces that can be both random as well as periodical. The optimiza-
tion applied to these types of structures are naturally of great interest. However, optimizing them using directly dynamic
response analysis is very computationally expensive with regard to integration equations of motion. This effort becomes
prohibitive when allied to the iterative optimization process, where usually an excessive number of structural analyses are
required.

The possibility of reducing these problems by the use of equivalent static loads allows a significant reduction in
computational effort. Furthermore, because problems of static nature are simplier, the structural optimization becomes
easier.

The method used in this research is the same proposed by B S Kang and Park (2001) and W S Choi and Park (2005),
that defines the equivalent static load (ESL) as the load capable of reproducing the same displacement field of the dynamic
load in an arbitrary time instant. This instant should belong to the more critical structural condition at certain location
and interval of application of the dynamic load. For different loads is possible to select several critical instants related
to several critical structural conditions. This allows the composition of an optimization problem based on multiple static
load conditions whose constraints are simultaneously evaluated during the optimization process.

The consideration of dynamic buckling demands a non linear geometric analysis and the formulation of an optimiza-
tion problem with non-linearity is very hard and usually prohibitive in terms of computational cost. Therefore, the strategy
of using equivalent static loads allow great simplification of the optimization, since it will be necessary only to deal with
eigenvalue problems of linear buckling, demanding a much smaller computational burden.

The constraints present in the optimization are of displacement, von Mises stress and critical buckling load factor.
The computational implementation is performed by means of structural optimization modules codes written in PYTHON

for ABAQUS language integrated to the ABAQUS solver environment.

2. THE CALCULATION OF EQUIVALENT STATIC LOADS

The finite element equations that describes the dynamic behavior of a structure are given by

[M ]
∂2{d}
∂t2

+ [C]
∂{d}
∂t

+ [K]{d} = {f(t)} (1)

where [M ] is the mass matrix, [C] the damping matrix, [K] the stiffness matrix and {f(t)} the dynamic load vector.
The equivalent static load (ESL) can be defined an the result of the multiplication between the global stiffness matrix

and the dynamic displacement vector {d(ta)} at the instant {ta} W S Choi and Park (2005). Solving Eq. (1) to any
dynamic load {f(t)}, it is easy to verify that the product [K]{d(ta)} is a static force that would produce the same
displacement field of the dynamic load at an instant arbitrary time ta W S Choi and Park (2005). Therefore, the product
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[K]{d(ta)} is itself defined as the equivalent static load:

{s} = [K(bn)]{d(ta)} (2)

The Eq. (1) shows that {s} is depends on the structural features given by stiffness matrix [K(bn)], which is a function
of the design variables bn.

Combining Eqs. (1) and (2) one obtains:

{s} = {f(t)} − [M ]
∂2{d}
∂t2

− [C]
∂{d}
∂t

(3)

Examining Eq. (3) it can be seen that the equivalent static load {s} also can be defined as the result of the summation
between the dynamic load {f(t)} and the components [M ]∂

2{d}
∂t2

and [C]∂{d}∂t of the equilibrium equation. This shows
that the ESL is the result of the dynamic load subtracted from the inertia effects present in response behavior in terms of
the inertia and damping effects B S Kang and Park (2001) and W S Choi and Park (2005).

The Fig. (1) illustrates the equivalent static load vector calculated for an instant arbitrary ta.

Figure 1. (a) Plate subject to dynamic load vector f(ta). (b) Plate subject to equivalent static load vector at instant ta.

For the process of optimization the instant ta is not an arbitrary instant, but the instant more significant in the time
domain, i.e., when the structure is in a critical condition, such as peak displacement or stress. If several critical instants
occur, several ESL’s must be calculated to create multiple equivalent static loading cases. When more ESL’s are included
into analysis the better are the results, although the optimization problem grows in size. Therefore, there is a compromises
between the number of ESL’s and the efficiency of the optimization and the best approach would be to use the smaller
possible number of ESL in order to get a meaningful optimal solution.

The advantage in use of the ESL’s into the process of optimization, is the possibility of reduction of computational
cost by the replacing the real dynamic problem by one or more equivalent static problems. Therefore, where normally it
would be demanded the integration of many dynamic equations in the time domain, the solution becomes one of some
simpler static problems.

The equivalent static optimization problem solved in this work is the following:

Minimize: W (bn) n = (1, ..., p)
Subject to: [K(bn)]{d(ti)} = {s}i i = (1, ...,m)

g(bn, {d(ti)})i,j ≤ 0 j = (1, ..., k) (4)

W (bn) is the structural weight, {s}i the multiple ESL’s and g(bn, {d})j the behavior constraints. The indices n, i e j are
respectively n-th design variables, i-th ESL and j-th constraint.

It is important to note that the changes of variables values during optimization directly influence the intensity load
vector. These influences suggest that for any change in those values, the ESL’s must be computed again. However, this
would require many structural dynamic analysis, one for each design change, which of course would destroy the efficiency
of the method. However, considering the hypothesis that a ESL suffers a small change for small dimensional variations
imposed on the structure, in practice one assumes that the ESL’s are constant and independent of design variables during
each cycle of optimization B S Kang and Park (2001).
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3. AERONAUTICAL PANEL

The model adopted in this research of the aeronautical panel is shown in Fig. 2.

Figure 2. Aeronautical panel and model panel discretized in FE.

The dimensions and design variables b1, b2, b3, b4 and b5 are detailed in Fig. 3.

Figure 3. Detailed view

Because the entire panel is discretized with shell elements S4R of the library of ABAQUS solver, the variables b4
and b5 related to height and width of the stringer, are parameterized together with the nodal coordinates of the mesh.
Therefore, the problem has two kinds of design variables; the size variables b1, b2 and b3, that control the thickness of
the finite elements and the shape variables b4 and b5, that control the width and the depth of stiffeners in terms of the
coordinates of the associated grid. However, the distance between stiffeners is kept constant in the stringer-stiffened panel
used in the example.

The parametrization uses the same idea of H F Guerrini and Ferreira (2009) for positioning of control points. Consid-
ering the Fig. 4, lets imagine a point k defined over a segment between points A and B at position Lp1 in the line r of
length L1, which represents the original body. In the perturbed body, the point q will assume a proportional location and
in the direction of the variation ∆L1, as in the Fig. 4.

The new position of q is given byLp2 = Lp1
L2
L1

. If points q andA have coordinates x1 and xA, then the new coordinate
x2 of point q is given by:

x2 = x1 +
(

(x1 − xA)
L2

L1
− (x1 − xA)

)
(5)

where, Lp1 = (x1 − xA), as illustrated in Fig. 5.
Applying the Eq. (5) to the structure of Fig. 5, if the nodes B1, B2, B3 e q at edge α, β, γ and δ, have coordinates zα1 ,
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Figure 4. Displacement of the point q.

Figure 5. Displacement of the nodes of stringer.

zβ1 , zγ2 and zδ2 respectively, then the new coordinates z′α1 , z′β1 , z′γ2 and z′δ2 of nodes B1, B2, B3 and q are given by:

z′α1 = zα1 +
[
(zα1 − z2A)

b′4
b4
− (zα1 − z2A)

]
z′β1 = zβ1 +

[
(zβ1 − z2A)

b′4
b4
− (zβ1 − z2A)

]
z′γ2 = zγ2 +

[
(zγ2 − z2A)

b′5
b5
− (zγ2 − z2A)

]
z′δ2 = zδ2 +

[
(zδ2 − z2A)

b′5
b5
− (zδ2 − z2A)

]
(6)

where,− b42 = (zα1 −z2A)), b42 = (zβ1 −z2A), b5 = (zγ2 −z2A) and bp1 = (zδ2−z2A), being z2A the reference coordinates.

4. OPTIMIZATION OF AERONAUTICAL PANEL

The structural optimization problem to be solved consists in minimizing the mass of aeronautical panel under dynamic
load f(t) and boundary conditions of the Fig. 6, subject to maximum displacement, stress and buckling constraints.

The inplane external applied force is illustrated in Fig. 6 and its diagram is shown in Fig. 7. Two optimization cases
were considered. The first (1) optimization case makes use of the ESL method as given by Eq. (2). The second case (2)
does not use ESL approach, instead use a static loading whose intensity is the maximum peak value of the dynamic load
diagram of Fig. 7. By the way, this would be the load used in normal design practice.

In both cases the optimal solution was obtained with sequential approximate optimization (SAO) using Woo (1987)
generalized hybrid constraint approximation (GHC) and the Powell’s method, whose algorithm was written in PYTHON
language from the book of Kiusalaas (2005). The structural analysis required has been carried out in the ABAQUS solver.
The sensitive analysis was carried out by finite differences.
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Figure 6. Aeronautical panel under dynamic load f(t).

The Fig. 7 shows the dynamic load f(t) which has a high frequency noise and to which the panel is subjected.

Figure 7. Dynamic load f(t).

The original formulation of optimization problem is given by:

Minimize: M(bn) n = (1, ..., 5)

Subject to: [M ]
∂2{d}
∂t2

+ [C]
∂{d}
∂t

+ [K]{d} = {f(t)}

− 2.5 · 10−6 ≤ d2 ≤ 2.5 · 10−6m

σV ≤ 6 · 106MPa

([K]− λ [KG])ϕ = 0
λ ≥ 1 (7)
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where M , d2, σV and λ are respectively the panel mass, displacement in direction z2 , maximum von Mises stress and
buckling load factor. The eigenvalue problem in Eq. (7) is supposed to exist for every time instant t.

4.1 (1) Dynamic optimization by use ESL’s

The dynamic load optimization problem in Eq. (7) becomes by using ESL’s, the following:

Minimize: M(bn) n = (1, ..., 5)
Subject to: [K(bn)]{d(ti)} = {s(bn)}i i = (1, ...,m)

(K(bn)− λiKi
G(bn, {s}i))ϕi = 0

− 2.5 · 10−6 ≤ d2i ≤ 2.5 · 10−6

σV i ≤ 6 · 106MPa

λi ≥ 1 (8)

The time instants in which the ESL’s were calculated are those corresponding to the: a) maximum von Mises stress
over the structure, b) maximum longitudinal displacement and c) maximum transversal displacement. The search for these
peak times must be done in the initial design and after each optimization cycle done with a fixed ESL, for new values of
the design variables.

Table 1 has the initial design variables values and the optimum results for the aeronautical panel.

Table 1. Results of optimization under ESL’s

Mass(Kg) Design Variables (m) Iteration
W (bn) b1 b2 b3 b4 b5 5

Initial 0.810 0.001200 0.001500 0.001500 0.0200 0.0200 Time(s)
Final 0.453 0.000733 0.000883 0.000883 0.0118 0.0120 20623

Table 2. Final results of constraints in critical times (s, MPa, m)

Instant(s) σV gσ −d2 gdL d2 gdU λ gλ
0.302 2.82 · 106 −0.530 −3.91 · 10−7 −0.844 6.44 · 10−7 −0.742 1.011 −0.011
0.304 2.73 · 106 −0.545 −6.86 · 10−7 −0.726 2.48 · 10−7 −0.900 1.031 −0.031
1.062 1.59 · 106 −0.735 −2.5 · 10−6 0.000 1.26 · 10−7 −0.950 1.743 −0.743
1.070 1.60 · 106 −0.733 −2.48 · 10−6 −0.008 1.27 · 10−7 −0.949 1.737 −0.737

Figure 8. Maximum displacements in the directions z2 and z3. Results of the optimization by the use ESL.
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The Tab. 2 has the constraints values for the optimal design. It can be observed that the constraints are satisfied. The
symbols gDL and gDU used represent respectively the lower and upper displacement constraints. The critical constraints
are the gDL and the buckling constraint gλ. There The final optimal design was able to limit the effects of resonance of
the panel, as is possible to see the restrictions on the values of gdL and gdU . For the most critical instants of the table were
computed ESL’s s1, s2, s3 and s4.

4.2 (2) Case. Static optimization by use Fpi

The optimization problem for the panel under the peak values of load Fp is given by:

Minimize: M(bn) n = (1, ..., 5)
Subject to: [K(bn)]{d(ti)} = {Fp}i i = (1, 2)

(K(bn)− λ1K
1
G(bn, {Fp}1))ϕ1 = 0

− 2.5 · 10−6 ≤ d2i ≤ 2.5 · 10−6

σV i ≤ 6 · 106MPa

λi ≥ 1 (9)

Only two peak values were selected, corresponding to the values marked in Fig. 7. The Fp1 and Fp2 are forces of peak
referring to the instants 0.302s and 0.700s. Table 3 has the initial values and the optimum results of the minimization.

Table 3. Results of optimization under loads Fpi

Mass(Kg) DesingV ariables(m) Iteration
W (bn) b1 b2 b3 b4 b5 7

Initial 0.810 0.001200 0.001500 0.001500 0.0200 0.0200 Time(s)
Final 0.449 0.000719 0.000921 0.000921 0.01227 0.01227 4926

Table 4. Final results in critical times (s, MPa, m)

Instant(s) σV gσ −d2 gdL d2 gdU λ gλ
0.302 2.88 · 106 −0.520 −8.91 · 10−7 −0.644 2.56 · 10−7 −0.898 1.000 0.000
0.700 2.93 · 106 −0.512 −3.98 · 10−6 0.592 1.81 · 10−7 −0.276 − −
0.783 1.91 · 106 −0.682 −1.17 · 10−7 −0.953 6.38 · 10−6 1.552 − −
1.070 1.60 · 106 −0.733 −6.53 · 10−6 1.612 9.56 · 10−8 −0.962 1.737 −0.737

Figure 9. Maximum displacements in the directions z2 and z3. Results of the optimization by the use loads of peak Fpi.
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Table 4 contains the results after a new dynamic analysis with the optimal design for this case, where the buckling
constraint is critical and is also satisfied, however it is seen that constraints gdL and gdU for the three time instants 0.700,
0.783 and 1.070 are not satisfied, in fact the maximum violation is 162%.

Comparing the solutions of both cases it is apparent that in case 2 the part of transversal displacements due to resonance
effects, caused by the high frequency noise from load f(t), are not detected. Meanwhile, the ESL approach was able to
perceive the resonance effects, leading to an optimal design with satisfied dynamic displacement constraints.

Note that maximum and minimum longitudinal displacement d3 in Fig. 8 and Fig. 9 are practically the same in both
cases, meaning that the resonance does not affect the displacements in this direction z3.

5. CONCLUSION

It was shown that the use of ESL for the design optimization of an aeronautical panel under inplane dynamical load
was very successful, producing an optimal panel obeying dynamical displacement and buckling constraints. The method
was able to produce very good results with few samples of ESL’s corresponding to selected displacement and stress peak
times. The computer effort was kept very low, in the range of five complete dynamical analysis. The final optimum
design of the aeronautical panel produced with ESL could deal with resonant displacements caused by the noise of high
frequency present in dynamic load. However, the simplification made in case 2, usual in common practice, led to an
inadequate optimal solution, where constraints are violated.
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