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Abstract. Optimization algorithms coupled with computational fluid dynamics are used for an airfoil to be employed in 

wind turbines. This differs from the traditional aerospace design process since the lift-to-drag ratio is the most 

important parameter and the angle of attack is large. Simulations are performed with the incompressible Reynolds-

averaged Navier-Stokes equations in steady state using a one equation turbulence model, which are validated with 

experimental results. Different approaches for parallelization of the computational code are addressed. Mono and 

multi-objective genetic algorithms are employed. Artificial neural networks are used as a surrogate model and 

decrease the computational time in about 50%. 
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1. INTRODUCTION 
 

With the growth of the importance of renewable energy, airfoil design specifically for wind turbines has become an 
important issue. Although airfoil optimization with genetic algorithms has been performed by several different groups 
in the past decade (e.g. Giannakoglou, 2002, Nemec et al., 2004, Peigin and Epstein, 2004, Shahrokhi and Jahangirian, 
2007), they are usually applied having aircrafts in mind. Optimization of entire aircrafts have been made using 
computational fluid dynamics (CFD) and different types of algorithms (e.g. Chiba et al., 2005, Kroll et al., 2007), while 
wind turbines are commonly only optimized using the blade element theory, without changing the airfoils used or the 
general shape of the blade (Fuglsang and Madsen, 1999). 

Frequently, airfoils created for aircrafts are used in wind turbines (Devinant et al., 2002), even though the design 
criteria are not the same for both cases. For instance, in wind turbines the airfoil can be used at a much higher angle of 
attack and the most important parameter is the lift-to-drag ratio (Burton et al., 2001). In aircrafts, the objective of the 
design process might be quite different, for instance, to decrease the drag for a fixed lift coefficient (McGhee and 
Beasley, 1973). Another concern is that Reynolds and Mach numbers are much lower for wind turbines than they are 
for aircrafts, which may change the flow significantly. This work is dedicated to the study of optimization methods in 
order to create an efficient technique to design airfoils for wind turbines, using an incompressible and relatively low 
Reynolds flow with high angles of attack.  
 
2. METHODS USED IN THE AERODYNAMIC OPTIMIZATION 
 

A cycle of the optimization procedure, displaying the involved steps, is shown in Fig. 1. If a surrogate model is not 
employed, the geometrical variables are given by the optimization algorithm and they are used to generate the geometry 
of the airfoils, which are then utilized in numerical simulations in order to obtain the objective function, that must be 
given back to the optimization algorithm. If a surrogate model is used, the variables are turned into the objective 
function directly by means of artificial neural networks, which drastically reduces the computational time. The methods 
used to generate the geometry, to calculate the aerodynamic performance, to perform the optimization, and the 
employed surrogate model are presented in the following sections. 
 

 
  

Figure 1. Flow chart of the optimization cycle employed 
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2.1. Geometry generation 
 

An important part of the optimization process is the parameterization of the geometry, since it is the way one 
translates the variables generated by the algorithm into the actual airfoil. According to Giannakoglou (2002), a 
parameterization method for aerodynamic optimization must be: 

1) flexible, in order to cover a large search space, allowing “non-traditional” shapes to show up; 
2) able to keep the number of design parameters as low as possible; 
3) free of discontinuities; 
4) free of variables that affect negligibly the aerodynamic performance, which would delay convergence; 
5) done so that its design variables are directly linked to the constraints. 
Bézier were chosen for this work, because they are widely accepted in aerodynamic optimization (Karakasis et al., 

2003, Peigin and Epstein, 2004, Cinnella and Congedo, 2008, López et al., 2008, and Vatandas and Özkol, 2008) and 
satisfy the above points, with the exception of the last one. They are parametric curves given by the following equation:  
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where n is the degree of the curve (which has n+1 points) and Pi are the points defining the curve.  

Figure 2 shows a GA(W)-1 airfoil (McGhee and Beasley, 1973) with chord c generated using two Bézier curves, 
one for the extrados and one for the intrados, each with 6 points, and the points used to generate them.  
 

 
  

Figure 2. GA(W)-1 airfoil approximated with Bézier curves 
 
2.2. Numerical simulation 

 
Since the Mach number used in wind turbines is low, the incompressible steady state Reynolds-averaged Navier-

Stokes equations are used. The Reynolds stress tensor is modeled with the Spalart-Allmaras turbulence model (Spalart 
and Allmaras, 1992), as it is often employed in aerodynamic optimization of airfoils and aircrafts (Chiba et al., 2005, 
Kampolis and Giannakoglou, 2008, and Yin et al., 2009). Numerical simulations are performed with the finite volume, 
cell-centered commercial code Fluent. The pressure-velocity coupling is done with the Semi Implicit Linked Equations 
(SIMPLE, Patankar, 1980) algorithm. Central differences are employed to interpolate the pressure on cell faces and 
Quadratic Upwind Interpolation for Convective Kinematics (QUICK, Leonard, 1979) is used to interpolate the 
convective terms of the other variables. 
 

2.3. Genetic algorithms 
 

According to Vicini and Quagliarella (1998), some of the important characteristics of optimization algorithms are: 
1) generality of the formulation; 
2) robustness, in the sense of avoiding local optima, looking for global optimal points; 
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3) capability of handling multiple objectives; 
4) computational efficiency. 
Genetic algorithms (GA, Goldberg, 1989) are based on Darwin's evolution theory, as they take an initial, randomly 

generated population and allow the fittest individuals to reproduce, with crossover, mutation, and elitism involved in 
this process. They are used in many different types of problems and are very robust, as they tend to search for global 
optima. Additionally, they have the ability to handle multiple objectives. The disadvantage of this method is that it is 
not very efficient, often requiring more computational time than other algorithms, specially gradient-based methods. 

In the present study, the open source software NSGA-II (Deb et al., 2002) is used for the optimization process. The 
crossover and mutation probabilities are set to 90% and 5%, respectively. The distribution index for crossover and 
mutation are 12 and 20, respectively. 
 

2.4. Artificial neural networks 
 

An artificial neural network (ANN) is a parallel distributed processor composed by simple processing units 
(neurons) with a natural propensity for storing knowledge and making it available for use. It resembles the human brain, 
since the knowledge is acquired through a learning process and the interneuron connection strengths (synaptic weights) 
are used to store the obtained knowledge (Haykin, 1999). ANNs have been successfully employed to represent airfoils 
at low angles of attack, e.g. Rai and Madavan (2000) and Cinnella and Congedo (2008). 

The ANN library used in this work is FANN (Fast Artificial Neural Networks). It is an open source project started 
by Nissen (2003). A multilayer perceptron ANN was employed with three layers: an input layer, composed by the input 
variables and a bias; a hidden layer, composed by 2m+1 (where m is the number of inputs) neurons and a bias; and an 
output layer. The activation function used in the output layer is linear and in the hidden layer a hyperbolic tangent 
activation function is used. 
 
3. VALIDATION OF THE NUMERICAL SIMULATIONS 
 

To guarantee the reliability of the numerical simulations performed in this work, a validation process was carried 
out. The airfoil used for the validation was the GA(W)-1 (McGhee and Beasley, 1973), due to the fact that it has 
detailed experimental results for relatively low speeds and high angles of attack (α). The numerical results were 
compared with the experimental ones for Reynolds and Mach numbers equal to 6e+6 and 0.15, respectively, and with 
trip wires at 0.08c to generate a turbulent boundary layer. 
 
3.1. Grid independence 
 

The validation process started with the generation of three 2D grids: a coarse (C), a medium (M), and a fine (F) 
mesh. These grids were created following the recommendations of Mavriplis et al. (2009), with the following 
characteristics: 

1) in the boundary layer region, y+ ≤ [1,2/3,4/9][C,M,F], with the second layer having the same height as the first 
one, followed by a growth rate of 1.2; 

2) the far field is located at about 100c of the geometry; 
3) a grid spacing of 0.1% of the chord at the leading and trailing edges; 
4) a number of cells at the blunt trailing edge of [8,12,16][C,M,F]; 
5) a refinement ratio of 1.5 in each direction between the different grids. 
Mavriplis et al. (2009) also suggest a fourth, extra fine (XF) grid, but this was not shown to be necessary in the 

present case. The high quality structured O-grid used is shown in Fig. 3. The far field was divided into two regions so 
that the inlet could have a prescribed velocity boundary condition, while at the outlet pressure is prescribed. The points 
where this division occurs depend on the angle of attack to avoid inconsistencies in the far field. The no-slip condition 
was used on the airfoil itself. 

Results of this grid independence study are presented in Fig. 4, which shows the pressure coefficient (Cp) along the 
profile with α=8.02°. This angle was chosen due to the availability of experimental data and the fact that it is in the 
region that gives maximum lift-to-drag ratio. The three grids gave the same results, as shown by the superposition of C, 
M, and F curves in Fig. 4. Results are in good agreement with the experimental data and, consequently, grid C was used 
for all simulations, to avoid excessive computational time. 
 
3.2. Size of the computational domain 
 

Mavriplis et al. (2009) recommend a distance between the geometry and the boundaries of about 100c. To verify the 
possibility of reducing that distance, which would give a reduction in computation time, and also to make sure that the 
distance suggested is enough, simulations were performed with various different domain sizes. The lift and drag 
coefficients (Cl and Cd, respectively) as a function of the domain size are presented in Fig. 5. 
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Figure 3. Computational grid for the GA(W)-1 airfoil 
 

 
  

Figure 4. Experimental (Wind Tunnel) and numerical pressure coefficient (Cp) along the surface of the GA(W)-1 airfoil 
with α =8.02° for Coarse (C), Medium (M), and Fine (F) grids 

 
It can be observed that Cl changes very slightly with the increase or decrease of the domain size, but Cd requires a 

larger domain than initially thought to be independent of the far field. With that in mind, the grid chosen to be used in 
the optimizations has a distance between the airfoil and the boundaries of about 340c. 
 
3.2. Reliability of the aerodynamic coefficients 
 

Since the parameters used in the optimizations performed in this work are the aerodynamic coefficients Cl and Cd, it 
is fundamental to have reliable predicted values for them. The maximum lift-to-drag ratio must also be reliable, even for 
high values of the angle of attack (α). Figure 6 shows Cl/Cd as a function of α. Simulations appear to be not only 
reliable for angles of attack up to that which gives the maximum lift-to-drag ratio, but they also give smoother results 
than the wind tunnel, which is important for finding maximum values more efficiently. 
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Figure 5. Drag and lift coefficients (Cd and Cl, respectively) for the GA(W)-1 airfoil with α=8.02° as a function of the 
distance to the boundaries 

 
4. APPLICATIONS 
 
4.1. Parallelization 
 

Due to the nature of the GA, it can be parallelized in a way where each processor of the computer calculates one 
individual independently, while the sequential characteristic of gradient-based methods allow only one simulation to be 
performed at any given time. The GA was parallelized with OpenMP, which is an application programming interface of 
simple implementation, requiring only small changes in the original code (Chapman et al., 2008). This was compared 
with Fluent's parallel solver without modifications. Hence, two options were available: launching multiple solvers at the 
same time or launching only one parallelized solver. The speed-up for both methods is shown in Fig. 7. 

The use of multiple solvers is quite efficient, since each processor works with its own data and only final results are 
shared, at the end of the process. The approach of using only one parallelized solver was not as efficient, since the 
loading time of the software became quite long with the increase in the number of processors. Hence, with 4 processors, 
the multiple simultaneous solvers approach used in the GA gave a speed-up of about 3.4, while the parallel solver used 
sequentially gave a speed up of about 1.5, which indicates that if multiple processors are available, GAs may be much 
more efficient than sequential methods. 
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Figure 6. Experimental (Wind Tunnel) and numerical (CFD) lift-to-drag ratio (Cl/Cd) for the GA(W)-1 airfoil 
 

 
  

Figure 7. Computational speed-up with the two approaches to parallelization tested 
 
4.2. Multi-objective optimization with the GA 
 

In order to investigate the impact of the airfoil shape on Cl, Cd, and Cl/Cd, a multi-objective optimization with the 
GA was performed to maximize Cl and minimize Cd. Eight variables were used to represent the airfoil, as in Fig. 2. The 
angle of attack was the 9th and last variable. To keep a realistic shape of the airfoil, constraints on the thickness were 
employed. The thickness in the region corresponding to the maximum coordinate of the extrados was allowed to have a 
minimum value of about 0.17c, which is the thickness of the GA-W(1) airfoil. On the position 0.9c, a minimum 
thickness of 0.025c was set, to avoid unrealistically thin trailing edges. 

The GA requires limits for the input variables, which may be troublesome. After few tests, it was noticed that the 
variables tended to converge to the extreme values. Thus, the search space was successively increased and displaced, in 
order to give the optimization enough flexibility to find the optimum airfoil. The disadvantage of this process is that a 
larger search domain means a slower convergence of the optimization procedure. The angle of attack was allowed to 
vary between 5.5 and 7.5 and the other variables limits are shown in Figure 8, along with their values for the GA(W)-1. 

The algorithm was performed for 50 generations of 28 individuals. The Pareto front and the most relevant airfoils 
obtained are presented in Fig. 9. It can be seen that the airfoil with maximum Cl/Cd has a large camber, which is more 
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similar to the airfoil with maximum lift than the airfoil with minimum drag, which tends to a more symmetrical shape. 
To further improve the lift-to-drag ratio, a mono-objective optimization was also carried out. 
 

 
  

Figure 8. Variable limits for the genetic algorithm, squares represent the points of the GA(W)-1 and error bars the range 
of the variables for the optimization 

 

 
  

Figure 9. Pareto front with the fittest airfoils represented 
 
4.3. Mono-objective optimization with the GA and ANN 
 

The objective function to be maximized was Cl/Cd. The same limits for the input variables and restrictions of the 
multi-objective optimization were used. The GA was used until the generation i with the stop criteria: 
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where std stands for standard deviation and fobj is the objective function. The number of generations required to fulfill 
these conditions was 19. 

After optimizing using only the GA, the data of the first 10 generations were normalized and used to train an 
artificial neural network, which was then used coupled with the GA as a surrogate model replacing the CFD 
simulations. The resulting algorithm was used for 19 generations to compare the results with the original one. The 
training was done using a back propagation algorithm. 

The time required to train the ANN and run the GA coupled with it was less than the time necessary to perform the 
CFD analysis of a single airfoil. Hence, when using the ANN, the computational time is mostly spent on the generation 
of the training data with CFD, which in this case were 10 generations. The total time was therefore practically half of 
that required using only the GA for 19 generations, since CFD simulations were done for only 10 generations. The 
fittest airfoil from the optimization performed with the GA coupled with the ANN was validated with a CFD 
simulation. Results differed in about 6%. The obtained airfoils are presented in Fig. 10. 
 

 
  

Figure 10. Airfoils with highest lift-to-drag ratios found with the genetic algorithm (GA) with and without the use of 
artificial neural networks (ANN) and the GA(W)-1 

 
The shape of the airfoils obtained with both procedures is very similar, having a larger leading edge radius than the 

airfoil with highest lift-to-drag ratio found with multi-objective optimization. Values of Cl/Cd for the three airfoils are 
reported in Table 1. 
 
Table1. Highest values of Cl/Cd found with each optimization procedure 

 Multi-objective GA Mono-objective GA Mono-objective GA+ANN 

Cl/Cd         100.50           101.13   101.42 

 
4. CONCLUSIONS 
 

The following conclusions can be drawn from the present work: 
1) the 2D steady state incompressible Reynolds-averaged Navier-Stokes simulations with the Spalart Allmaras 

turbulence model were very effective for the tested case; 
2) parallelization using several separated solvers was shown to be much more efficient than that of a single solver 

using several processors; 
3) studies on the variable limits for the genetic algorithm are fundamental to avoid convergence to extreme values or 

an excessively large search domain; 
4) the airfoils obtained with mono and multi-objective genetic algorithm were similar in shape and aerodynamic 

coefficients, with a lift-to-drag ratio about 100; 
5) artificial neural networks were able to model airfoils with large angle of attack, decreasing the computational time 

by about 50%. 
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The technique described here can easily be repeated for different constraints and Reynolds numbers, in order to 
design airfoils for different sections of a wind turbine blade. Using a computer with 4 processors of 2.8 GHz and 4 GB 
of RAM, the computational time required when the surrogate model was employed was less than 10 hours. 
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