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Abstract. In this paper, it is evaluated the influence of the calibration point in the ability to predict the correct 

displacement and location to crack initiation, by Lemaitre´s damage model. In the first part, a brief review on the 

theory of the continuum damage mechanics is performance, taking hand the Lemaitre´s model with isotropic hardening 

and isotropic damage. Besides that, an implicit numerical integration algorithm, proposed by De Souza Neto, is 

implemented in an “in house” academic finite element environment. Then, a calibration of the materials parameters is 

done, based on an inverse method and a cylindrical smooth bar specimen. At the end, an aluminum alloy 2024-T351 is 

used and numerical tests are carried out, by cylindrical notched bars with different notches, in order to evaluate the 

displacement at fracture for different levels of stress triaxiality or loading conditions close and far from the calibration 

point. The numerical results are compared with experimental data and the level of agreement is evaluated. The ability 

to predict the correct location to crack initiation is also studied based on the contour of the isotropic damage 

parameter though the finite element mesh. 

 

Keywords: damage mechanics, calibration point, fracture location. 

 

1. INTRODUCTION 

 

The fracture in metals is an important subject to be improved, regarding the ability to predict the correct location of 

crack initiation in machine components and rupture in general structures. This phenomenon can be studied by its 

separated evolution contribution as the initiation and growth of general micro defects which is induced by large 

deformations. Some researchers like  McClintock (1968) and Rice & Tracey (1969) developed pioneering work 

undertaken on the subject, where the nature of defect was taken into account the study of ductile damage by analyzing 

its geometry in a continuous matrix.  

The degradation of material properties is an irreversible process and starts from the formation of micro defects 

which can be voids, cracks and others, that already exist or that will be formed in the material matrix. However, the 

evolution of material degradation is dependent on macroscopic loading conditions which can cause a volumetric void 

growth such as in tensile loading condition or a preferential elongation of micro defects which can be observed in pure 

shear loading conditions. The ductile fracture phenomenon can be described, based on a micromechanical analysis of 

micro cavity growth, especially for the fracture computation within local approaches of fracture, (see Pineau, 1981; 

Rousselier, 1987; Besson et al., 2001) or based on the Continuum Damage Mechanics theory and a thermodynamic  

framework, either phenomenological or micromechanically based, as Lemaitre (1985) for damage caused by plastic 

flow, Chaboche (1984) and Murakami & Ohno (1981) for creep damage, Krajčinović & Fonseka (1981) on 

micromechanical grounds. 

The formulations proposed by Lemaitre and Gurson are the most important coupled damage ductile models to 

describe the above two methodologies (see Chaboche et al., 2006). Since then, motivated by the limitations of these 

classical models, such as in prediction of the correct fracture location or in determination of the correct values of the 

internal variables at fracture, many researchers have proposed improvements in both methodologies, by introducing 

more effects in the constitutive formulation or  in the damage evolution law  like the pressure effect, temperature, Lode 

angle dependence, viscoplastic effects, crack closure effect, shear mechanisms, among others (Tvergaard & Needleman, 

1984; Rousselier, 1980 and 2001; Xue, 2007; Nahshon & Hutchinson, 2008; Lemaitre & Chaboche, 1990; Chaboche, 

2003; Andrade Pires et al., 2004; Chaboche et al., 2006 ; Besson, 2010). 

These classical coupled damage models have the ability to predict the correct fracture location under a specific 

range of stress triaxialities (see Xue, 2007; Nahshon et al.; 2008; Teng,  2008; Malcher, 2011) and are extremely 

accurate for loading conditions close to the calibration point (see Malcher, 2010). It is useful to take hand of the smooth 

bar specimen as the calibration point reference and determine the material parameters in this specific loading condition. 
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Then, when the model is performance for loading conditions far from the calibration point, the numerical results lose 

accuracy and start to disagree with the experimental evidence (see Malcher, 2010). So, in this paper the dependence of 

the calibration point is investigated by Lemaitre’s model within the range of high level of stress triaxiality.   

 

2. CONSTITUTIVE FORMULATION AND NUMERICAL SOLUTION STRATEGY 

 

2.1. Constitutive formulation 

 

The constitutive equations for ductile damage, described in this section, have been proposed by Lemaitre (1985). 

Based on the concept of effective stress and the hypothesis of strain equivalence, Lemaitre’s model includes the 

evolution of internal damage, as well as non-linear isotropic and kinematic hardening in the description of the behavior 

of ductile materials. The constitutive formulation starts from the definition of the Helmholtz specific free energy that 

can be taken as the state potential of the material and is a function of all state variables. The free energy can be 

expressed as a function of the set          of state variables: 

            (1) 

where,   represents the specific free energy,    is the elastic strain tensor,   is the isotropic hardening internal variable 

and   represents the isotropic damage internal variable. 

Under the hypothesis of decoupling between elasticity-damage and plastic hardening, the specific free energy is 

assumed to be given by the sum: 

                  (2) 

where     represents the elastic-damage contribution and    is the plastic contribution to the free energy. The elastic-

damage contribution for the free energy can be postulated by the following expression (Lemaitre, 1985): 

            
 

 
              (3) 

where    represents the isotropic elasticity tensor. The plastic potential can be represented by the isotropic hardening 

contribution as: 

                (4) 

The elasticity law is obtained by performing the derivative of the elastic-damage potential (Equation 3) in order to 

the elastic strain tensor, as: 

    
    

   
            (5) 

The thermodynamical forces conjugated with damage and isotropic hardening internal variable are obtained by 

performing the derivative of the elastic-damage contribution (Equation 3) in order to the damage variable and by taking 

the derivative of the plastic potential (Equation 4) in order to the isotropic hardening variable, respectively (Lemaitre et 

al., 2005): 

      
    

  
 

  

         
 

  

         
 (6) 

     
   

  
      (7) 

where,   represents the thermodynamic force associated with damage,    
 

 
    is the von Mises equivalent stress,   

is the hydrostatic pressure,   is the shear elasticity modulus,   is the elastic compressibility modulus and   represents 

the thermodynamic force associated with the isotropic hardening variable. 

The evolution of the internal variable can be obtained by assuming the existence of the flow potential,  , given by: 
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 (8) 

where, the parameters   and   are damage evolution constants and   represents the yield function, which is, defined as: 

  
 

     
          (9) 

where     is the initial uniaxial yield stress. According to the hypothesis of generalized normality, the plastic flow is 

given by: 

        
(10) 

 

   
 

 

 

   
 

 

     
 (11) 

where    is the plastic multiplier,   represents the flow vector according to Lemaitre’s model (1985) and   is the 

deviatoric stress tensor. The evolution law for damage and for the isotropic hardening internal variable can be 

established by performing the derivative of the flow potential (Equation 8) in order to the thermodynamic force 

associated with damage, Y, and the isotropic hardening variable, r, respectively:  

     
  

  
   

 

     
  
  

 
 
 

 (12) 

     
  

  
    (13) 

The complementary law of the rate-independent plasticity also needs to be fulfilled: 

                     (14) 

The constitutive equations of Lemaitre’s model with isotropic hardening and isotropic damage, employed in this 

work, are conveniently summarized in Box 1. 

Box1. Lemaitre’s model with isotropic hardening and isotropic damage. 

  

 

 

 

 

 

 

 

 

 

 

(i) Elasto-plastic split of the strain tensor:         

 

(ii) Coupled elastic-damage law:              

 

(iii) Yield function:   
 

     
          

 

(iv) Plastic flow and evolution equations for   and   

             
 

 

 

   
 

 

     
 

      and      
 

     
  
  

 
 
 

 

with   given by:     
  

         
 

  

         
 

 

(v) Loading/unloading criterion 

                  . 
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2.2. Numerical integration algorithm 

 

Regarding an implicit solution, algorithms based on operator split methodology are especially suitable for the 

numerical integration of the evolution problem and have been widely used in computational plasticity (see Simo & 

Hughes, 1998; De Souza Neto et al., 2008). This method, which is used here, consists of splitting the problem in two 

parts: an elastic predictor, where the problem is assumed to be elastic and, a plastic corrector, in which the system of 

residual equations comprising the elasticity law, plastic consistency and the rate equations is solved, taking the results 

of the elastic predictor stage as initial conditions. In the case of the yield condition has been violated, the plastic 

corrector stage is initiated and the Newton- Raphson procedure is used to solve the discretised equations. The Newton-

Raphson procedure was chosen motivated by the quadratic rates of convergence achieved which results in return 

mapping procedures computationally efficient (see Simo & Hughes, 1998; De Souza Neto et al., 2008). The implicit 

numerical integration algorithm for Lemaitre´s constitutive model was proposed by De Souza Neto (2002) and the 

overall algorithm for numerical integration is summarized in Box 2. 

Box 2. Fully implicit Elastic predictor/Return mapping algorithm for Lemaitre´s model. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i) Evaluate the elastic trial state: Given the incremental strain     and the state variables at   : 

    
          

     ;     
         ;     

         

     
            

        ;              
        ;      

       
 

 
      

              

(ii) Check plastic admissibility: 

IF             
        

          
         THEN  

set              
       (elastic step) and go to (v) 

ELSE go to (iii) 

(iii) Return mapping (plastic step): Solve the equation below for   , using Newton-Raphson method. 

               
  

     
 
      

 
 

 

    

where, 

             
     

     
               

 

       
           

 

  
 
     

 

  
 

(iv) Update the others state variables: 

           

                 ; 
                    

     
    

     
     

     
      ; 

                

    
  

 

  
     

 

 
      
         

(v) Exit 
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3. GEOMETRY, MESH DEFINITION AND CALIBRATION PROCEDURE 

 

In the following, the geometry of each specimen, which will be used in the numerical simulation, is presented as 

well as the mesh definition. Figure 1 shows the dimensions for both cylindrical notched bars, one with a notch radius 

equal to        and other with        ,  together with a smooth bar specimen. 

 
(a) 

 

 
(b) 

 
(c) 

 

Figure 1. Geometry of the cylindrical notched bars and the smooth bar specimen (dimensions in mm). The specimens 

were reproduced from Teng (2008). 

 

In order to capture the necking pattern and the evolution of internal variables, a relatively fine discretization is 

used in the region surrounding the smaller cross-section of the specimens. The standard eight-noded axisymmetric 

quadrilateral element, with four Gauss integration points, is adopted. The initial mesh discretization for the three cases 

is illustrated in Figure 2, where only one symmetric quarter of the problem, with the appropriate symmetric boundary 

conditions imposed to the relevant edges, is modeled.  

   
(a) (b) (c) 

Figure 2. Finite element meshes for the cylindrical notched bar specimens (a)       , (b)          and for the 

(c) smooth bar specimen. 

A total number of 1800 elements has been used in the discretization of both the smooth bar (see Figure 2c) and 

the notched bar with radii of        (see Figure 2a), amounting to a total of 5581 nodes. The mesh of the notched 

bar with radii of          (see Figure 2b) has got 2250 elements and 681 nodes. In all cases, the gauge used is equal 

to        . 

In order to perform the numerical simulations, it is indispensable to obtain the material properties, the stress-

strain curve and the damage parameters employed by the Lemaitre’s model. An aluminum alloy 2024-T351, which is 

strongly dependent on both pressure and Lode angle, is used. In this paper, the damage parameters of Lemaitre´s model, 

namely the exponent, s, and denominator, S, of the evolution law, were obtained by Teng (2008) that conducted a study 

on the numerical prediction of slant fracture with continuum damage mechanics. However, the stress-strain curve and 

the critical damage values were not taken from the literature but instead numerically determined. Thus, the strategy 

employed to determine the undamaged stress-strain curve and the critical damage value for the present constitutive 

damage model, starting from a experimental result for a smooth bar specimen, where having at hand the experimental 

displacement to fracture (uf = 6.65 mm) together with the reaction-displacement, an inverse and iterative methodology 

was conducted. The objective is to identify the stress-strain curve for each constitutive model such that the force-
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displacement curve is as close as possible to the experimental one. Figure 3 shows the reaction curve obtained for 

Lemaitre´s model after the application of the inverse identification method. It was possible to obtain a close agreement 

for the constitutive model. 
 

  
(a) (b) 

Figure 3. (a) Reaction versus displacement curve for all models and experimental results. (b) Critical damage parameter 

calibrated for the experimental displacement to fracture (uf =6.65 mm). 

The results of the calibration procedure for the stress-strain curves can be observed in Figure 4. The undamaged 

stress-strain curve obtained for Lemaitre’s model has got a more pronounced hardening than the von Mises model, 

which is depicted in Figure 4 and labeled as “uncoupled damage model”, is the curve that includes the effect of damage 

in the hardening. 

 
 

Figure 4. Stress-strain curves for all constitutive models. 

The critical value for the damage variable was also obtained from the simulation of the stretching of the smooth 

bar. All the aforementioned parameters are conveniently listed in Table 1. 

 

Table 1. Material properties for the 2024-T351 aluminum alloy. 

Description Symbol Value 

Elastic Modulus   72.400 [MPa] 

Poisson’s ratio   0.33 

Initial yield stress     352 [MPa] 

Damage data (exponent)   1 

Damage data (denominator)   6 [MPa] 

Critical damage    0.26 
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4. NUMERICAL RESULTS 

 

After the calibration procedures of material parameters for the Lemaitre’s model, in this part of the paper, numerical 

simulations are carried out for three different specimens. The numerical displacement at fracture is determined for each 

specimen under tensile loading condition and compared with experimental data. Figure 5 represents the reaction versus 

displacement curves determined numerically. It can be observed that when the applied loading condition deviates from 

the calibration point, the displacement at fracture determined numerically disagree with the displacement 

experimentally observed. Figure 5a represents the calibration point and both displacement are the same. When the stress 

triaxiality is increasing (notched bars with notches of         and       ), the difference between the two 

displacements becomes increasingly high, making the model loses accuracy (see Figure 5b and 5c). 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

 

Figure 5. Reaction versus displacement curves. (a) smooth bar specimen, (b) notched bar specimen         and 

(c) notched bar specimen       . 
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The numerical and experimental values for the critical displacement can be observed through Table 2. 

 

Table 2: Experimental and numerical displacement at fracture. 

Specimen Stress triaxiality 
Experimental 

displacement (1) 

Numerical 

displacement (2) 
Error % (2)-(1) 

Smooth bar                      0% 

Notched bar                              23% 

Notched bar                             41,6% 

  

The evolution of some internal variables can also be analyzed, as the damage parameter and the equivalent plastic 

strain at fracture. Figure 6 represents the evolution of both parameters at the critical numerical displacement. The level 

of equivalent plastic strain decreases with the increase of the stress triaxiality, which is in agreement with experimental 

data. The expected level of the equivalent plastic strain at fracture for the smooth bar, notched bar         and 

notched bar        are     ,      and     , respectively. By Figure 6, the numerical values determined by 

Lemaitre’s model are     ,      and     , respectively for the smooth bar, notched bar         and notched bar 

      . 

  
(a) (b) 

 
(c) 

 

Figure 6. Evolution of damage parameter and equivalent plastic strain at fracture. (a) smooth bar specimen, (b) 

notched bar specimen         and (c) notched bar specimen       . 

 

The results can be represented on the space equivalent plastic strain versus stress triaxiality, which is widely called 

as two dimensional fracture locus (see Figure 7). It can be observed that, in the critical case, the displacement at fracture 

numerically determined can be 41.6% higher than the experimental data. 
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Figure 7. Representation of the error between experimental and numerical displacement for points close and far 

from the calibration point.  

 

The contour of the damage parameter is represented by Figure 8. According to experimental data (see Teng, 2008), 

for both specimens, the crack begins in the middle of the specimen and grows to the surface, which was predicted by 

Lemaitre’s model, regarding the location of the maximum value for the damage parameter. 

   
(a) (b) (c) 

 

Figure 8. Contour of the damage parameter at the critical numerical displacement. (a) smooth bar specimen, (b) 

notched bar specimen         and (c) notched bar specimen       . 

 

5. CONCLUSIONS 

 

In this paper, the influence of the calibration point in the accuracy of the numerical results for coupled damage 

model, as Lemaitre’s model, was analyzed. Three different specimens were chosen, regarding the level of stress 

triaxiality. The materials properties for the aluminum alloy, which is strongly dependent on both pressure and Lode 

angle, was used. According to comparative analyses between the numerical and experimental displacements at fracture, 

we can observe that the model is strongly dependent on the calibration point. The numerical displacement at fracture 

can reaches 41% of errors when the loading condition applied is far from the calibration point. By the way, we can 

conclude and recommend that, for coupled damage models, the loading condition used has to be close to calibration 

point or the materials parameters requires have to be calibrated for a specifically loading condition that will be used. 

Even considering the low accuracy in predicting the correct time of fracture onset, in both cases tested, the model could 

predict the correct location for the potential beginning of fracture. 
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