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Abstract. In this paper, it is suggested a numerical study, based on an implicit integration algorithm, for a new elasto-

plastic constitutive model proposed by Bai & Wierzbicki, where the influence of the third invariant of the deviatoric 

stress tensor, by the so-called Lode angle, is contemplated in the behavior of the ductile materials. In the first part, the 

constitutive equations related with Bai & Wierzbicki elasto-plastic model is presented as well as an implicit numerical 

integration algorithm, proposed by Malcher and co-authors, which is based on the operator split methodology. Besides 

that, the algorithm is implemented in an “in house” academic finite element environment. Then, some conventional 

specimens are selected, as a cylindrical smooth bar, a cylindrical notched bar and a flat grooved plate specimen, in 

order to carried out numerical test to verify the influence of the third invariant of the deviatoric stress tensor in the 

behavior of material and in the prediction of the correct location to crack initiation, by the equivalent plastic strain as 

the fracture indicator role. The aluminum alloy 2024-T351, which is strongly dependent on both pressure and Lode 

angle, was chosen and the material properties are used to set up the constitutive formulation. The influence of the third 

invariant is evaluated by numerical and experimental results for the reaction versus displacement curve, and the ability 

to predict the crack initiation is studied by the evolution of the equivalent plastic strain at the critical point and the 

contour of this internal variable around the finite element mesh. 
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1. INTRODUCTION 

 

One of the most commonly used models to describe the behavior of metals is the von Mises model, which is based 

on the    theory. The von Mises model can be regarded as “pressure-insensitive” since it assumes that the effects of 

hydrostatic stress are negligible on the plastic flow rule. In general, the hydrostatic stress is responsible for controlling 

the size of the yield surface (Bai, 2008). Furthermore, the von Mises model is independent of the third invariant of the 

deviator stress tensor, which is denoted here by   . The third invariant is a parameter used in the definition of the Lode 

angle or Azimuth angle, which is responsible for the shape of the yield surface (Bardet, 1999; Bai, 2008). 

The importance of the hydrostatic stress and Lode angle has been recognized by several authors and introduced into 

the constitutive description of some materials such as soil and rock. In the case of ductile materials, many researchers 

have done extensive experimental studies as Richmond & Spitzing (1980 and 1984), who were the first researchers to 

study the effects of the pressure on yielding of aluminum alloys, Bardet (1990), who proposed a study to describes the 

Lode angle dependence for some constitutive model,  Wilson (2002), which conducted studies to notched 2024-T351 

aluminum bars in tensile test and verified the importance of these effects, Brunig et al (1999;2000) and Bai et al (2007) 

proposed a constitutive model with three invariants to be applied in metal plasticity and fracture. 

Ductile fracture is a local phenomenon and the state of stress and strain in the expected fracture locus must be 

determined with accuracy. The fracture initiation is often preceded by large plastic deformation and there are 

considerable stress and strain gradients around the point of fracture. In this case, the    theory is not accurate enough 

and more refined plasticity models have to be introduced. Based on what was explained, the Bai & Wierzbicki elasto 

plastic model (Bai, 2008), which is pressure sensitive and Lode angle dependent, will be widely studied in this work, 

regarding the contribution of both pressure and Lode angle parameters in the plastic flow rule for ductile materials.  

 

2. CONSTITUTIVE FORMULATION AND NUMERICAL INTEGRATION 

 

2.1. Constitutive formulation 

 

Bai & Wierzbicki (2007) have proposed an elasto-plastic model that includes the effect of pressure through the 

triaxiality ratio and the effect of the third invariant through the Lode angle. The effects are introduced by redefining the 
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hardening rule of the material. In the classic von Mises model, the hardening rule is only a function of the accumulated 

plastic strain      
   and, in the Bai & Wierzbicki model, the hardening rule is a function of  the accumulated plastic 

strain, the triaxiality ratio and the parameter     , which is a function of the Lode angle,       
      . Thus, the new 

definition of the hardening rule can be obtained according Equation 1: 

     
            

                   
     

     
     

    

   
   (1) 

where,      
   is the material strain hardening function,      

    
  , and   are experimental parameters,   represents 

the triaxiality ratio, which is defined as a ratio between the pressure and the von Mises equivalent stress,  
     ,    is the reference value to triaxiality ratio,   is a parameter defined as a function of the Lode angle through 

the equation below: 

  
        

          
 

 

          
                         (2) 

where   represents the Lode angle, which can be determined according to Equation 3: 

        
 

  
    

     
     

      (3) 

According to Bai (2008), the effect of the triaxiality ratio and Load angle are included on the hardening rule through 

the parameters              and    
     

     
     

    

   
  , respectively. The new yield criterion replaces the 

standard hardening rule from      
   to      

       on the    theory, such that the yield criterion can be re-written as: 

         
              

                   
     

     
     

    

   
   (4) 

Through Equation 4, we can define the parameters      and      according the Equations 5 and 6, respectively, as: 

                  (5) 

        
     

     
     

    

   
   (6) 

Thus, the Equation 4 can be re-written as: 

         
             (7) 

The influence of the experimental parameters       
    

         on the behavior of the constitutive model can be 

analyzed as follows. The parameter    is a material constant and needs to be experimentally calibrated. This parameter 

describes the hydrostatic stress effect on material plasticity. If     , the model loses the dependence of the triaxiality 

ratio or the hydrostatic stress effect and recovers, as a limiting case, the behavior of the von Mises model. 

The triaxiality reference,   , depends on the type of test applied and the geometry of the specimen. For the smooth 

bar under tensile test, the parameter takes value equal    . However, for cylindrical specimen, in compressive 

test,        , for torsion and shear test     . The hydrostatic stress effect introduced by Bai & Wierzbicki is a 

linear function and for some researcher (Karr et al, 1989), claim that those effect is non-linear for some materials, such 

as ice.  Analyzing the third invariant effect, the experimental parameter   
   can assume one of two forms, according 

the type of loading (tension/compression) applied: 

  
    

  
                                         

  
                                         

  (8) 

The parameter   
  also depends on the type of test. For example, if a smooth bar is used in a tensile test   

   , if a 

torsion test   
   , if a cylindrical specimen is used in a compressive test   

   . The convexity of the yield surface is 
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controlled by the rations of these parameters. The range of the parameter   is between       . When     it 

corresponds to plane strain or shear condition, when     it corresponds to axisymmetric problem. The introduction of 

the term            is done to assume the smoothness of yield surface and is differentiability with respect to Lode 

angle around    . More details about the calibration of the material parameters can be verified in Bai et al (2007). In 

the Box 1, the summary of the Bai & Wierzbicki´s model is presented. 

Box 1. Bai & Wierzbicki’s model with isotropic hardening. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

2.2. Numerical integration algorithm 

 

In this part, a numerical integration algorithm for Bai & Wierzbicki model is taken, which was initially proposed by 

Malcher et al (2009). The algorithm was built, regarding an implicit solution and based on operator split methodology, 

which is especially suitable for the numerical integration of the evolution problem and have been widely used in 

computational plasticity (see Simo & Hughes, 1998; De Souza Neto et al., 2008). This method, which is used by 

Malcher et al (2009), consists of splitting the problem in two parts: an elastic predictor, where the problem is assumed 

to be elastic and, a plastic corrector, in which the system of residual equations comprising the elasticity law, plastic 

consistency and the rate equations is solved, taking the results of the elastic predictor stage as initial conditions. In the 

case of the yield condition has been violated, the plastic corrector stage is initiated and the Newton- Raphson procedure 

is used to solve the discretised equations. The Newton-Raphson procedure is chosen motivated by the quadratic rates of 

convergence achieved which results in return mapping procedures computationally efficient (see Simo & Hughes, 1998; 

De Souza Neto et al., 2008). The overall algorithm for numerical integration is summarized in Box 2. 

        

        

         
       

             
 

  
     

 

  
      

 

 
     

  
 
         

     

   
 

    

 
      

    

   
 

     

   
       

    
     

  

 
               

  
     

  

 
      

     

    
        

      

 
   

  
       

      

  
 

     
     

        
        

          

       
   

       
   

 

     
 

(i) Elasto-plastic split of strain tensor 

(ii) Elastic law 

(iii) Yield function 

with   and   given by: 
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and,       
        

          
 

 

          
    

(iv) Plastic flow and evolution equation for   
 
 

and  ,   and  :  

(v) Loading/unloading criterion 
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Box 2. Fully implicit Elastic predictor/Return mapping algorithm for Bai & Wierzbicki model. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

3. CALIBRATION PROCEDURE 

 

The Bai & Wierzbicki elasto-plastic model requires six material parameters          
    

    
     and the material 

strain hardening function      
   to be determined. According to Bai (2008), four experimental tests are performance, in 

order to determine the required parameters. The first one, a smooth bar specimen is selected in tensile loading condition 

and       and      
   are determined. After that, a notched bar specimen is carried out in order to determine the 

parameter   
 . The set of parameters   

 ,   
  and   are determined by a cylindrical specimen in the upsetting test and by 

a flat grooved plate tensile test. More details about the calibration of the materials parameters can be verified in Bai 

(i) Evaluate the elastic trial state: Given the incremental strain     and the state variables at   :  

    
          

     ;     
            

        ;     
             

        

    
       

 

 
     

       ;     
          

         
       ;     

       
  

 
         

       
 
  
 

    
           

         
       

 
 ;     

      
 

 
           

       ;      
       

    
 
 

    
      

        

          
          

       
       ;     

                
           

    
         

     
     

       
      

    
        

   
   

(ii) Check plastic admissibility: 

IF            
              

       
      

          
        THEN  

set              
       (elastic step) and go to (v) 

ELSE go to (iii) 

(iii) Return mapping (plastic step): Solve the system of equations below for   ,    ,     and     , 

using Newton-Raphson method. 
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(iv) Update the others state variables: 
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(v)  Exit 
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(2008). In this paper, the materials parameters used were previously determined by Bai (2008) for an aluminum alloy 

2024-T351. The parameters can be observed by the Table 1 below. 

 

Table 1. Material parameters for aluminum alloy 2024-T351 (Bai, 2008) 

 

Parameter Value 

Young’s modulus               

Poisson´s ratio        

Yield stress               

Stress strain curve      
                               

Hydrostatic stress influence         

Triaxiality ratio reference          
Lode dependence - shear   

        

Lode dependence - tensile   
      

Lode dependence - compression   
      

Lode dependence - exponent       

 

4. GEOMETRY AND MESH DEFINITION 

 

In the following, the geometries of each specimen, which will be used in the numerical simulations, are presented as 

well as the meshes definition. Figure 1 shows the dimensions for both cylindrical smooth and notched bars with a notch 

radius equal to        and for a flat grooved plate specimen. 

(a) 

 

 

(b) 

 

 

(c) 

 

 

Figure 1. Geometry of the cylindrical smooth and notched bars, and for a flat grooved plate specimens (dimensions in 

mm), see Bai (2008). 

 

In order to capture the necking pattern and the evolution of internal variables, a relatively fine discretisation is used 

in the region surrounding the smaller cross-section of the specimens (see Figure 2 and Figure 3). The standard eight-

noded axisymmetric quadrilateral element, with four Gauss integration points, is adopted for both cylindrical bars. A 

total number of 1800 elements has been used in the discretisation of both the smooth bar (see Figure 1a) and the 

notched bar with radius of        (see Figure 1b), amounting to a total of 5581 nodes. In all cases, the gauge used 

is equal to        .  
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The stretching of a flat grooved plate is also used. The initial geometry of the specimen is shown in Figure 3. Due to 

symmetry, only one half of the geometry is simulated, with appropriate boundary conditions imposed to the symmetry 

plane. A three dimensional mesh of eight node elements, with four Gauss integration points, is used to discretise half of 

the specimen. A total number of 3000 elements have been used amounting to a total of 4743 nodes. The gauge used is 

equal to        .  

  
(a) (b) 

Figure 2. Finite element meshes for the cylindrical notched bar (a)        and for the (b) smooth bar specimens. 

 
(a) 

Figure 3. Finite element meshes for the flat grooved plate specimen with          . 

 

5. NUMERICAL RESULTS 

 

According to the numerical simulations, three types of specimens were used, regarding different levels of triaxiality 

ratio and Lode angle. The Bai & Wierzbicki model were set up, regarding three different cases: case 1 represents the 

Bai & Wierzbicki model without both pressure effect and Lode angle dependence, case 2 represents the model only 

with pressure effect active and case 3 represents the model with both pressure effect and Lode angle dependence. 

 Figure 4 represents some numerical results for reaction versus displacement curve and for the evolution of the 

equivalent plastic strain at the critical point. For the smooth bar specimen (Figure 4a), which is used as calibration 

reference point, both curves are very similar and the contribution of the hydrostatic stress and Lode angle over the 

plastic flow rule can be negligible. Nevertheless, for the notched bar specimen (Figure 4b), the numerical results with 

both pressure and Lode angle active are more realistic than without both effect. In this case, the difference between the 

reaction versus displacement curve without both effects and the experimental curve is around 6%. Regarding the 

activation of both effects, in the same case, the difference reduces to less than 1%, which can highlight the importance 

of pressure and Lode angle in the behavior of ductile materials. For the flat grooved plate specimen (Figure 4c), the 

correction on the reaction versus displacement curve, regarding both effects is more visible and, in this case, the 

difference between the model without effects and the experimental curve is around 20%, which is reduced to less than 

2%, when both pressure effect and Lode angle dependence are active. The contribution of both effects can also be 

observed, regarding the evolution of the equivalent plastic strain, which for the flat grooved plate specimen presents 

different rates. Table 2 represents the difference between numerical and experimental results for the reaction versus 

displacement curves, regarding the activation of each effect for the specimens used. 

 

Table 2. Difference between numerical and experimental results for the reaction versus displacement curve. 

Specimen Case 1 – without effects 
Case 2 – with only pressure 

effect 

Case 3 – with both pressure 

effect and Lode angle 

dependence 

Smooth bar  1% 1% 1% 
Notched bar           6% 4% 1% 

Flat grooved           20% 16% 1% 
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(a) 

  

(b) 

  

(c) 

  
 

Figure 4. Reaction versus displacement curves and evolution of the equivalent plastic strain, regarding (a) a smooth bar 

specimen, (b) a notched bar specimen with         , and (c) a flat grooved plate specimen with          . 

 

The contour of the equivalent plastic strain can also be analyzed, in order to verify the ability to predict crack 

initiation. Some authors, as Freudenthal (1950), Gillemont (1976) and Datcko (1966), have suggested the use of the 

plastic strain as a fracture indicator, thought the total plastic work or the equivalent plastic strain. Nevertheless, 

researchers as Wilson (2002) and Gouveia (1995) have shown that this parameter is not enough to be used as fracture 

indicator, and in some cases, can indicate potential sites to fracture beginning in disagreement with experimental 

evidences. According Wilson (2002), for both smooth and notched bars specimens, the crack begins on the central node 

and grows to the surface of the specimens. Analyzing Figure 5 and regarding the equivalent plastic strain as fracture 

indicator, only the numerical results for the smooth bar specimen agree with experimental evidence. For the notched bar 

specimen, this internal variable is maximum in the surface (Figure 5b), which cannot be regarded as fracture onset. 

Then, we can also observe, that for both cylindrical specimens, the activation of pressure effect and Lode angle 
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dependence does not influence on the location of the maximum value of the equivalent plastic strain. However, 

according to experimental tests promoted by Bai (2008) for the flat grooved plate specimen, the crack starts on center of 

the specimen and propagates to the surface, in what can only be evidenced through the numerical results presented 

regarding both effects active (see Figure 5c) 

 

 

 Case 1 Case 2 Case 3 

(a) 

   

    
    

(b) 

   

    
    

(c) 

   

Figure 5. Contour of the equivalent plastic strain, regarding (a) a smooth bar specimen, (b) a notched bar specimen with 

        , and (c) a flat grooved plate specimen with          . 
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5. CONCLUSIONS 

 

In this paper, the influence of both pressure effect and Lode angle dependence was studied thought a constitutive 

model proposed by Bai et al (2007) and an implicit numerical integration algorithm suggested by Malcher et al (2009). 

Specimens with different levels of triaxiality ratio and Lode angle were used as well as a material strongly dependent on 

both effects as an aluminum alloy 2024-T351. According to the numerical results presented, we can verify the 

importance of the hydrostatic stress and Lode angle on the plastic flow rule for ductile materials. The correction in the 

reaction versus displacement curves, when the effects are active, is evidenced mainly by numerical results for the flat 

grooved plate specimen. In this critical case, the curve without both effects presents an error of 20%, regarding the 

experimental data. Introducing both parameters, the agreement between numerical and experimental data was very 

satisfactory. 
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