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Abstract. In the past recent years increasing research efforts have been dedicated to the issue of harvesting ambient 
structural vibration signals through piezoelectric materials. In this context the use of optimization techniques play an 
important role in the design of a given device since they often lead to a set of geometric parameters that will ultimately 
convey the best performance for the harvester in terms of the output electrical power. Hence, this article is focused in 
studying optimization techniques and their application to enhance the performance of piezoelectric energy harvesters 
composed by cantilever beam carrying a tip mass excited from base accelerations.  Parameters as for example the 
length of the piezoelectric element, the length of the substructure and the value of the tip mass are adjusted by 
employing different optimization strategies in order to reach the optimum performance for the harvester in terms of 
power generation. Results from two different optimization techniques (Sequential Quadratic Programming, SQP, and 
Extensive Search, ES) were compared by using peak values from the electromechanical FRFs. 
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1. INTRODUCTION  
 

Harvesting energy from environmental lost vibrations through the conversion of mechanical to electrical energy has 
been a topic of major interest in the last five years. Important contributors (Erturk et al., 2009a, Stanton et al., 2009)  
focused on different modeling strategies of energy harvesting systems by analyzing the effect of design parameters such 
as load resistance and electromechanical coupling coefficient (EMCC) on the device’s capability of generating 
electrical power. For instance, Renno et al. (2009) provided an analysis of the effects of structural damping and 
electromechanical coupling on the optimal energy harvesting from a vibration source and the resulting cases were 
treated and examined by optimizing the circuit parameters in order to obtain the maximum electrical power. Bourisli et 
al. (2010) used genetic algorithms (GAs) to optimize the area covered by piezoelectric material of a shear deformable 
cantilever beam for maximum modal electromechanical coupling coefficient. In this work, the geometrical 
configuration of a PZT layer covering a beam is optimized for each of the first three modes to maximize the modal 
EMCC.  

Additional investigations focused on the optimization of the circuit topologies or on the shape of the harvesters. One 
of the most efficient and simple optimization techniques is based on tuning both of the electrical and mechanical 
impedances (impedance matching) (Renno et al., 2009). Wickenheiser et al. (2010) studied the maximum power 
operating conditions for piezoelectric energy harvesters when connected to several different circuit topologies. 
According to the authors, the results enables the choice of the load impedance to maximize the power harvested 
depending on the characteristics of the energy harvesting system.  

Based on the problem of obtaining the optimum electrical power limited by the shape of piezoelectric layer in a 
bimorph energy harvesting device, Dietl et al. (2010) proposed a new approach by changing the shape of the beam to 
concentrate the strain in sections of the beam where it can offer the maximum contribution in terms of  mechanical to 
electrical energy transduction. Three beams with different shapes were tested over a wide band, encompassing the 
lowest two modes of vibration. Optimal beams were found to improve the power transduction from sinusoidal base 
excitation to electrical power.  

In this paper, the Sequential Quadratic Programming (SQP) method was used to optimize some parameters of the 
energy harvesting device for obtaining the maximum output power. Results of this approach are compared to a 
proposed optimization methodology based on the variation of geometrical parameters of the harvesting device in order 
to obtain the best configuration that maximizes the peak voltage in the FRF. The techniques were numerically applied in 
a bimorph cantilever beam with tip mass submitted to its base translation in its first natural frequency.  
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2. ELECTROMECHANICAL MODEL OF THE CANTILEVER BIMORPH PIEZOELETRIC HARVESTER 
 
      This section describes the electromechanical model of the cantilever harvester used in the numerical simulations. 
The mode is based on the work by Erturk (Erturk et al, 2009a, b) except that in the present case it is assumed that the 
substrate beam is partially covered by the piezoelectric material thus forming a segmented piezoelectric device. This 
segmented harvesting configuration is necessary in this case since one of the major goals of the optimization technique 
is to find the optimum solution for the length of the piezo layer.  

 
The harvester consists of a cantilever beam with segmented piezoelectric layers covering the top and bottom 

surfaces (bimorph configuration) and a tip mass. The harvester was submitted to a base acceleration composed by  
transversal and rotational motions. As suggested by Timoshenko et al. (cited by Erturk et al. 2009a,b) the absolute 
transverse motion of the beam at any point  and time  can be written as 

 
             (1) 

              
where  is the absolute transverse motion of the beam,  is the transverse motion of the base and  is 
the curvature of the beam. The transverse motion of the base, , can be written as 
 

              (2) 
 
where   and   are the translational and rotational components respectively. In this study, the rotational 
component of the input motion will be neglected. 

The configuration of the harvester is shown in Fig. (1a) and the cross sectionals A-A and B-B are shown in Fig. 
(1b). 

 

  
(a) (b) 

 
Figure 1. (a) Bimorph cantilever beam used as an Energy Harvesting system; (b) cross sectionals A-A and B-B. 

  
It is known in the circuitry-based energy harvesting literature that a piezoelectric element can be represented as a 

current source in parallel with its internal capacitance (Erturk et al., 2009b). Thus, the energy harvesting system showed 
in Fig. (1a) can be represented by a simple circuit in series connection of the piezo layers as shown in Fig. (2). 

 

 
 

Figure 2. Electrical circuit representing the series connection of the piezo layers 
 
In Fig. (2),  is the resistive load connected to the piezo layers,  is the current source and  is the internal 

capacitance of the piezoelectric element which is given by 
 

              (3) 
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where  is the permittivity component at constant stress,  is the width of the piezo,  is the length of the piezo 

and  is the thickness of the piezo. 
Assuming the well known proportional damping assumption, the vibration response relative to the base of the 

bimorph can be represented as an absolutely and uniform convergent series of the eigenfunctions for the series 
connection of the piezo layers as (McConnell et al. 2008) 
 

             (4) 

 
where  is the mass normalized eigenfunction of the rth vibration mode,  is the modal mechanical response  
for the series connection of the piezoelectric layers. The eigenfunctions  are given by: 
 

                          (5) 

where  is the length of the substructure and 

          (6) 

 
where  is the mass of the tip mass,  is the mass per unit length of the beam which can be written as 

 

            (7) 

 
where  is the substructure mass density,  is the piezo mass density,  is the initial position of the piezo layer, 

 is the final position of the piezo layer,  is the width of the piezo layer and  is the thickness of the substructure. 
In this study, the initial position of the piezo layer is . 

 The eigenvalues  can be obtained through the characteristic frequency equation, given as 
 

         (8) 

 
where  is the tip mass rotary inertia.  

The mechanical equation of motion in modal coordinates can be obtained as 
 

         (9) 

 
where   is the modal damping ratio of the rth vibration mode that is given according to the following expression  
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                                                                                              (10) 

 
where cs stands for the kelvin-Voigt (strain rate) damping coefficient and ca reflects the contribution of viscous effects 
(air damping) to the modal damping ratio. The determination of these coefficients is generally difficult and the most 
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common way to treat damping is to get an equivalent ζr from actual experimental data by employing standard modal 
testing techniques. This last approach was used in the present study and the constant value of ζr = 0.0027 was 
employed for all numerical simulations. Additional considerations on the damping mechanism and its influence on the 
optimization process will be further provided in Section 4.0.  
 
Following the description of the modal model for the harvester (Equation (9)), the modal electromechanical coupling 
term is given as 
 

                        (11) 

 
and the piezoelectric coupling term  is given by 
 

                                     (12) 

 
 is the Young’s modulus of the piezo,  is the piezoelectric constant and  is the thickness of the 

substructure. 
The undamped natural frequency, , for the  the rth vibration mode is given by 
 

                         (13) 

 
The bending stiffness  can be written as 
 

                                   (14) 

 
where  is the bending stiffness of the beam without the piezo layer (that corresponds to the beam at the interval 

) and the component  is the bending stiffness of the totally bimorph beam (that corresponds to the 
beam at the interval ). The  and  terms are given by 

 

                     (15) 

 
If the translational components of the base displacement, given by Eq. (2) is harmonic of the form , 

where  is the translational displacement amplitude of the base,  is the excitation frequency and , then, the 
modal forcing function given by Eq. (8) is harmonic and can be expressed as 

 

Nr t( ) = −σ rω
2Y0( )e jω t                         (16) 

 
where  
 

                                    (17) 
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 is the air damping coefficient and it corresponds to the influence of the air in the external excitation. In this 
study, the influence of the air in the external excitation will be neglected. The steady state voltage response, , is 
assumed to be harmonic and can be written in terms of the translational base acceleration as  
 

vser t( ) = αser ω( ) −ω 2Y0( ) e jω t                                      (18) 

 
where the FRF that relates the voltage output to translational base acceleration, , is given by 

 

                                   (19) 

 
The modal coupling term is then 
 

                                     (20) 

 
where  is the distance between the neutral axis and the center of the piezoceramic layer. 

 In order to obtain the maximum electrical responses it is preferable to excite a given harvester at its fundamental 
resonance frequency (Erturk et al. 2009b). This is the modal excitation in the first vibration mode, which corresponds to 

 in Eq. (19). 
 
3. DEFINITION OF THE OPTIMIZATION PROBLEM 
 

In this study, the energy harvesting optimization problem consists in obtaining the maximum power through the 
peak voltage in the voltage FRF. The parameters to be optimized are: the length of the piezoelectric element, , the 

length of the substructure, , and the height of the tip mass, . Two different optimization techniques were used: the 
classical Sequential Quadratic Program (SQP) technique and the Extensive Search (ES) technique. 

The optimization problem is a minimization problem and can be stated as 

Find  which minimizes , subject to the constraints  

 

                                      (21) 

 
where the fixed terms  ( lower length of substructure),  (upper length of substructure),  (lower height of tip 
mass),  (upper height of tip mass) and  (lower length of piezo layer) are the pre-assigned parameters and their 
values are set according to the design characteristics.  is a vector containing the design variables. The objective 
function  is the inverse of the voltage FRF for series connection of the piezo layers (given by Eq. (19)).  

The constraints  to depend on the design parameters and the optimization problem finds the value that gives 
the peak voltage through the electromechanical FRFs. In this study, the previously described constraints  and 
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 are nonlinear constraints since the modal undamped natural frequency  relates the design variables according 
to a nonlinear relationship; , ,  and  are bounds;  and  are linear constraints, 
since the design variables are related according to a linear relationship. Further details on the linear and nonlinear 
relationships among the optimization variables will be provided later.  

 
3.1. Implementation of SQP through software MATLAB® 
 

The SQP is a classical optimization technique and it can be applied in multidimensional constrained nonlinear 
minimization problems and in the present work it will be implemented using MATLAB® through command “fmincon”. 
This built-in routine finds a constrained minimum of a function of several variables according to the following 
relationships 

 

Find  which minimizes , subject to the constraints:  

 
                         (22) 

 
                         (23) 

 
                         (24) 

 
Inequalities given in (22), (23) and (24) refer to linear constraints, nonlinear constraints and bounds respectively. 

Subscript eq refers to equality constraints.  is the matrix for linear inequality constraints,  is the vector for linear 
inequality constraints,  is the matrix for linear equality constraints,  is the vector for linear equality constraints, 

 is the vector of lower bounds,  is the vector of upper bounds,  and  are functions that return vectors 

(can be nonlinear functions) and  is the objective function that returns a scalar. 
First, it is necessary to define the design variables. Thus, through the definition of the optimization problem,  
 

                                      (25) 
 
To apply the command for the optimization problem, the constraints  to (in the form of Eq. (21)) must be 

rewritten in the form corresponding to the Eqs. (22) to (24).  
Thus, the constraints  and  can be rewritten as 
 

                                      (26) 

 
Then, the matrix  in Eq. (23) can be given as 
 

                                                                 (27) 

 
where  is a nonlinear function relating the design variables according to Eq. (13). The terms  and  are 
functions that also relate the design variables (Eqs. (8) and (14)).  

The constraints  to  can be associated to Eq. (24) that defines a set of lower and upper bounds on the design 
variables, so that a solution is found in the range , where 

 

                        (28) 
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It is possible to note that only the design variables  and  are related through the bounds. 
The constraints  and  can be rewritten as 
 

                         (29) 

 
Since both constraints are linear, they can be formulated as the matrix inequality given by Eq. (22) where 
 

                                      (30) 

 
Hence the second column of matrix  is null, the design variable  is not related in the linear constraints. 
After all the matrices of Eqs. (22) to (24) are defined, the command “fmincon” can be used like a minimization 

problem as  
 

 = fmincon( , , , , , , , ,NONCON,OPTIONS)                    (31) 
 

where the vector  corresponds to the initial guess at the solution, the nonlinear constraint function, NONLCON, 
accepts  and returns the vectors  and , representing the nonlinear inequalities and equalities respectively. The 

MATLAB® code given by Eq. (31) minimizes  with the optimization options specified in the structure 
OPTIONS. Hence there are no equality constraints, the matrices ,  and  must be set as ,  

and . 
 

3.2 Implementation of the Extensive Search (ES) optimization technique 
 

The ES method is based on the variation of harvester’s parameters for obtaining the maximum power through FRF 
results. For implementing the method, it is necessary to set a project natural frequency range for the harvester device, 
that is, to set a minimum and a maximum project frequency. The natural frequency of the harvester device must be 
inside this frequency range. The choice of the project natural frequency range depends on the environmental vibrations 
corresponding to the structure, machines, equipments in which it is wish to harvest energy from the lost vibrations. 

 
After the maximum and minimum project frequency were chosen, the next step is setting the length of the 

substructure (beam), , and the height of the tip mass, , for getting the harvesting natural frequency inside the 
project frequency range. Setting the height of the tip mass is the same as setting the mass of the tip mass. The width of 
tip mass is the same as the piezo and substructure. The height and the length of tip mass are the same, given by .  

The procedure of finding/getting  and  values is the following: 
1st step: the length of the beam/substructure is varied from an initial length up to a final length, for example, varying 

from 0.1 to 0.3 m in 0.02 in 0.02 m. These values are set by the user and can vary according to the project, assuming 
any value; 

2nd step: for each  of the previous step, the  value is varied from an initial value up to a final value, for 
example, varying from 0.004 to 0.020 m in 0.002 in 0.002 m. 

It is important to notice that the thickness of the piezo and substructure do not change in each step, but these 
parameters might assume any value according to the project needs. 

For all possible configurations obtained in the steps, one, none, or several configurations of  and  can be used 
to get the harvesting natural frequency inside the project frequency range. The best configuration to be used depends on 
the project features, as for instance, the location where the harvester will be installed, the available materials, costs etc. 

If none configurations for  and  was obtained, there is the necessity of changing some harvester parameters. 
One or more than one parameters can be changed at the same time. If the frequency range can not be changed, one 
solution is to change the geometric and physical properties of the substructure or piezo. Some possible parameters 
available to be changed are basically: material, width, thickness of the substructure or piezo. The influence of the piezo 
in the choice of  and  will be discussed later. 
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Now, if several configurations of  and  were obtained, the procedure for getting the best configuration depends 
strongly on the project geometric characteristics. This fact is interesting due to the difficult in building harvesting 
devices whose first natural frequency is the same as the host structure. Usually, the environmental vibrations are found 
to be in the frequency range of 0 to 100Hz. 

 
The influence of the piezo in the  and  achievement is the following: before varying the length of the piezo in 

order to obtain the maximum FRF peak voltage, one certain length is necessary to be set for getting the project natural 
frequency. This procedure requires a certain attention because the length of the piezo is also related to the natural 
frequency of the harvesting device. Thus, the best is to consider a totally bimorph structure for each step of , that is, 
for each step for , the  parameter assumes the same value as . If several combinations for  and  are 

found, the best combination is that one in which  is maximum and, for this value of ,  is minimum. This choice 
is justified since when  is varied from 0 to , almost all of the corresponding natural frequencies will fall within the 
project frequency range.  

 
After obtaining the convenient  and  values, the relation between the peak voltage in the FRF and the length of 

the piezo is gotten. In this procedure, it is possible to observe that, for certain   value, the peak voltage is maximum. 

This  value is then the optimum value. In some cases, more than one optimum  value can be obtained at the same 

analysis. In this case, if the peaks voltage were approximately the same, it is convenient to use the lowest  value 
because of the harvester design costs attributed to the piezo costs. However, the parameter cost is not analyzed in this 
study. The choice of the optimum  value is not trivial and in some cases, it can involve a more detailed study of the 
harvester features/design. 

 
 

4. RESULTS AND DISCUSSION 
 

The optimization procedure was numerically applied in an energy harvesting system represented by a cantilever 
beam with tip mass excited from base acceleration. The minimum and maximum project frequency was set to be 10 and 
20 Hz respectively. The geometric and material parameters used in the modeling are shown in Tab. 1. The permittivity 
at constant strain is given in terms of permittivity of free space, pF/m. The resistive load, , used in the 
circuit was 100 kΩ. 

 
Table 1. Geometric and material parameters used in the energy harvesting system modeling. 

 
Structure/Structural Part 

Geometric Parameters 
Substructure 

(Spring Steel) 
Piezo. 

(PZT-5A) Tip Mass 

Length, L (m) 50.8 – 203.2 0 –  6 – 20 
Width, b (m) 0.0254 0.0254 0.0254 
Thickness, h (m) 0.00254 0.00254 0.006 – 0.020 

Material Parameters    
Mass density,  (kg/m3) 7860 7800 7860 
Young’s Modulus,  (GPa) 207 67 207 
Piezo. Constant, , (pm/V) --- -190 --- 
Permittivity, , (F/m) --- 830  --- 

 
 
The analysis of the results starts with the “Extensive Search” method. Figure (3a) shows all the combinations for 

 and  gotten. It’s possible to observe that there are many combinations in which the natural frequency is inside the 
project frequency range. The best combination was explained in the previously section. Thus, the  and  values are 
0.1969 m and 0.006 m respectively. For these values, the length of the piezoelectric layers was varied from 0 to  and 
the relation between  and the peak voltage is shown in Fig. (3b). In this figure, it is possible to observe that the best 

configuration to the harvester is not a totally bimorph cantilever. The  optimum obtained was 0.1788 m. Figure (3b) 
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also illustrates the differences in the peak voltages when a constant modal damping ratio is used as opposed to a 
variable value for ζr as given by Eq. (10) (assuming a constant value for cs and ca = 0). It is seen that a constant modal 
damping ratio leads to higher values of the peak voltages (dashed line) as compared to a variable damping ratio (solid 
line). This difference affects directly the output electrical power obtained for the harvester since this quantity depends 
directly on the value of the peak voltage. However, the results for the optimum harvester geometry from the ES 
technique resulted insensitive to this damping variation since the same results were obtained with either a constant or 
variable modal damping ratio. Figure (4a) shows how the strain rate modal damping varies with the length of the 
piezoelectric layer attached to the cantilever beam. Again, the result shown in Fig. (4a) was obtained from Eq. (10) with 
ca = 0. It is seen that although modal damping varies with the length of the piezoelectric layer, what in principle 
conflicts with the constant value adopted here, the constant value for the modal damping ratio used (ζr = 0.027) 
corresponds to the case where the piezoelectric material covers the entire beam, and this is in agreement with the result 
obtained from the experimental analysis where a fully covered bimorph cantilever harvester was tested in order to get 
the value for the modal damping ratio. Moreover, as previously stated, the optimum value for Lp was 0.1788 m, and for 
this value the curves in Fig. (3b) are nearly the same.  

 
To verify if the optimum obtained values can be used to generate a harvester system whose natural frequency falls 

within the project frequency range, the FRFs are plotted to all  values generating the surface shown in Fig. (4a). It 
can be seen that the peaks formed in Fig. (4a) are the same as those shown  in Fig. (3b). For a better visualization, Fig. 
(4b) shows how the natural frequency was affected by the  variation. In this figure, it’s possible to observe that there 
are some combinations in which the natural frequency is not inside the frequency range, but for the optimum 
configuration corresponding to  = 0.180 m, the resulting natural frequency is 10.367 Hz (inside the project natural 
frequency range).  

  
(a) (b) 

 
Figure 3. Influence of  and  in the harvester natural frequency and (b) influence of  in the peak voltage FRF. 

 

  
(a) (b) 

 
Figure 4. (a) influence of  in the FRF configurations  and (b) influence of  in the harvester natural frequency 
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Thus, the design vector obtained for the ES method with dimensions in meters is 
 

               (32) (31) 

 
After applying the command in the software MATLAB® as mentioned in Eq. (32), the optimization procedure 

using the SQP method resulted in the following design vector with dimensions in meters. The natural frequency gotten 
was 10.354 Hz, which is also inside the project natural frequency range. 

 

              (33) (32) 

 
Figure (5a) shows the comparison between the optimum values to each parameter and each presented optimization 

methods, and Fig. (5b) shows the resulting FRFs generated using the optimum values. 
 

 

  
(a) (b) 

 
Figure 5. Comparison between (a) the optimum parameters values and (b) the FRFs for each optimization method. 
 
Inspection of these curves reveal that the natural frequency and the peak voltage for both methods are practically 

the same, but some parameters for the ES method have lower values. 
 
 

5. FINAL REMARKS AND CONCLUSIONS 
 

Two different optimization strategies were compared in harvesting electrical energy from a piezoelectric bimorph 
cantilever beam. In these methods, several parameters were optimized for obtaining the optimum power in piezoelectric 
energy harvesting from environmental vibrations. The harvester natural frequency was set to fall within a prescribed 
project natural frequency range, that is, the range in which the environmental vibrations can be. Both ES and SQP 
methods was capable to solve the proposed optimization problem leading to optimum geometric parameters for the 
cantilever harvester. The natural frequency and the peak voltage in the FRF were practically the same in both analyses. 
The ES technique was tested with constant and variable modal damping ratios and the optimization results showed to be 
insensitive to small variations in damping. However, significant differences were observed in the peak voltages when 
either constant or variable damping is used what can in principle affect the output electrical power obtained from the 
harvester. Similar procedure is currently under investigation with the SQP method. Further optimization scenarios are 
currently under investigation where differences in these techniques should appear according to the parameters to be 
optimized, in special when variable modal damping ratios are used with the SQP method.  
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