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Abstract. Electrothermomechanical (ETM) Microsystems (MEMS) are systems in micrometric scale which operate
based on thermoelastic effect deformation induced by heating the structure by means of an electrical current. As a fast,
damped and null (at steady state) transient response is desirable with the aim of improving ETM efficiency, it is
necessary to minimize the response time of the thermal effect which is a ower phenomena among different physics
involved in the ETM structure. This can be achieved by changing the ETM structural topology. Thus, in this work, the
Topology Optimization Method (TOM) is applied for ETM MEMS design, taking into account transient thermal
response in order to reduce their response time and to maximize their output displacement. The TOM combines
optimization techniques with the Finite Element Method (FEM) to distribute material in a fixed design domain in order
to extremize a cost function subjected to some inherent constraints of the problem. The modeling of ETM MEMS is
obtained by solving the governing equations using the linear FEM based on four-node isoparametric elements
implemented through MATLAB. Non-dependent material properties with temperature are considered in the finite
element models. The electrical problem is solved by considering a steady current static analysis and in the transient
state thermal problem; the model temperature distribution is a time variable function. In the elastic domain, the mass
and the damping effects are neglected, thus resulting in a quasi-static problem. In the Topology Optimization
formulation, a material model is based on the Solid Isotropic Microstructure with Penalization (SMP) model
combined with a sensitivity filter asa solution control to reduce mesh dependence and checkerboard problemsintrinsic
to the TOM. Sequential Linear Programming (SLP) is used for solving the non-linear optimization problem. Two-
dimensional results are presented to illustrate the method.

Keywords: Topology optimization, Electrothermomechanical microsystems, Transient thermal response, Finite element
modeling.

1. INTRODUCTION

Microelectromechanical systems (MEMS) are mechémsigstems, typically sensors and actuators, intedravith
electronic circuits (Sigmund, 2001) whose major atisions range from hundreds of microns to a fewWimaters.
Several actuation principles are used in MEMS, sashelectrostatic, piezoelectric, shape memoryydlbsed and
electrothermomechanical (ETM) effects. ETM MEMS amerosystems that operate based on the thermimeédttct
induced by the Joule heating of the structure. Tdreyusually fabricated using micromachining arhieg processes,
and optimal design techniques have been proposgd8d, 2001; Sigmund, 2001a; Moulton and Anantheshy
2001). Potential applications include nanotube malation in transmission electron microscopes (Saetlal., 2008),
medical instruments, micropumps, micromotors, sitapechanisms (Let al., 2004), etc.

Among the three physical effects that govern theventent of ETM microsystems, i.e., the electricagrimal and
mechanical effects, the thermal effect is the skiw@his fact has been recognized in the literatorestructures with
major dimensions in the order of magnitude of miters (Rubicet al., 2009) or even bigger structures tial.,
2004), and thus proper time-transient analysisbiegs introduced to study and design such therraaliyated devices
(Li etal., 2004).

In the work by Liet al., (2004), the output displacement of a thermomeichhactuator has been maximized, while
taking into account time-transient effects. Howewance a fast response is desirable in order fordse ETM
efficiency, it is also important to minimize thespwnse time related to the thermal effect of antladly excited
actuator. This can be achieved by changing the Effittural topology.

Thus, the Topology Optimization Method (TOM) is &pg here to reduce the response time and maxithiee
output displacement of an ETM microactuator, takittg account time-transient thermal response. TG#® combines
optimization techniques with the FEM to distributeterial in a fixed design domain, in order to maize a cost
function subjected to some constraints, represgrginysical restraints (i.e., TOM solves an optiri@a problem).
Non-dependent material properties with temperatne employed in the finite element models. In thepdlogy
Optimization formulation, the Solid Isotropic Matdrwith Penalization (SIMP) model is used.
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Sequential Linear Programming (SLP) solves the liregar optimization problem. Furthermore, a smaaghiilter
is implemented as solution control, to reduce miEgtendence and checkerboard problems intrinsicetd ©M. Two-
dimensional results are presented to showcasedpeged method.

This paper is organized as follows. In Sectionh2, finite element formulation applied to the ETMusture is
introduced. In Section 3, the TOM is discussed, dptimization problem is introduced and the compata of
sensitivities, an important step of the optimizatalgorithm, is described. In Section 4, implemtotadetails are
provided. Preliminary results are presented ini8e@&, and concluding remarks are offered in Sedsio

2. FINITE ELEMENT FORMULATION

In the modeling, it is assumed that strains arellsmader a plane-stress condition, the structures tao-
dimensional (given their reduced thickness), timepterature distribution is a time variable functamd non-dependent
material properties with temperature are considerlds, the system is weakly coupled. In the edaktimain, the mass
and the damping effects are neglected, therefaneltieg in a quasi-static problem. The two-dimenalodomain is
discretized by means of four-node isoparametritefialements. The FEM formulations for the eleeti¢hermal and
elastic domains, in that order, are ftial., 2004; Ananthasuresh, 2003; Yin and Ananthasure®db?;2Mankame and
Ananthasuresh, 2001; Sigmund, 2001):

Ko(@)V(p)=F, (1)
CLTP.D+Ki(@T.D=F1(V(p)p) (2)
KZ(P)U(Pvt)zFZ(T(P:t)aPat) (3)

where, index 0, 1 and 2 refer to electrical, théramal elastic problems, respectively. The total benof elements in
the discretization iN, while the total number of nodes 1is K,(p), K;(p) andC,(p) (n x n) are global electrical,
thermal conductivity and heat capacity matricespeetively, and,(p) (2n x 2n) is the global stiffness matrix/, T
andT (n x 1) are the voltage, temperature and time derivaiiviemperature output vectors, respectively; Bingn x
1) is the displacements output vectBy, F, andF, are the electrical, thermal and structural loactves, respectively.
p is the design variables vector as defined by Sivierial model (see Section 3).

The global matrices are defined as:

N N
Ko(p)= eélkOe(pe)z e’ﬁl [Go(pe) Jo BgipBOpj dve]e “
N N
Cilp)=A Cle(pe): A [al(pe) fve Noj Nojd Ve] ©
e=1 e=1 e
N N T M
K30)= Akue(p)= A [21(p0) J,, B Bogve] + [na(oy) i NoiNojas] + > (1= pp)hlpe) § NNt (6)
= e )
e
Ka(p)= ef\lkze(Pe)— eél [f Ve B2, D2y (pe) Baed %]e "

whereA is a FEM assembly operator (Hughes, 1987), iredexfers to variables and properties of the finlerent. As
electrical and thermal domains are scalar fielbfgnms, the size elementary matriégs ¢, andk,. are m x m, where
m is the finite element degrees of freedom (DOR).tke other hand, the displacement field in thecstiral problem is
a vector, so the elementary matkix is 2m x 2m.p_ is the element pseudo-density function (see Se&)os,(p.),
a1(p,): 01(p,). Mi(p.) andD,(p,) are the electrical conductivity, thermal capacthermal conductivity, convection
coefficient and stress-strain constitutive tenddhe element, respectiveli,is a shape functions vectd, andB, are
voltage or temperature gradient and strain-dispfecd matrices, in that ordev,, S.andt.Lare the element volume,
surface area and contour area baingement thickness. The third term on the rightchside, in Eq. (6), corresponds
to convection from the side surfaces. The summasi@verv neighboring elements apg is the design variable of the
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m™" neighboring element. Ip,, =1 there is no side convection (Yin and Ananthasyrefl®2). Considering the
discretized domain as mentioned above, the gldbatrec, thermal and elastic load vectors can hEessed as:

N N
- - _ 7P p
Fo= Afoe™ e:Al{gﬁLe Noy (—")tedLe +1! }e (8)

\
N Jhl(pe)Tp fse No dSs + nfl(l—pm)hl(pe)Tp fﬁLe NoitedLel

N
Fl(V(p),p)Z A fle(ve(pe)’pe): A (9)
e=1 e=1
+0,(p,) | v, Noi VicBoyBoy Vid e + QP J .
N N
FZ(T(p,t) ,p,t): Alee(TE(pe’t) ’pe’t): Al {flfe B;—rpszi (pe)azi (NOJ'Tj - Tp) dbet FﬁL ’\griqiptec"'e * Pp}e (10)
e e= e

where,J? is prescribed current densitdf, is prescribed current nodal’ is prescribed temperatur@’ is prescribed
heat flux,a, is thermal expansion vectdy, is shape functions matrixP is prescribed traction force vector aRdis
prescribed nodal force.

The FEM electrical problem is solved by consideringteady current static analysis. For solvingrtfaditransient
and quasi-static structural problem, Hilber-Hughiestor (HHT) a-method (Cornwell and Malkus, 1992) is
implemented in order to avoid fictitious fluctuat®in the time response.

3. FORMULATION OF TOPOLOGY OPTIMIZATION

The TOM is a powerful structural optimization te@jue which determines a constrained material distion in a
given design domain in order to fulfill predefinegtimization objectives. Constraints are relatedht® amount of
material to be used, maximum allowed stresses,Tétes, TOM solves an optimization problem. It conds the FEM
with an optimization algorithm and allows for hol@sempty regions in the structure. Pseudo-dessitieeach point of
the domain are usually the design or optimizatianiables. In other words, in order to provide tkestlstructure, design
variables are governed by the function (BendsgeSagwhund, 2003):

1, solid material

(D {g void (11)

This is essentially an ill-posed optimization perl with multiple local minima. TOM regularizes thptimization
problem, in the sense that it introduces relaxafi@n,y may assume intermediate values). It is achieveseliiyng an
appropriate continuous material model. Then, soonecaf penalization scheme, together with constsais introduced
to favor discrete solutions.

In this work, the SIMP (Solid Isotropic Material thiPenalization) material model is employed. Bylgipg the
FEM, the following equations are finally obtained:

er:‘fo(pe): (pe)pﬁoaoo

oe1=01(p )= (Pe)p”lalo

oea=01(p.)= (pe)palfflo (12)
he=ha1(p)=(p,) Prihyg
Der=Ds(p,)= (Pe)pD2 D2o

wherep, € (0, 1] is the relaxed pseudo-density function, agd a1, 010, hio andDy are the base material properties
defined in the ® finite element. Notice that, is higher than O, which avoids singularities. Traeameter®,o, Pa1, Po,
Pr1, Po2 are the corresponding penalization coefficiensn@ge and Sigmund, 2003). In this work, the caefits are
arbitrarily chosen, following a heuristic criteriodfior more elaborate criteria, Kiehal. (2010) is suggested.

For further detail on the TOM, Bendsge and Sigmy2d03) is recommended. In the next subsections, a
formulation for the optimization problem is propdse
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3.1. Design Problem Formulation

In the ETM MEMS designkinematic and structural requireme must be considered@he kinemati requirement
consists of maximizing the outpdisplacemer of a point along a certain direction folgaven voltage excitation. The
structural requirement is the stiffnesaximizatior, since the object manipulatederts a reaction forcthat affects the
entire structure. Thereforéhe optimization problem is to distribute a givenaunt of material in the design dom,
considering the transient thermal resp;, in order to obtain a maximuwutput displacemerat a certain point in a
structure with stiffnes& (see Fig. 1) This requirement is implemented using a spring iffnsssK which is a design
control (Sigmund, 2001 aking into accounthermal transient-steady, transient ti(mg) is improved with the aim of
maximize the displacement from tbgcitation instar until response has stabilized.

The optimization problens defined a:

max, Fpry= f(ffuout(p, t,T(p,t))dt (Ouput displacement integral time) (13)
(S .
[ Zezl’oe Ve sV (Material volume constraint)
. 0<pmin <p <1 (Design variables box constraint)
subject to K,V=F, (Electric static equilibrium) (14)
C,T+K,T=F, (Thermal transient equilibrium)
k K,U=F, (Structural quasi-static equilibrium)

In the previous ptimization probler, volume restriction limitshe amount of material in ttETM MEMS and V™" is
the constraint on material volume. Tirst termin volume restriction is the value of theaterialvolume obtained after
optimization and depends on tpeeud-density valuesg() of each point in theptimized domain. Time is the

interval transient state and its valmeist b greater than the minimum time to producemperature differen for the
system to begin to deform and smathesir maximum time to produce plastic deformat{anet al., 2004).

A point

with

material ’Cl‘_ o
Uyt "™

A point
with no
material

Figurel — Design problem in ETM MEMS.

Volume constraint is uset produc structures formed by thin baasd narrow membe, reducing manufacturing
time. Furthermore, it contributes tdotaining almost discrete structures, i.e., with psedéasityvalues close to 0 or 1
in the case of static problems. Thibiscaus the volume constraint makes intermedidéssity areas "uneconomical”
(Sigmund 2001). As will be seethe restriction he the same effect on dynamic problerikis could be attributed to
the fact that the dynamic problezan b« considered as a weighted sum of static problems.

3.2. Sensitivity Analysis

The sensitivity analysis providethe gradients for the objective function and t@msts in relation to desig
variables to be used solving thptimization probler (see Section 4). With the purposkobtairing the sensitivities,
direct and adjait methods are applied (Haftka and Guir1992).In this work, the adjoint method is implemen

Expressing the output displacemsansitivity in this way:

dFgry _ (tr (duous _ [ Td
T (7) di=[! (LZE dt (15)



Proceedings of COBEM 2011 21* Brazilian Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

where,LT is a vector consisting of zeros except for thetmmscorresponding to the degree of freedom (DOFhe
output direction in the structural problem, whicilue is one. Based on the discrete form of FEM &g and using
the adjoint method, the sensitivity to design Malga can be expressed as (Chen and Tong, 2004):

dFgrm tr T U T 0UdT tr T U T
o ] (Lzap LzaTd)dt N (L S+ ATR)dt (16)

beingAl = LT Sran adjoint vector that satisfies:

~CiA+K 1A= (L] Zﬁ) 17)

with the condition at the final timig
A,(t)=0 (18)

Equation (17) is calculated for each step of thegration using the HH®&-method (Cornwell and Malkus, 1992)
converting the final value problem into an initi@lue problem for a variable substitutioat; — t (Dahlet al. 2008).R
is calculated by:

_dFy  dCp  dKg
R= > @ =7 ” T (29)

Finally, the optimization problem sensitivity, takiinto account tha; depends on the voltage veck¥rand also
the design variable vectpr

dFETM T (‘3':2 dK2 T ﬂ_ﬂ o _% dFO dKO
Tem - IN (A ( u) +A1(6p T - T) (d,, . v)) dt (20)
where:
T Tl T_ 4T T_ TOF1,.-1
A3=LoK5 A=Ay A=Ay v Ko (22)

beingAg, A4 (size n) andt, (size 2n) adjoint vectors.
4. NUMERICAL IMPLEMENTATION

The algorithm used for the optimization processhiswn in Fig. 2. Primarily, the initial domain issdretized by
finite elements and designs variab{ps) are defined with a uniform values guess and the pEbblem is solved.

A Sequential Linear Programming (SLP) algorithm ftkka and Guirdal, 1992) iteratively solves the nimear
optimization problem. The objective function — E4§3) — at each SLP iteration is linearized, arotir@current design
point p. This linearization requires the objective funotigensitivities previously calculated — see Eq) @td (21). A
Linear Programming (LP) algorithm solves the linezd problem; therefore, a new approximation isawoted. In
addition, box constraints or moving limits for eatdsign variable are applied in the linearized [mobto assure that
calculated solution of the original non-linear pegh is a good approximation. The range of valugbiwithe moving
limits is reduced if the corresponding design Malgaoscillates or stagnates, and it is increaskdrofise. The range
may be 5 to 15% of the original values. In ordeatoid numerical problems or singularities, a loweundp,y,;, is
specified as 18 As a consequence, numerically regions with= p,;, can be considered void regions.

After linear optimization, a new set of design ahfesp is obtained and updated in the design domain. Sitie
iterative process is continued until a convergeagtrion is achieved. For the purpose of avoidirfgM-related
problems, such as checkerboard patterns and mgstndiency (Bendsge and Sigmund, 2003) a filter ks b
implemented. The filter (Andreassenal. 2011) modifies the sensitivities according to #raount of neighboring
elements considered by a specific radius. The fieault dependence on the finite element mesh ewfémt is
minimized. The final topologies are obtained udimg continuation method (Bendsge and Sigmund, 20683use of
ETM MEMS design problem is highly non-convex. Thentnuation method minimizes the problem of the tiplé
local maximum, allowing TOM to find a solution cko#o the global maximum. In this method, the pgnettefficients
vary increasing 0.1 by iteration until a maximuntueais reached.
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Figure2 — Flowchart of the optimization algorithm.

5. RESULTS

In order to illustrate the TOMbility in the ETM MEMS design, an example is presenked the example, nickel is
assumed as materidllaterial properties and other useful data for toggloptimization are shown in Tab

Table 1.Data used in the numerical example.

Description Value
Electrical Conductivity (S/n®™ 6.4 x 16
ThermalConductivity (W/m KJ" 90.7
Specific Heat (J/Kg K 456
Mass Density (Kg/m)® 8890
Young’s Modulus (P&Y 2 x 107
Poisson’s Modulu¥ 0.31
Thermal Expansion Coefficient ()@ | 15 x 10°
Excitation Voltage (V) 0.2
Environment temperature (*) 300
ConvectionCoefficient (W/nf K)® 18.7 x 16
Transient Time (S) 0.1
Thickness (m) 15 x 10
Volume Domain (M) 2.4x10°
Volume Constraint (%) 30
Design Variables Initial Gue 0.3
Stiffness Spring K (N/ m) 1 x %0

@: Sigmund (2001a)?: ASM International Handbook Committee (19; ®: Rubio (2005)*: Jonsmanet al. (1999).

The design domaimnd boundaryconditions for a microactuator ashown in Fig.3. The dimensions are in
millimeters ancenvironmental temperature is assurat the mechanical supports. Téhesign domain is discretized
1600 finite elementsThe optimization i performed in transient-stafdynamic optimizatior and the result is compared
with steady-state optimization (statptimization),(Rubio et al., 2009; Rubio, 2005). Thstaticformulation has been
implemented by authors juliir comparativ purposesThe radius of the implemented fil (Andreassert al., 2011)
encompasses two neighboring elem. The non-intuitive final topologieand their interpretatiorare shown in Fig. 4
and Fig. 5, respectively. In Fig. 6nvergence curv for objective function are shown.
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Figure 3 -Design domairand boundary conditions for tlexkample

Figure 4 —Final topolodes: (a) Static optimizatior{p) Dynamic optimizatio.

(a) (b)

Figure 5 — hterprete topologies: (a) Static optimizatiofl)) Dynamic optimizatio.

«1if 31
.

(a) (b)
Figure 6 — Convergence curvies the objective function: (a) Static optimizat; (b) Dynamic optimizatio.

In addition, deformed topologies simulated by &nlement software COMSCMultiphysicswith the temperature
distribution are plotted in Fig. &d Fig.8, respectivelyNotice that regions close to the anchcon the left) are active
regions, in the sense that thegve higher temperaturand, consequently, deformation the other hand, regions-
from the anchors are passive. Simbahaviorswere detected by Ruba al. (2009).

Figure 9shows the temporal behavior of output displacenf@nstatic and dynamically optimized microactua.
To compare their responses, theysimulated in transient analysis under the samenpetex: (see Tab. 1).
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Final Temperature Distribution (K) in Static Optimization Model Final Temperature Distribution (K in Dynamic Optimization Model
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Figure 7 — Finalémperature distributics: (a) Static optimization; (H)ynamic optimizatio.
Final Displacement Field, X Component (m) in Static Optimization Model Displacement field, X component (m) in Dynamic Optimization Model
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Figure 8 — Final @placement distributics in the X component: (a) Static optimizati@iny Dynamic optimization.
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Figure 9 —Output displacemervs. time forstatic and dynamic optimizati.
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To characterize the microactuators, their time tams () were calculated (see Fig. 9is the time that system
takes to reach 63.2% of its final displacementpese at settling time), representing the systesedpSettling time is
defined as required time for the system respongedoh and to remain in a range around the finlievavithin £ 5%
(Ogata, 1998). Settling time is taken as the tergime {;). The final optimization results are presentedat. 2.

Table 2. Optimization results for the numericalrapte.

Description Static Optimizatigiynamic Optimizati0r|1
Final Volume () 5.70 x 10'° 4.29 x 10'°
Final Volume Constraint Valle 23.75% 17.87%
Time Constant (s) 1.69 x 107 1.20 x 10°
Output Displacement (m) 3.48 x10 3.64x 10

Table 2 shows that dynamic optimization providestdveresults than static optimization in both thetpmt
displacement and time response. Output displaceimergtased by 4.6% while time constant decrease2btipo.

6. CONCLUSIONS

In this work, the TOM is applied to increase thep@nse speed and to maximize the output displadeofiean
ETM microactuator, taking into account time-tramsi¢hermal response. The SIMP model is used andlgorithm
based on SLP solves the optimization problem. eantlere, a smoothing filter is implemented as atgmiucontrol,
reducing checkerboard problems, as can be seegctin8 5. Two-dimensional results show the abihtyhe proposed
method.

It was shown that TOM successfully improved the adyic characteristics of the studied microsystemilenvh
fulfilling the imposed constraints. A reduction28.0% in the time constant was obtained, in additipan increase in
the output displacement of 4.6%. The reductionhe time constant could be attributed to the faet tiynamic
optimization uses every transient state to maxirthezeresponse gradually.

In future works, our intention is to test otherrthal transient problem solvers in order to redineertintime of the
optimization algorithm for a constant accuracy. dddition, the TOM algorithm will be applied to dgsi new
microactuators considering distinct boundary caod#, materials and domain aspect ratios.
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