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Abstract. Electrothermomechanical (ETM) Microsystems (MEMS) are systems in micrometric scale which operate 
based on thermoelastic effect deformation induced by heating the structure by means of an electrical current. As a fast, 
damped and null (at steady state) transient response is desirable with the aim of improving ETM efficiency, it is 
necessary to minimize the response time of the thermal effect which is a slower phenomena among different physics 
involved in the ETM structure. This can be achieved by changing the ETM structural topology. Thus, in this work, the 
Topology Optimization Method (TOM) is applied for ETM MEMS design, taking into account transient thermal 
response in order to reduce their response time and to maximize their output displacement. The TOM combines 
optimization techniques with the Finite Element Method (FEM) to distribute material in a fixed design domain in order 
to extremize a cost function subjected to some inherent constraints of the problem. The modeling of ETM MEMS is 
obtained by solving the governing equations using the linear FEM based on four-node isoparametric elements 
implemented through MATLAB. Non-dependent material properties with temperature are considered in the finite 
element models. The electrical problem is solved by considering a steady current static analysis and in the transient 
state thermal problem; the model temperature distribution is a time variable function. In the elastic domain, the mass 
and the damping effects are neglected, thus resulting in a quasi-static problem. In the Topology Optimization 
formulation, a material model is based on the Solid Isotropic Microstructure with Penalization (SIMP) model 
combined with a sensitivity filter as a solution control to reduce mesh dependence and checkerboard problems intrinsic 
to the TOM. Sequential Linear Programming (SLP) is used for solving the non-linear optimization problem. Two-
dimensional results are presented to illustrate the method. 
 
Keywords: Topology optimization, Electrothermomechanical microsystems, Transient thermal response, Finite element 
modeling. 

 
1. INTRODUCTION 
 

Microelectromechanical systems (MEMS) are mechanical systems, typically sensors and actuators, integrated with 
electronic circuits (Sigmund, 2001) whose major dimensions range from hundreds of microns to a few millimeters. 
Several actuation principles are used in MEMS, such as electrostatic, piezoelectric, shape memory alloy-based and 
electrothermomechanical (ETM) effects. ETM MEMS are microsystems that operate based on the thermoelastic effect 
induced by the Joule heating of the structure. They are usually fabricated using micromachining and etching processes, 
and optimal design techniques have been proposed (Sigmund, 2001; Sigmund, 2001a; Moulton and Ananthasuresh, 
2001). Potential applications include nanotube manipulation in transmission electron microscopes (Sardan et al., 2008), 
medical instruments, micropumps, micromotors, snap-fit mechanisms (Li et al., 2004), etc. 

Among the three physical effects that govern the movement of ETM microsystems, i.e., the electrical, thermal and 
mechanical effects, the thermal effect is the slowest. This fact has been recognized in the literature for structures with 
major dimensions in the order of magnitude of millimeters (Rubio et al., 2009) or even bigger structures (Li et al., 
2004), and thus proper time-transient analysis has been introduced to study and design such thermally actuated devices 
(Li et al., 2004). 

In the work by Li et al., (2004), the output displacement of a thermomechanical actuator has been maximized, while 
taking into account time-transient effects. However, since a fast response is desirable in order to improve ETM 
efficiency, it is also important to minimize the response time related to the thermal effect of a thermally excited 
actuator. This can be achieved by changing the ETM structural topology. 

Thus, the Topology Optimization Method (TOM) is applied here to reduce the response time and maximize the 
output displacement of an ETM microactuator, taking into account time-transient thermal response. The TOM combines 
optimization techniques with the FEM to distribute material in a fixed design domain, in order to maximize a cost 
function subjected to some constraints, representing physical restraints (i.e., TOM solves an optimization problem). 
Non-dependent material properties with temperature are employed in the finite element models. In the Topology 
Optimization formulation, the Solid Isotropic Material with Penalization (SIMP) model is used.  
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Sequential Linear Programming (SLP) solves the non-linear optimization problem. Furthermore, a smoothing filter 
is implemented as solution control, to reduce mesh dependence and checkerboard problems intrinsic to the TOM. Two-
dimensional results are presented to showcase the proposed method. 

This paper is organized as follows. In Section 2, the finite element formulation applied to the ETM structure is 
introduced. In Section 3, the TOM is discussed, the optimization problem is introduced and the computation of 
sensitivities, an important step of the optimization algorithm, is described. In Section 4, implementation details are 
provided. Preliminary results are presented in Section 5, and concluding remarks are offered in Section 6. 
 
2. FINITE ELEMENT FORMULATION 
 

In the modeling, it is assumed that strains are small under a plane-stress condition, the structures are two-
dimensional (given their reduced thickness), the temperature distribution is a time variable function and non-dependent 
material properties with temperature are considered. Thus, the system is weakly coupled. In the elastic domain, the mass 
and the damping effects are neglected, therefore resulting in a quasi-static problem. The two-dimensional domain is 
discretized by means of four-node isoparametric finite elements. The FEM formulations for the electrical, thermal and 
elastic domains, in that order, are (Li et al., 2004; Ananthasuresh, 2003; Yin and Ananthasuresh, 2002; Mankame and 
Ananthasuresh, 2001; Sigmund, 2001): 

 
Ko�ρ�V�ρ�=Fo (1) 
 
C1�ρ��� �ρ,t�+K1�ρ�T�ρ,t�=F1�V�ρ�,ρ� (2) 
 

K2�ρ�U�ρ,t�=F2�T�ρ,t�,ρ,t� (3) 
 

where, index 0, 1 and 2 refer to electrical, thermal and elastic problems, respectively. The total number of elements in 
the discretization is N, while the total number of nodes is n. Ko�ρ�, K1�ρ� and C1�ρ� (n x n) are global electrical, 
thermal conductivity and heat capacity matrices, respectively, and K2�ρ� (2n x 2n) is the global stiffness matrix. V, T 
and ��  (n x 1) are the voltage, temperature and time derivative of temperature output vectors, respectively; and U (2n x 
1) is the displacements output vector. Fo, F1 and F2 are the electrical, thermal and structural load vectors, respectively. 
ρ is the design variables vector as defined by SIMP material model (see Section 3).  

The global matrices are defined as: 
 

Ko�ρ�=
N

A
e=1

k0e�ρe�=
N

A
e=1

�σo�ρe� � Bo
T

ipBopjd∀e∀e



e
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N
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e
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where A is a FEM assembly operator (Hughes, 1987), index e refers to variables and properties of the finite element. As 
electrical and thermal domains are scalar field problems, the size elementary matrices k0e, c1e and k1e are m x m, where 
m is the finite element degrees of freedom (DOF). On the other hand, the displacement field in the structural problem is 
a vector, so the elementary matrix k2e is 2m x 2m. ρe is the element pseudo-density function (see Section 3). σo����, 
α1�ρe�, σ1�ρe�, h1���� and D2�ρe� are the electrical conductivity, thermal capacity, thermal conductivity, convection 
coefficient and stress-strain constitutive tensor of the element, respectively. No is a shape functions vector, Bo and B2 are 
voltage or temperature gradient and strain-displacement matrices, in that order. ∀e, Se and teLe are the element volume, 
surface area and contour area being te element thickness. The third term on the right hand side, in Eq. (6), corresponds 
to convection from the side surfaces. The summation is over v neighboring elements and ρm is the design variable of the 
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mth neighboring element. If ρm = 1 there is no side convection (Yin and Ananthasuresh, 2002). Considering the 
discretized domain as mentioned above, the global electric, thermal and elastic load vectors can be expressed as: 

 

Fo=
N

A
e=1

foe=
N

A
e=1

�� Noi
�−Jp�tedLeLe

+Ii
p�

e
 (8) 
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where,  ! is prescribed current density, "! is prescribed current nodal, Tp is prescribed temperature, Qp is prescribed 
heat flux, α2 is thermal expansion vector, N2 is shape functions matrix, qp is prescribed traction force vector and Pp is 
prescribed nodal force. 

The FEM electrical problem is solved by considering a steady current static analysis. For solving thermal transient 
and quasi-static structural problem, Hilber-Hughes-Taylor (HHT) α-method (Cornwell and Malkus, 1992) is 
implemented in order to avoid fictitious fluctuations in the time response.  
 
3. FORMULATION OF TOPOLOGY OPTIMIZATION 

 
The TOM is a powerful structural optimization technique which determines a constrained material distribution in a 

given design domain in order to fulfill predefined optimization objectives. Constraints are related to the amount of 
material to be used, maximum allowed stresses, etc. Thus, TOM solves an optimization problem. It combines the FEM 
with an optimization algorithm and allows for holes or empty regions in the structure. Pseudo-densities at each point of 
the domain are usually the design or optimization variables. In other words, in order to provide the best structure, design 
variables are governed by the function (Bendsøe and Sigmund, 2003): 

 

χ(Ω) �1, solid material
0, void

# (11) 

 
This is essentially an ill-posed optimization problem, with multiple local minima. TOM regularizes the optimization 

problem, in the sense that it introduces relaxation (i.e., χ may assume intermediate values). It is achieved by setting an 
appropriate continuous material model. Then, some sort of penalization scheme, together with constraints is introduced 
to favor discrete solutions. 

In this work, the SIMP (Solid Isotropic Material with Penalization) material model is employed. By applying the 
FEM, the following equations are finally obtained: 

 
σeo=σo(ρe)=(ρe)pσoσo0

αe1=α1(ρe)=(ρe)
pα1α10

σe1=σ1(ρe)=(ρe)
pσ1σ10

he1=h1(ρe)=(ρe)
ph1h10

De2=D2(ρe)=(ρe)
pD2D20

           (12) 

 
where ρe ∈ (0, 1] is the relaxed pseudo-density function, and σo0, α10, σ10, h10 and D20 are the base material properties 
defined in the eth finite element. Notice that ρe is higher than 0, which avoids singularities. The parameters pσo, pα1, pσ1, 
ph1, pD2 are the corresponding penalization coefficients (Bendsøe and Sigmund, 2003). In this work, the coefficients are 
arbitrarily chosen, following a heuristic criterion. For more elaborate criteria, Kim et al. (2010) is suggested.  

For further detail on the TOM, Bendsøe and Sigmund (2003) is recommended. In the next subsections, a 
formulation for the optimization problem is proposed. 
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3.1. Design Problem Formulation 

 
In the ETM MEMS design, kinematic and structural requirements

consists of maximizing the output displacement
structural requirement is the stiffness maximization
entire structure. Therefore, the optimization problem is to distribute a given amount of material in the design domain
considering the transient thermal response
structure with stiffness K (see Fig. 1). T
control (Sigmund, 2001). Taking into account 
maximize the displacement from the excitation instant

The optimization problem is defined as:
 
maxρ FETM= � uout�ρ,t,T(ρ,t)�dt

tf

0
	  (Ouput displacement integral time

 

subject to 

���
��
��& ρ

e
∀e 	' 	(∗

*

�+,
         

0	≤ �-./ ≤ ρ ≤ 1                            

KoV=Fo																						
C1T� +K1T=F1												   																	
K2U=F2 												                   

 
In the previous optimization problem

the constraint on material volume. The first term 
optimization and depends on the pseudo
interval transient state and its value must be
system to begin to deform and smaller than

 

Figure 
 
Volume constraint is used to produce

time. Furthermore, it contributes to obtaining
in the case of static problems. This is because
(Sigmund 2001). As will be seen, the restriction has
the fact that the dynamic problem can be

3.2. Sensitivity Analysis 
 
The sensitivity analysis provides the gradients for the objective function and constraints in relation to design 

variables to be used solving the optimization problem
direct and adjoint methods are applied (Haftka and Gürdal, 

Expressing the output displacement 
 
dFETM

dρ
=� �duout

dρ
� dt

tf

0
=� �L2T dUdρ� dt

tf

0
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kinematic and structural requirements must be considered. The kinematic
displacement of a point along a certain direction for a given 

maximization, since the object manipulated exerts a reaction force 
the optimization problem is to distribute a given amount of material in the design domain

considering the transient thermal response, in order to obtain a maximum output displacement 
. This requirement is implemented using a spring of stiffness 

Taking into account thermal transient-steady, transient time �01� is 
excitation instant until response has stabilized. 

is defined as: 

Ouput displacement integral time) 

         													      
1                            

													
																	  

                   

#
�Material volume constraint�

(Design variables box constraint)

(Electric static equilibrium)

(Thermal transient equilibrium)

(Structural quasi-static equilibrium)

 

ptimization problem, volume restriction limits the amount of material in the 
first term in volume restriction is the value of the material 

pseudo-density values (ρ
e
) of each point in the optimized 

must be greater than the minimum time to produce a temperature difference
than maximum time to produce plastic deformation (Li

 
Figure 1 – Design problem in ETM MEMS. 

to produce structures formed by thin bars and narrow members
obtaining almost discrete structures, i.e., with pseudo-density 

because the volume constraint makes intermediate density
the restriction has the same effect on dynamic problems. 

can be considered as a weighted sum of static problems. 
 

s the gradients for the objective function and constraints in relation to design 
optimization problem (see Section 4). With the purpose of obtain

nt methods are applied (Haftka and Gürdal, 1992). In this work, the adjoint method is implemented.
 sensitivity in this way: 
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The kinematic requirement 
given voltage excitation. The 

exerts a reaction force that affects the 
the optimization problem is to distribute a given amount of material in the design domain, 

output displacement at a certain point in a 
his requirement is implemented using a spring of stiffness K which is a design 

� � is improved with the aim of 

(13) 

(14) 

the amount of material in the ETM MEMS and 	(∗ is 
material volume obtained after 

optimized domain. Time tf is the 
temperature difference for the 
(Li  et al., 2004). 

 

and narrow members, reducing manufacturing 
density values close to 0 or 1 
density areas "uneconomical" 

. This could be attributed to 

s the gradients for the objective function and constraints in relation to design 
of obtaining the sensitivities, 

In this work, the adjoint method is implemented. 

(15)	
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where, 23� is a vector consisting of zeros except for the position corresponding to the degree of freedom (DOF) of the 
output direction in the structural problem, which value is one. Based on the discrete form of FEM equations and using 
the adjoint method, the sensitivity to design variables can be expressed as (Chen and Tong, 2004): 
 

456�7
48 = � �23� 9:98 + 23

� 9:
9�

4�
48� <0

=>
? = � �23� 9:98 + @A

�B�<0=>
?  (16) 

 

being @A� = 23� 9:
9� an adjoint vector that satisfies: 

 

−C1Λ
�
t+K1Λt= �L2

T ∂U
∂T

�T
 (17) 

 
with the condition at the final time tf: 

 
Λt�tf�=0 (18)   
Equation (17) is calculated for each step of the integration using the HHT α-method (Cornwell and Malkus, 1992) 

converting the final value problem into an initial value problem for a variable substitution τ=tf − 0 (Dahl et al. 2008). B 
is calculated by: 

 

R=
dF1

dρ
− dC1

dρ
T�� �� − dK1

dρ
T (19) 

 
Finally, the optimization problem sensitivity, taking into account that F1 depends on the voltage vector V and also 

the design variable vector ρ: 
 
dFETM

dρ
= � DΛ2

T �∂F2

∂ρ
− dK2

dρ
U� +Λ1

T �∂F1

∂ρ
− dC1

dρ
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dρ
− dKo

dρ
V�E dt

tf
0

  (20) 
 

where: 
 

Λ2
T=L2

TK2
-1          Λ1

T=Λt
T          Λo

T=Λt
T ∂F1

∂V
Ko

-1 (21) 

 
being Λ0, Λ1 (size n) and Λ2 (size 2n) adjoint vectors. 

 
4. NUMERICAL IMPLEMENTATION 

 
The algorithm used for the optimization process is shown in Fig. 2. Primarily, the initial domain is discretized by 

finite elements and designs variables ���� are defined with a uniform values guess and the FEM problem is solved.  
A Sequential Linear Programming (SLP) algorithm (Haftka and Gürdal, 1992) iteratively solves the non-linear 

optimization problem. The objective function – Eq. (13) – at each SLP iteration is linearized, around the current design 
point ρ. This linearization requires the objective function sensitivities previously calculated – see Eq. (20) and (21). A 
Linear Programming (LP) algorithm solves the linearized problem; therefore, a new approximation is obtained. In 
addition, box constraints or moving limits for each design variable are applied in the linearized problem to assure that 
calculated solution of the original non-linear problem is a good approximation. The range of values within the moving 
limits is reduced if the corresponding design variable oscillates or stagnates, and it is increased otherwise. The range 
may be 5 to 15% of the original values. In order to avoid numerical problems or singularities, a lower bound �-./ is 
specified as 10-3. As a consequence, numerically regions with �� = �-./ can be considered void regions. 

After linear optimization, a new set of design variables ρ is obtained and updated in the design domain. The SLP 
iterative process is continued until a convergence criterion is achieved. For the purpose of avoiding TOM-related 
problems, such as checkerboard patterns and mesh dependency (Bendsøe and Sigmund, 2003) a filter has been 
implemented. The filter (Andreassen et al. 2011) modifies the sensitivities according to the amount of neighboring 
elements considered by a specific radius. The final result dependence on the finite element mesh refinement is 
minimized. The final topologies are obtained using the continuation method (Bendsøe and Sigmund, 2003) because of 
ETM MEMS design problem is highly non-convex. The continuation method minimizes the problem of the multiple 
local maximum, allowing TOM to find a solution close to the global maximum. In this method, the penalty coefficients 
vary increasing 0.1 by iteration until a maximum value is reached. 
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Figure 

5. RESULTS 
 
In order to illustrate the TOM ability

assumed as material. Material properties and other useful data for topology optimization are shown in Tab. 1.
 

Table 1. 

Electrical Conductivity (S/m)
Thermal 

Thermal Expansion Coefficient (1/

Environment temperature (K)
Convection 

Design Variables Initial Guess

(1): Sigmund (2001a); (2): ASM International Handbook Committee (1990)
 
The design domain and boundary 

millimeters and environmental temperature is assumed 
1600 finite elements. The optimization is
with steady-state optimization (static optimization), 
implemented by authors just for comparative
encompasses two neighboring elements
and Fig. 5, respectively. In Fig. 6, convergence curves
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Figure 2 – Flowchart of the optimization algorithm. 
 

ability in the ETM MEMS design, an example is presented.
Material properties and other useful data for topology optimization are shown in Tab. 1.

Table 1. Data used in the numerical example.  
  

Description Value 
Electrical Conductivity (S/m)(1) 6.4 x 106 

Thermal Conductivity (W/m K)(1) 90.7 
Specific Heat (J/Kg K)(2) 456 
Mass Density (Kg/m3)(2) 8890 
Young’s Modulus (Pa)(1) 2 x 1011 

Poisson’s Modulus(1) 0.31 
Thermal Expansion Coefficient (1/Κ)(1) 15 x 10-6 

Excitation Voltage (V) 0.2 
Environment temperature (K)(3) 300 

Convection Coefficient (W/m2 K)(4) 18.7 x 103 
Transient Time (s) 0.1 

Thickness (m) 15 x 10-5 
Volume Domain (m3) 2.4 x 10-9 

Volume Constraint (%) 30 
Design Variables Initial Guess 0.3 

Stiffness Spring K (N/ m) 1 x 105 
ASM International Handbook Committee (1990); (3): Rubio (2005); 

and boundary conditions for a microactuator are shown in Fig. 
environmental temperature is assumed at the mechanical supports. The design domain is discretized by 

The optimization is performed in transient-state (dynamic optimization)
optimization), (Rubio et al., 2009; Rubio, 2005). The static 

for comparative purposes. The radius of the implemented filter
encompasses two neighboring elements. The non-intuitive final topologies and their interpretations 

convergence curves for objective function are shown. 
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. For the example, nickel is 
Material properties and other useful data for topology optimization are shown in Tab. 1. 

(4): Jonsmann et al. (1999). 

shown in Fig. 3. The dimensions are in 
design domain is discretized by 

(dynamic optimization) and the result is compared 
e static formulation has been 

The radius of the implemented filter (Andreassen et al., 2011) 
and their interpretations are shown in Fig. 4 
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Figure 3 – Design domain 

 (a)

Figure 4 – Final topolog

 

Figure 5 – Interpreted

 (a) 

Figure 6 – Convergence curves for the objective function: (a) Static optimization
 

In addition, deformed topologies simulated by finite element software COMSOL 
distribution are plotted in Fig. 7 and Fig. 
regions, in the sense that they have higher temperatures 
from the anchors are passive. Similar behaviors 

Figure 9 shows the temporal behavior of output displacement for static and dynamically optimized microactuators
To compare their responses, they are simulated in transient analysis under the same parameters
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Design domain and boundary conditions for the example.
 

           
(a) (b) 

 
Final topologies: (a) Static optimization; (b) Dynamic optimization

 

              
(a) (b) 

 
nterpreted topologies: (a) Static optimization; (b) Dynamic optimization

 

(b) 
 

for the objective function: (a) Static optimization; (b) Dynamic optimization

In addition, deformed topologies simulated by finite element software COMSOL Multiphysics 
and Fig. 8, respectively. Notice that regions close to the anchors (

have higher temperatures and, consequently, deformations. On the other hand, regions far 
behaviors were detected by Rubio et al. (2009). 

shows the temporal behavior of output displacement for static and dynamically optimized microactuators
simulated in transient analysis under the same parameters
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example. 

 

(b) Dynamic optimization. 

(b) Dynamic optimization. 

 
 

(b) Dynamic optimization. 

Multiphysics with the temperature 
Notice that regions close to the anchors (on the left) are active 

On the other hand, regions far 

shows the temporal behavior of output displacement for static and dynamically optimized microactuators. 
simulated in transient analysis under the same parameters (see Tab. 1). 
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 (a) 

Figure 7 – Final temperature distribution

 (a) 

Figure 8 – Final displacement distribution

Figure 9 – Output displacement 
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(b) 
 

emperature distributions: (a) Static optimization; (b) Dynamic optimization
 

(b) 
 

isplacement distributions in the X component: (a) Static optimization; (b)
 

 
Output displacement vs. time for static and dynamic optimization

Brazilian Congress of Mechanical Engineering 
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Dynamic optimization. 

 

(b) Dynamic optimization. 

 

static and dynamic optimization. 
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To characterize the microactuators, their time constants (τ) were calculated (see Fig. 9). τ is the time that system 
takes to reach 63.2% of its final displacement (response at settling time), representing the system speed. Settling time is 
defined as required time for the system response to reach and to remain in a range around the final value within ± 5% 
(Ogata, 1998). Settling time is taken as the transient time (tf). The final optimization results are presented in Tab. 2.   

 
Table 2. Optimization results for the numerical example. 

 
Description Static Optimization Dynamic Optimization 

Final Volume (m3) 5.70 x 10-10 4.29 x 10-10 

Final Volume Constraint Value 23.75% 17.87% 

Time Constant τ  (s) 1.69 x 10-2 1.20 x 10-2 

Output Displacement (m) 3.48 x 10-6 3.64 x 10-6 
 
Table 2 shows that dynamic optimization provides better results than static optimization in both the output 

displacement and time response. Output displacement increased by 4.6% while time constant decreased by 29.0%. 
 

6. CONCLUSIONS 
 
In this work, the TOM is applied to increase the response speed and to maximize the output displacement of an 

ETM microactuator, taking into account time-transient thermal response. The SIMP model is used and an algorithm 
based on SLP solves the optimization problem. Furthermore, a smoothing filter is implemented as a solution control, 
reducing checkerboard problems, as can be seen in Section 5. Two-dimensional results show the ability of the proposed 
method. 

It was shown that TOM successfully improved the dynamic characteristics of the studied microsystem, while 
fulfilling the imposed constraints. A reduction of 29.0% in the time constant was obtained, in addition to an increase in 
the output displacement of 4.6%. The reduction in the time constant could be attributed to the fact that dynamic 
optimization uses every transient state to maximize the response gradually. 

In future works, our intention is to test other thermal transient problem solvers in order to reduce the runtime of the 
optimization algorithm for a constant accuracy. In addition, the TOM algorithm will be applied to design new 
microactuators considering distinct boundary conditions, materials and domain aspect ratios.  
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