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Abstract. This manuscript describes an approach for the global optimization of truss sizing and geometry that is based 

on a probabilistic restart procedure coupled with a local gradient-based search method. The resulting algorithm is 

able to guarantee local optimality and to asymptotically converge to the global optimum. As a result a set of local 

optima (eventually containing the global one) is obtained. The optimization problem searches for a truss structure of 

minimum volume, subject to stress constraints. The design variables are the bars cross-section areas and some nodal 

coordinates. To evaluate the proposed technique, three numerical examples are presented and the results are 

discussed. 
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1. INTRODUCTION 

 

The truss sizing optimization problem (where the member’s cross-sections areas are taken as design variable) can be 

stated, in many cases, as a Linear Programming (LP) problem (Hemp, 1973; Pedersen, 1970; Pedersen, 1993). One of 

the interesting characteristics of LP problems is that, when they are feasible, they always have a single global optimum 

or a convex set of local optima that are all global optima (Nocedal and Wright, 1999). That is, in the case of sizing 

optimization problems that are stated as LP problems, every optimum solution found is indeed a global one. 

The truss geometry optimization problem (where the nodal coordinates are taken as design variables) is, instead, non 

linear by its nature, and therefore it cannot be stated as a LP problem. Consequently, one cannot know in advance if the 

problem being studied has a single global optimum or several local optima. In fact, many authors already pointed out 

that in many relevant cases several local optima may exist, which are not the global optimum (Achtziger, 1997; 

Achtziger and Stolpe, 2007; Rozvany, 1997; Torii et al., 2011). 

In this context, there is an increasing effort on applying global optimization procedures to the problem of 

simultaneous optimization of truss geometry and sizing (Achtziger and Stolpe, 2007; Dominguez et al., 2006; Luh and 

Lin, 2008; Rahami et al., 2009; Schutte and Groenwold, 2003; Zheng et al., 2003; Torii et al., 2011). Most 

metaheuristics (e.g. Genetic Algorithms and Simulated Annealing) have the ability to search for global optima, and 

consequently, these techniques have been applied extensively to the problem studied here. However, these techniques 

do not guarantee local optimality (Arora, 2004) and require, in general, a large amount of calculations (Arora, 2004). 

Consequently, the solutions given by metaheuristics frequently present some kind of residual, such as bars that clearly 

do not compose an optimum solution. 

Gradient based algorithms (e.g. Sequential Quadratic Programming and Interior Point Methods) were also 

successfully applied to the problem being addressed (Achtziger, 1997; Achtziger, 2006; Achtziger, 2007; Kocvara and 

Zowe, 1996; Torii and Biondini, 2009, Torii et al., 2011). These techniques are efficient for local searches and local 

optimality can be guarantee (Arora, 2004; Nocedal and Wright, 1999). That is, the solutions given by this approach do 

not present residuals and, in most cases, require fewer calculations than most metaheuristics. However, such techniques 

are not global optimization algorithms, and consequently may give poor results for problems that present several local 

optima. 

This paper presents a local-global strategy for the simultaneous geometry and sizing optimization of truss structures. 

The optimization problem searches for a structure of minimum volume, subject to stress constraints. Local search is 

performed by gradient based techniques and thus local optimality is guarantee. In order to find the global minimum, the 

local search is made global by a probabilistic restart procedure presented by Luersen and Le Riche (2004). In this 

approach, a spatial probability of starting a local search is built based on past searches. As a result, when the 

optimization algorithm ends a list with several local optima (eventually the global optimum) is obtained. It should be 

pointed out that the restart procedure is not purely a random one, but is based on information obtained from previous 

results. The optimization problem solved here is described in details in the forthcoming paper by Torii et al. (2011), 

where probabilistic aspects are also taken into account. 
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2. FORMULATION OF THE OPTIMIZATION PROBLEM 

 

The optimization problem is posed as the minimization of the volume of the structure subject to stress constraints by 

taking the nodal coordinates and cross section areas as design variables (Torii et al., 2011): 

 

Find: x and A 

 

that gives 

 

)(),(min xLAAx
TV  , (1) 

 

subject to 
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where V is the volume of the structure, x is the vector of nodal coordinates, A is the vector of member areas, L is the 

vector of member lengths, gj are stress constraints, σj is the stress on member j, σt is the yielding stress in tension, σc is 

the yielding stress in compression and m is the number of members subjected to stress constraints. In this paper, 

buckling constraints are not considered. 

For convenience, the design variables A and x can be grouped into a single design vector X, and the constraints from 

Eq. (2) and Eq. (3) can be grouped into a single vector of constraints g. In this way, the previous problem is rewritten as 

follows: 

 

Find: X 

 

that gives 

 

LAX
TV )(min , (4) 

 

 subject to 

 

0g  , (5) 

 

where g is a vector with 2m components since there are two constraints defined for each bar of the structure. When 

the structure is subject to more than one loading condition than we have one vector constraint as given by Eq. (5) for 

each loading condition. This problem is discussed in details by Torii et al. (2011). 

Bounds on design variables are defined as shown in Fig. 1, by prescribing how far each node can be moved from its 

original position. Sensitivity analysis can then be carried out using some finite difference scheme or the adjoint method 

(Torii et al., 2011). 

 

 

 
Figure 1: Bounds on nodal coordinates defined locally for each node. 

 

3. GLOBAL OPTIMIZATION BY MENAS OF A LOCAL-RESTART STRATEGY 

 

As already mentioned in the introduction of this paper, the problem of geometry and sizing optimization of truss 

structures may present local minima that are not global minima. Under this condition, deterministic optimization 
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algorithms such as gradient methods, Newton methods or sequential simplex methods, may not converge to the global 

minimum of the problem. Then, the use of a global optimization algorithm is required. 

In this framework, stochastic or hybrid stochastic/deterministic methods are often used. Well known examples of the 

former are: pure random search, genetic algorithm, and simulated annealing. Among these methods, the simplest 

approach is furnished by the pure random search, where a trial point is randomly generated at each iteration. It is 

accepted or rejected according to its performance: accepted if better than the current design, rejected otherwise. This 

simple procedure leads to a very high computational cost and several classes of global optimization algorithms have 

been developed in order to increase the efficiency of the search. One of them are the hybrid stochastic/deterministic 

methods where a local optimizer, such as the deterministic methods cited above, is combined with a global optimizer. 

For instance, when working with regular continuous objective functions, local optimizers can be turned into 

asymptotically global ones by restarting the search from a random initial point (Solis and Wets, 1981). 

Here we use a local-global optimization strategy where the restart procedure uses an adaptive probability density 

function constructed using the memory of past local searches. The local search is performed using Sequential Quadratic 

Programming (SQP) (Nocedal and Wright, 1999). The search is then turned into an asymptotically global one applying 

the probabilistic restart procedure proposed by Luersen and Le Riche (2004). 

Consider that the probability of having sampled a point X is described by a Gaussian-Parzen-window approach 

(Duda et al., 2001): 
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where N is the number of points S(i) already sampled. Such points come from the memory kept from the previous 

local searches, being, in the present version of the algorithm, all the starting points and local optima already found. 

 ip X  is the normal multidimensional probability density function given by: 
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where n is the problem dimension (number of variables ) and Σ is the covariance matrix: 
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and variances are estimated by the relation: 

 

 
2

2 max min

n j jX X   , (9) 

 

where β is a positive parameter that controls the length of the Gaussians, and Xj
max

 and Xj
min

 are the bounds of the jth 

design variable. To keep the method simple, such variances are kept constant during the optimization. At the first local 

search, the initial point X0 is given by the user. Then, after every local minimum is found, M points are randomly 

sampled (X1, X2, … , XM) and the one that gives the minimum value for Eq.(6) is selected as the initial point to restart 

the next local search. The stopping criterion of the global optimization is the maximum number of local searches, nmax, 

defined a priori by the user.  

 

4. NUMERICAL RESULTS 

 

In this section, three numerical examples are solved in order to demonstrate the main aspects of the local-global 

approach presented. The Young modulus, the maximum allowed stress in tension and compression for all the examples 

are E = 200GPa, σt = 250 MPa and σc = 250 MPa, respectively. Besides, self weight of the structures is not considered. 

Also, for all examples shown here, the lower bound for the cross-section areas is equal to 0.1mm
2 

and, in the pos-

processing visualization, when a bar cross-section is smaller than 0.3mm
2
, the correspondent member is not shown. 

Finally, the parameters used in the optimization algorithm are shown in Table 1. 
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Table 1. Parameters used for the optimization algorithm. 

Parameter Value 

M 1000 

nmax 20 

β 0.001 

Tolerance on constraints, objective 

function and design variables used by local 

search algorithm 

10
-9 

 

4.1. Example 1 

 

Figure 2 presents a ground structure that is subjected to the loading F = 10kN. The ground structure has the 

dimensions Lx=2,000mm and Ly=1,000mm. The initial cross-section areas for the first local search are taken as 250mm
2
. 

 

 
Figure 2: Ground structure of the Example 1. 

 

For the optimization problem, the nodes of the upper chord (except the node of the support) are allowed to be moved 

up and down to positions as far as 500mm, in both directions, from its original positions. The results are presented in 

Fig. 3, showing that at least three local minima exist for this problem. It seems that the structure from Fig. 3(a) is the 

global optimum of this problem, since no better solution was found by the algorithm. Besides, note that the structures 

from Fig. 3(b) and Fig. 3(c) are slightly different, but have the same volume. It is important to note that when the restart 

procedure was not used, the optimum structure found by the optimization algorithm was that presented in Fig. 3(c). 

Besides, other local optima were also found for this example that are not presented here. However, they are similar to 

the ones presented in Fig. 3(b) and Fig. 3(c). 

 

 
V = 3.1395E+5 mm

3
 

Amax = 80.8572 mm
2
 

(a) 

 
V = 3.2020E+5 mm

3
 

Amax = 60.9112 mm
2
 

(b) 

 
V = 3.2020E+5 mm

3
 

Amax = 64.2791 mm
2
 

(c) 

Figure 3: Local optima found and their correspondent volumes V and maximum cross-section area Amax when allowing 

the nodes to be moved by 500mm from its original positions (Example 1). 

 

4.2. Example 2 

 

Figure 4 presents a ground structure that is subjected to three loading conditions. The ground structure has a total 

height of 4,000mm and a total width of 4,000mm. All nodes (except the nodes of the supports) are allowed to be moved 

left and right by the optimization algorithm, to positions as far as 1,800mm from its original position. The vertical and 

horizontal force values are F1 = 10kN and F2 = 5kN, respectively. Finally, symmetry of the structure about a middle 

vertical axis is enforced for the nodal coordinates. Figure 5 shows the minima found for this problem. As can be seen, it 
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appears to have two local minima. We also note that, for the two solutions found, the cross section areas are symmetric 

about the middle vertical axis, despite this condition was not enforced. 

 

 
         Loading condition 1        Loading condition 2         Loading condition 3 

 Figure 4: Ground structure of the Example 2, subjected to three loading conditions. 

 

 

 
V = 9.8592E+5 mm3 

Amax = 115.1772 mm2 

(a) 

 
V = 9.9894E+5 mm3 

Amax = 96.2070 mm2 

(b) 

Figure 5: Local optima for Example 2 and their correspondent volumes V and maximum cross-section area Amax. 

 
4.3. Example 3 

 

The last example is that presented in Fig. 6. The ground structure has a total height of 1,000mm and a total width of 

8,000mm. All nodes of the upper chord are allowed to be moved up and down by the optimization algorithm, to 

positions as far as 10,000mm from its original position. The applied force is F = 10kN. The initial values of the cross-

section areas for the first local search are taken as 250mm
2
. Symmetry of the structure according to the vertical axis is 

enforced in this example. 

The results are presented in Fig. 7, and it can be seen that this problem has several local optima. It seems that the 

structure from Fig. 7(a) and Fig. 7(b) are the two global optima for this case. These two solutions are essentially the 

same, since the allowable stresses in tension and compression are the same. The same is true for the solutions from Fig. 

7(c) and Fig. 7(d). It is important to note that the optimum solution found when no restart procedure was employed was 

that of Fig. 7(g), that is actually, among the solutions found, the worst one. This puts in evidence the importance of 

using global optimization strategies.  

 

 
Figure 6: Ground structure of the Example 3. 
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V = 0.5772 E+6 mm

3
 

Amax = 25.6859 mm
2
 

(a) 

 
V = 0.5772 E+6 mm

3
 

Amax = 25.6859 mm
2
 

(b) 

 
V = 1.1939 E+6 mm

3
 

Amax = 74.0320 mm
2
 

(c) 

 
V = 1.1939 E+6 mm

3
 

Amax = 74.0320 mm
2
 

(d) 

 
V = 1.4026 E+6 mm

3
 

Amax = 79.9947 mm
2
 

(e) 

 
V = 0.8777 E+6 mm

3
 

Amax = 47.6602 mm
2
 

(f) 

 
V = 1.9992E+6 mm

3
 

Amax = 160.0268 mm
2
 

(g) 

Figure 7: Local optima for Example 3 and their correspondent volumes V and maximum cross-section area Amax. 

 

5. CONCLUDING REMARKS 

 

This paper addressed the development of a global optimization technique for truss structures which. The 

optimization strategy is based on a probabilistic restart procedure coupled with a local search algorithm. The resulting 

algorithm is able to guarantee local optimality and to asymptotically converge to the global optimum, as the number of 

restarts increases. Besides, the restart procedure is based on information from the previous iterations, and is not a purely 

random one, which may reduce computer time in the global optimization process. The main advantage of the procedure 

proposed here is that the local search can be made by efficient gradient based algorithms, thus ensuring that the 

solutions found by the algorithm are residual free. 

At the end of the optimization procedure, the approach proposed here presents a set of local optima that are, in 

general, different from one another. In some cases the designer may find some local optima more appealing than others 

(for some reasons apart from optimality) and thus choose some local optima instead of the global one. 

The examples presented demonstrated that even for simple cases local minima, that are not global minima, may 

exist. Some of these local minima may even appear to be global optima at first glance. Besides, some problems may 
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present several local optima, and in many cases the optimum solution found by a single local search is not the global 

one. This highlights the importance of considering global optimization procedures for the problem being addressed, 

since this can lead to much improved solutions. 
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