
Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

APPLICATION OF A THERMOVISCOELASTIC DYNAMIC VIBRATION 
ABSORBER TO A NON-IDEAL OSCILLATING SYSTEM 

 
Jorge Luis Palacios Felix, jorge.felix@unipampa.edu.br 
UNIPAMPA, C. P. 07, 96412-420, Bagé, RS, Brasil 

Wang Chong, wangchong@unipampa.edu.br 
UNIPAMPA, 97546-550, Alegrete, RS, Brasil 
 

José M. Balthazar, jmbaltha@rc.unesp.br 
UNESP, C.P. 178, 13500-230, Rio Claro, SP, Brasil 

 

Abstract. A dynamic vibration absorber with viscoelastic material applied to a non-ideal parametric oscillating system 

to suppress the Sommerfeld effect, resonance capture and jump phenomenon is studied. The absorber is a mass-bar 

subsystem that consists of a linear viscoelastic damping of bar type with memory in which the internal dissipative 

forces depend on current, deformations and its operational frequency varies with limited temperature. The non-ideal 

system consists of the coupling between a linear (nonlinear) oscillator and an unbalanced rotor of dc motor with 

limited power supply via spring connector.  The numerical results show the comparison of the non-ideal system response 

with and without the absorber through the resonance curves and Poincaré sections. Furthermore, the suppression band of 

the thermoviscoelastic dynamic vibration absorber (of dynamic damping) is comparable with a conventional dynamic 

vibration absorber (of constant damping). For the numerical simulation was used the runge-kutta fourth-order 

integrator with MATLAB/SIMULINK™ applied to a six degree of freedom mathematical model of the problem in 

study. 
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1. INTRODUCTION 
 

The excitation of the vibration systems analyzed here, is taken as always limited; on the one hand by the 

characteristics of a particular energy source and, by other hand limited by the dependence of the motion of the vibrating 

system on the motion of the energy source. Note that this connection is expressed by a coupling between the differential 

equations of motion of the vibrating system and the source. Note, that when the excitation is not influenced by the 

response of a vibrating system, it is said to be an ideal energy source, or an unlimited energy sources. For non-ideal 

dynamical systems, one must add an equation that describes how the energy source supplies the energy to the equations 

that govern the corresponding ideal dynamical system. We remarked that in non-ideal systems is present the so-called 

Sommerfeld effect: steady state frequencies of the dc motor will usually increase as more power (voltage) is given to it 

in a step-by-step fashion. When a resonance condition with the structure is reached, the better part of this energy is 

consumed to generate large amplitude vibrations of the foundation without sensible change of the motor frequency. 

Eventually, enough power is supplied to e motor to initiate the jump, the operating frequency increases and the 

foundation amplitude decreases, resulting in lower power consumption by the motor.  

We mention that more details on non-ideal systems theory, one can find in (Kononenko, 1969; Balthazar et al., 

2003), as an examples, undeserved others.  

The initial implementation of vibration absorber for non-ideal systems was introduced by (Felix et al., 2005a) using 

tuned liquid column damper. The technical of saturation phenomenon based on the 1:2 internal resonance was applied 

in a nonideal frame portal (Felix et al., 2005b). Recently was studied linear and nonlinear electromechanical vibration 

absorber to reduce the Sommerfeld effect, jump phenomenon and resonance capture by (Felix and Balthazar, 2009).  

Vibrating systems with purely nonlinear attachments have recently been the subject of growing interest of 

researchers. To a great extent, we remarked that the term energy pumping refers to the rapid and irreversible transfer of 

energy from a vibrating mechanical system to an attached nonlinear energy sink (NES). The occurrence of energy 

pumping depends on the essential nonlinearity of the sink stiffness. The concept of extracting energy away from a 

system in a simple fashion, so as to reduce its amplitude of vibration, is novel phenomenon and it forms the basis of 

concept of energy pumping( See as an example: Vakakis et al., 2008). They have been shown that properly designed; 

essentially nonlinear local attachments may passively absorb energy from transiently loaded linear subsystems, acting in 

essence as (NES). 

 Furthermore, for the absorption of the resonance vibrations of a non-ideal structure, was introduce taking into 

account the coupling of a nonlinear essential oscillator (NES) to the system (Felix and Balthazar, 2009). 

 Felix et al. (2009) consider the analysis of the Sommerfeld effect of a Duffing-Rayleigh oscillator under a non-

ideal excitation (unbalanced motor with limited power supply) using the method of averaging.  

We announced that, a utilization of SMA spring material in ideal and non-ideal system was investigated by 

(Piccirillo et al, 2008) and (Picirillo et al, 2009a,b), utilizing the linear optimal control technique to reduce the 

instability of the effect of chaotic motion.  
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This paper has as motivation of the work done by (Fosdick et al., 1997; 1998). They investigated the reduction of 

the vibrations of a linear oscillator under ideal excitation, by using the device of viscoelastic dynamic vibration absorber 

for a limited temperature range of the viscoelastic material, especially when the main system has a fixed resonance 

frequency. 

Next, we will adopt the following nomenclature: non-ideal oscillating system (NIS), thermo viscoelastic dynamic 

vibration absorber (TDVA). 

 

2. THE PROBLEM UNDER CONSIDERATION 
 

In Fig. 1, the NIS consists of a linear oscillator with concentrated mass 1m  with linear damping c  and linear 

stiffness k  excited by non-ideal energy source (of power limited supply) with crank shaft of radius r  through of an 

elastic connector 1k . When the exciter is in rotational motion clockwise ϕ&  from the horizontal direction ϕ  with a 

known characteristic 
1 2( )L v vϕ ϕ= −& &  (where 

1v  is related to the voltage applied across the armature of the dc motor and 

2v  is a constant for each model of the dc motor considered) and the moment of inertia I , the linear oscillator is capable 

only of vertical direction 1x .   

The TDVA consists of a mass 
2m  with referential elastic modulus 

ek  attached to the NIS through a viscoelastic bar 

whose intrinsic displacement is the vertical direction 2x . 

 

 
Figure 1. An approximated model of TDVA and NIS 

 

The dynamic damping of TDVA is represented by an auxiliary function of the axial force on the particle X  in the 

viscoelastic bar (Fosdick et al., 1998). 
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where x  denote the position of a particle X  of the viscoelastic bar; ( )Tγ  is the temperature-dependent relaxation time; 

exp(.) exponential function.  

Then, the governing equation of the system is governed by the differential equations: 

 

0

1 1 1 1 1 2 1sin ( ) ( )
( )

e

G
m x cx kx k r k x x t

T
ϕ ζ

γ
+ + = + − −&& &  

 

1 1( ) ( sin ) cosI L k r x rϕ ϕ ϕ ϕ= + −&& &  

 

0

2 2 2 1( ) ( )
( )

e

G
m x k x x t

T
ζ

γ
= − − +&&  

 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

2 1

0

1 ( )
( ) ( ) 2 ( )

( )

T
t t x x

T L

γ
ζ ζ

γ
= − − −& & &                                                                                                                             (2) 

 

where 0L  is referential undistorted lengths of the viscoelastic bar; 0G  is the positive relaxation modulus.  

When we consider a conventional damped dynamic vibration absorber (linear viscous-type damping) indicate as 

DVA, in this case ς& =0 in Eq. (2), the system DVA is 

 

1 1 1 1 1 2 1 2 1sin ( ) ( )e em x cx kx k r k x x c x xϕ+ + = + − + −&& & & &  

 

1 1( ) ( sin ) cosI L k r x rϕ ϕ ϕ ϕ= + −&& &  

                        

 2 2 2 1 2 1( ) ( )e em x k x x c x x= − − − −&& & &                                                                                                                                  (3) 

 

To simply the study of the dynamic characteristics of the TDVA-NIS, it is convenient to dimensionless the Eq. (2). 

Thus, we introduce a dimensionless time τ  defined by 0tτ ω= , where 0 /k Mω =  is the natural frequency.  

Also we introduce the following dimensionless parameters: 
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of motion (2), itself reduce to the following equations of the dimensionless form: 

 

1 1 1 1 2 1 3sin ( )u u u u u uµ η ϕ δ λ+ + = + − −&&  

 

2 1 3cos sin 2a b uϕ ϕ η ϕ η ϕ= − + −&& &  

 

2 2 1 3( )u u u uαδ αλ= − − +&&  

 

3 3 2 1

1
2( )u u u u

ρ
= − − −& & &                                                                                                                                                 (4) 

 

where 0ρ γω=  will be the control parameter of the TDVA.  

 

Assuming 1 1y u= , 2 1y u= & , 3y ϕ= , 4y ϕ= & , 5 2y u= , 6 2y u= & , 7 3y u= , the dynamical system (4) is written as 

follows 

 

1 2y y=&  

 

2 2 1 1 3 5 1 7sin ( )y y y y y y yµ η δ λ= − − + + − −&  

 

3 4y y=&  

 

4 4 2 1 3 3 3cos sin 2y a by y y yη η= − + −&                                                                                                                             

 

5 6y y=&  

 

6 5 1 7( )y y y yαδ αλ= − − +&  

 

7 7 6 2

1
2( )y y y y

ρ
= − − −& .                                                                                                                                             (5) 

 

3. NUMERICAL SIMULATIONS 
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The numerical simulations of Eq. (5) were carried out by using ode45 of Matlab™ taken as the numerical integrator 

the Runge–Kutta fourth order algorithm with variable time step. The parameters selected for the simulations are shown 

in Table 1 while initial conditions were taken as nulls. 

       

      Table 1. Parameters and values used in the simulations 

 

Parameters 
1η  2η  3η  µ  b  δ  α  λ  ρ  

Dimensionless values
 

0.3 0.4 0.2 0.01 1.5 1.5 0.25 0.2 2.0 

 

In Fig. 2 we plotted the oscillation amplitudes of the motor (Fig. 2a) and linear oscillator (Fig. 2b) without TDVA 

(in black) and with TDVA (in blue) versus the voltage (control parameter) in the range 1.2 ≤  a ≤ 3.4, considering an 

increment a∆ =0.01 and over the dimensionless time range 0 ≤ τ ≤ 3000 during the passage through resonance region 

(ϕ′ ≈ 1) and only the stationary state motion.  

In the range 1.5 ≤ a ≤ 2.5, the angular velocity is then captured and sustained with large oscillations (due to 

influence of the linear oscillator response) in the natural frequency of the resonance region (Fig. 2a, in black), while one 

notes a large increase in the oscillation amplitude of the linear oscillator without (TDVA) (Fig. 2b, in black).  When the 

control parameter is in the range 2.6 ≤ a ≤ 3.4, before then appears a jump phenomenon on the response of the angular 

velocity and amplitude.  

When (TDVA) is then activated, we will observe that the angular velocity of the non-ideal energy source passes 

through the resonance in a fast way then it presents an escape of the resonance region (in blue, Fig. 2a). Simultaneity, 

we observe the reduction of the amplitude of vibration of the linear oscillator (Fig. 2b, in blue). 
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Figure 2. Resonance curve without TDVA (in black) and with TDVA (in blue): a) non-ideal motor, b) non-ideal 

oscillator. 
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Figure 3. Simulation in the time domain of NIS without TDVA (in black) and with TDVA (in blue) for a = 2.4, ρ =2: 

a) non-ideal source, b) non-ideal oscillator. 

 

The Fig. 3 shows the time history for the dynamical system (5) without TDVA (in black) and with TDVA (in blue) 

for a = 2.4. This result shows the effectiveness of the TDVA in reducing the resonance capture of the non-ideal energy 

source and limit cycle of linear oscillator of NIS. 

 

2.1. Performance of the TDVA 
 

Figure 4 shows a plot of the amplitude of 
1x  versus the control parameter a using the Table 1. The comparison 

between the oscillation amplitudes of the NIS-TDVA system (in this case, considering the dynamic damping, see Eq. 

(2)) and NIS-DVA (in this case, considering the constant damping, see Eq. (3)) in the range 1.2 ≤  a ≤ 3.4.  

Figure 5 shows a plot of the amplitude of 1x  versus the control parameter a to observer the performance of the 

TDVA. Clearly, the strategy of TDVA is effective in the range of 1.5 ≤  a ≤ 3.0 (resonance region) when the parameter 

δ (elastic coefficient of TDVA) is increasing while the others parameters of Table 1 are fixed and obtaining a 

significant reduction of the Sommerfeld effect and the reduction of 1x  oscillation amplitude.  
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Figure 4. Resonance curve of 1x  versus a (1.2 ≤  a ≤ 3.4). Comparison between the TDVA-NIS response (in black) and 

the DVA-NIS response (in red). 
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Figure 5. Simulation of Eq. (5) for δ =1.5 (**); δ =3.0 (oo); δ =3.5 (++) 
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Figure 6. Simulation of Eq. (5) with δ =0.5, α =1.0 (**) and α =2.0 (oo) 

 

 

 

2.2. Chaotic behavior and control of the Nonlinear NIS 
 

Hence, the nonlinear stiffness to the NIS is now focused as in (Felix et al., 2009c), in this case will be Duffing-

Holmes-type oscillator and we observe the effectiveness of the TDVA.   

To obtain the chaotic dynamical, we implement the cubic stiffness of the form 3

1 3 1kx k x− +  in the equation first of 

Eq. (2) and we assume parameters values 1η =0.2; 2η =0.3, α =1.25, 3k =0.3 while the others are fixed. For the analysis, 

the control parameter of the motor was considered as a =2.4.  
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In Fig. 7, we show that the uncontrolled system (2) (NIS without TDVA) has chaotic motion (strange attractor in 

black). When the TDVA was activated in the system (2) we have a periodic motion (limit cycle in red). In Fig. 8 and 

Fig. 9 show the Poincaré section to strange attractor and to periodic attractor, respectively, for a =2.4. 
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Figure 7. Phase portrait for control parameter a =2.4 showing the co-existence of chaotic attractor without TDVA (in 

black); and limit cycle attractor with TDVA (in red). 
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Figure 8. Poincaré section for the chaotic attractor of Eq. (2) without TDVA 
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Figure 9. Poincaré section for the periodic attractor of Eq. (2) with TDVA 
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2.3. Numerical Results of adding nonlinear elastic modulus to the TDVA  
 

 
Figure 10. An approximated model of TDVA with nonlinear stiffness and NIS. 

 

Hence, we extend Fosdick and Ketema (1998) original work, adding a non-linear stiffness to the TDVA without 

altering its dynamic damping characteristics, as is shown in Fig. 10. Then the Eq. (2) in its dimensionless form or Eq. 

(4) can be rewritten as a system of seven first order nonlinear differential equations: 

 

1 2y y=&  

 
3

2 2 1 1 3 5 1 1 5 1 7sin ( ) ( )y y y y y y y y yµ η δ δ λ= − − + + − + − −&  

 

3 4y y=&  

 

4 4 2 1 3 3 3cos sin 2y a by y y yη η= − + −&                                                                                                                             

 

5 6y y=&  

 
3

6 5 1 1 5 1 7( ) ( )y y y y y yαδ αδ αλ= − − − − +&  

 

7 7 6 2

1
2( )y y y y

ρ
= − − −& .                                                                                                                                             (6) 

 

The parameters used for the simulations of Eq. (6) are shown in Table 1 while initial conditions were taken as nulls. 

Figure 11 shows the reduction of the jump effect and of the oscillation amplitude 1x  from 1δ  = 0.0 to 1δ = 1.2.Then 

the effect of the nonlinearity of elastic modulus of TDVA is predominant. 

Figure 12 shows a plot of the amplitude of 1x  versus the control parameter a to observer the performance of the 

TDVA, with a kind nonlinear essential stiffness (NES type), in this case δ =0. In the range of 1.5 ≤  a ≤ 3.0 (resonance 

region) we observer the effectiveness of the TDVA when the parameter has the values α = 0.5, 1.0, 2.0 while the others 

parameters of Table 1 are fixed. The reduction of the oscillation amplitude of the NIS with TDVA is predominant in 

comparison with oscillation amplitude of Fig. 2b without TDVA. 
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Figure 11. Simulation of Eq. (6) with 1δ  = 0.0 (**) and 1δ  = 1.2 (++) 
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Figure 12. Simulation of Eq. (6) with δ =0, 1δ = 1.2 when α =0.5 (++),α =1.0 (**),α =2.0 (oo) 

 

3. CONCLUSIONS 
 

The viscoelastic dynamic vibration absorber whose operational frequency varies with temperature is proposed in 

order to suppress resonance vibrations, Sommerfeld effect and chaotic behavior in a non-ideal oscillating system 

through of the numerical simulations.  

This TDVA is based on the fact that the dynamic damping depending of the temperature and we compare with a 

linear oscillator of constant damping. The numerical results of resonance curves, Poincare section and phase portrait 

showed the effectiveness of the TDVA applied in the resonance passage of the NIS. 

Adding a non-linear stiffness to the TDVA without altering the characteristics of the dynamic damping, we observer 

the effectiveness in reducing the jump effect (or Sommerfeld effect) of the NIS. 

Future work will study analytical method of averaging and LQR method for nonlinear essential oscillator with 

dynamic damper. 
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