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Abstract. In this paper, a smplified model of a magnetically levitated body is considered. The origin O of an inertial
Cartesian reference frame is set at the pivot point of the pendulum on the levitated body in its static equilibrium state
(the gap between the magnet on the base and the magnet on the body in this state). The levitated body, isrestrained to
move freely only in the z-direction. The motion is expressed by the displacement of the pivot from O in the vertical
direction. The repulsive nonlinear magnetic force between the magnet on the body and the magnet on the base, for
finite small variations of the gap between the magnets, can be well approximated by a polynomial function with
guadratic and cubic terms. A pendulum, whose length is r and mass m, is attached to the body as an active vibration
absorber and is subjected to a time-varying torque t at its pivot point. The motion of the pendulum is nonlinearly
coupled with the main system. Therefore, the absorber addition does not increase the number of linear vibrational
modes. The governing equations of motion were derived and the characteristic feature of the strategy is the
exploitation of the nonlinear effect of the inertial force associated with the motion of a pendulum-type vibration
absorber driven by an appropriate control torque. The problem was analyzed and also an optimal linear control
design to stabilize the problem was developed. The simulations results showed the effective of the linear optimal
control design.
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1. INTRODUCTION

The suspension of objects and people with no \dsibeans of support is fascinating to most peoptedéprive
objects of the effects of gravity is a dream comnorgenerations of thinkers from Benjamin Frankiin Robert
Goddard, and even to mystics of the East. This motiscination with magnetic levitation stems fréwo singular
technical and scientific achievements: (i) the togaof high-speed vehicles to carry people at k6h and (ii) the
discovery of new superconducting materials.

The modern development of magnetic levitation fpanstion systems, known as Mag-Lev, started in ldte
1960s as a natural consequence of the developnfidotveéiemperature superconducting wire and thestistar and
chip-based electronic control technology. In th8d€ Mag-Lev had matured to the point where Japaaed German
technologists were ready to market these new higled levitated machines (Moon, 2004).

In this paper, a pendulum-type vibration absorbexgplied to a magnetically levitated system (Yabetral, 1989;
Zhenget al, 2000) which is subjected to an unsymmetricalorisl) force exciting the principal parametric resoce.
An active control strategy for the stabilizationp#rametric resonance in a magnetically levitatedybvas proposed
(Yabunoet al, 2004) and the characteristic feature of the styategs the exploitation of the nonlinear effect loé t
inertial force associated with the motion of a pduath-type vibration absorber driven by an apprdpr@ontrol torque.

In the last years, a significant interest in cohtf the nonlinear systems, exhibiting unstablbawor, has been
observed and many of the techniques discusseckifitthature (Otet al, 1990; Sinhat al, 2000; Rafikov, Balthazar,
2008; Coultier et al, 1996; Mracelet al, 1996; Bankset al, 2007; Shawkyet al, 2007). Among strategies of control
with feedback, the most popular is the OGY (Ottitdg-York) method (Ottet al, 1990). This method uses the
Poincaré map of the system. Recently, a methodddaggd on the application of the Lyapunov-Flogratdformation,
was proposed by Sinha et al. (Sirdtal, 2000; Peruzzet al, 2007; David, Sinha, 2000) in order to solve #ired of
problem. This method allows directing the chaotmmtion to any desired periodic orbit or to a fixeairg. It is based on
linearization of the equations, which described #neor between the actual and desired trajectofReently, a
technique was proposed by Rafikov and BalthazgRafikov, Balthazar, 2008): The linear feedbacktomrnproblem
for nonlinear systems has been formulated, undémapcontrol theory viewpoint. Asymptotic stabjlibf the closed-
loop nonlinear system is guaranteed by means gfa@unov function, which can clearly be seen tohsegolution of
the Hamilton-Jacobi-Bellman equation, thus guaintg both stability and optimality. The formulatédeorem
(Rafikov, Balthazar, 2008), expresses explicitlg form of minimized functional and gave the suéfii conditions,
which allow using the linear feedback control fentinear system. The aim of this paper is to prepbe application
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of the optimal linear control (Rafikov, Balthaz20Q08) to control the unstable movement of the Méigaky Levitated
Body.

We organized the paper as follows: in Section@ pvesented the used mathematical model, analiieedlynamics
and stability of the non-linear dynamics of the Matically Levitated Body model. In Section 3, wesalissed an
optimal control design problem for the Magneticdllgvitated Body. In Section 4, we made some corictudemarks
of this paper. In Section 5, we made some acknayelegents. Following, we list out the bibliographéfarences.

2. MAGNETICALLY LEVITATED BODY MODEL

Here, we consider a mechanical model and the denivaf governing equations done by (Yabusabal 2004) for
the magnetically levitated body with the activeraifion absorber, shown in Fig. 1.

i tz{i

Zgity

sz_zbic{}&\*"i Base magnet
Figure 1. Model of the magnetically levitated baudth the active vibration absorber (Yabuebal 2004).

The originO of an inertial Cartesian reference frame is s¢hatpoint of the pendulum on the levitated boditsn
equilibrium point state (the gap between the magnethe base and the magnet on the body in this istalenoted by
Zy). The levitated body, whose masgrig is restrained to move freely only in thelirection. The motion is expressed
by the displacement of the pivot fro@in the vertical direction and is denoted By The repulsive magnetic force
between the magnet on the body and the magneteobabe, for finite but small variations of the degiween the
magnets, can be well approximated by a polynomiattion with quadratic and cubic terms. (Yabwtal, 1989;
Yabunoet al, 1991).

A pendulum, whose length tswith a tip massm, is attached to the body as an active vibratiosodker and is
subjected to a time-varying torquet its pivot point. The motion of the pendulummanlinearly coupled with the main
system. Therefore, as mentioned, the absorberiaddibes not increase the number of linear vibraionodes. The
angled, denoting the current pendulum configuration, isasured from the positiveaxis. The base is sinusoid ally
excited in the vertical direction with a prescribdidplacementz,=z, cos ©t, wherez,; andQ are the amplitude and
frequency of the base excitation, respectively.

The natural frequency of the body, when the penduikilocked, is denoted hg,. The dimensionless variablés
and Z4 as t=(UQ)t and z=z4Z, respectively. The following dimensionless parangeteare: r=zyr
my=(My+my)m’, Wg = (g/r)Qf, =mrgr, €=7y/z4, andv= Q/Q, Substituting the dimensionless variables andrmtt

7 =b cos(v,t +y) in the dimensional equations of motion yield th#iofiwing no dimensional equations up @Z°) and
O(6% (Yabunoet al, 1991):

*

. % L x * * * x2 %3 * % x % * k-
2 +7 =-pu, 7 +0coswt” +2a,0Z cosvt’ —a,z -a,,z +mZé*+mr w,60°-mr 6°
-mr 'wib @cosf,t” + )+1m*r’*wzb’*6?3 cosf,t” +) @
g g y 6 g g y!

2 Jb" = =0+ Wb’ cost’ + ) + %Wﬁéﬁ,
r

[9+(w§+

where ,uzz* and ,ugéexpress the linear viscous-type forces acting énrtiain system and the pendulum, respectively;

b',v,,andythe dimensionless amplitude, frequency, and phéskeotorque;a,,,anda,, are the coefficients of

andZ, in the Taylor series expansion of magnetic fodbunoet al, 1989). Henceforth, the star (*) is omitted for
ease of notation and thg epresents differentiation with respect the disiemnless time.
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The Figure 2 illustrates the experiment setup tbekvdone by Yabunet al (Yabunoet al, 2004) and the Figure 3
illustrate the dynamics behavior of the adoptedaglyics model, by using numerical values of experinsetup, for the
chosen parameters €=0.0629, r=7.28, b=4.56, 0,=-0.732, m=0.0795, m,=0.0000588, a,,=0.442,

=0.144, u, =0.345, u,=00281 Q,/2m=395Hz,and Q, /2= 150Hzis the natural frequency of the
pendulum.

l.e\'irmc? body Levitated body
|
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Figure 2. Experimental Setl@(abunoet al, 2004).

Yabuno et al (Yabun@t al, 2003) verified theoretically and experimentalhat an auto parametric vibration
absorber can prevent the occurrence of 1/3-orderhsumonic resonance regardless of the initial ttimms. The
vibration absorber is a passive-type pendulum aedihear natural frequency is tuned to be in thighborhood of
one-half the linear natural frequency of the maistam. In (Yabunet al, 2004), was attached the same absorber to the
magnetically levitated body under parametric exicita and the pendulum-type vibration absorbehalgh effective
in stabilizing the 1/3-order sub harmonic resonamt®s not act as an effective absorber for par&netsonance.
Furthermore, parametric excitation of the auto petaic resonance generates chaotic motions in #ia system and
absorber, the Figures 3-5 illustrated this behavidren the system is coupled with the pendulumdhastic behavior
and when this behavior without the pendulum islstab
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Figure 3. Time history for system with and withpendulum.

Figure 4 (a) presents the time history Zofb) presents the time history far. (c) presents the time history fér(d)

presents the time history f@. (e) presents the phase portrait f&nd z; (f) shown the phase portrait fér and 4.
(9) illustrate the stability diagram fog; and (h) forxs, of the adopted dynamics model, by using numesiesles for

the chosen paramete€s0.0629, r=7.28, b=4.56, m;=0.0795, m,=0.0000588, 0.,=0.442, W}, = 0.144, u,, = 0.345,
M, =0.0281anda,=varied.
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Figure 4. (a) Time history fa (b) Time history forz . (c) Time history fo®. (d) Time history ford. (e) Portrait Phase farand
2. (f) Portrait Phase fof and 6. (g) Stability diagram foranda,,. (g) Stability diagram fof anda,,.

The eigenvalues ark;, = 0,024122+1.6027ijAs= -0.9820;2,= 1.0246. The eigenvaluds , indicates that the
magnetically levitated body is unstable and theufégt illustrates the chaotic dynamig=<0.46) of Lyapunov exponent
for magnetically levitated body.
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This chaotic behavior illustrated in Figure 5, mated us to establish a stabilization control meétaioned at direct
cancellation of the parametric excitation withostng the auto parametric energy transfer that regupecial tuning
of the natural frequencies of the main system aadabsorber.

Dynamics of Lyapunov exponents
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Figure 5. Dynamics of Lyapunov expoents for thgnagically levitated body

3. CONTROL DESIGN

In this section, we applied optimal linear contlesign for the magnetically levitated body (figdde reducing the
oscillatory movement to a small stable orbit. Neve, present the theory of the used methodology.

Due to the simplicity in configuration and implent&tion, the linear state feedback control, it igezsally attractive
(Rafikov, Balthazar, 2008; Chavaretteal, 2010a; 2010b; 2009; Fenili, Balthazar, 2010).

We remarked that this approach is analytical, &nthly use without dropping any non-linear term.

Let the governing equations of motion (1), re-weritin a state form

x=Ax+g(x). @

If one considers a vector functioX , that characterizes the desired trajectory, akentahe controlU vector
consisting of two partstl being the feed forward anglis a linear feedback, in such way that

U, =Bu 3)
where B is a constant matrix. Next, one taking the dewratdf the trajectory of system (2) to the desirew o
y = X=X, may written as being

y=Ay+9(x)-9(X) +Bu &
where G(y,)?) is limited matrix we proved the important resitefikov, Balthazar, 2008).

If there exit matricesQ(t) and R(t), positive definite, beingQ symmetric, such that the matrix
Q=Q-G'(y,X)P(t) - P(t)G(y, X) is positive definite for the limited matrig, then the linear feedback control is

u=-R'B"Py. (5)

It is optimal, in order to transfer the non-lineafstem (6) from any initial to final statt;)=0, minimizing the
functional J = j(yT(jy+ uTRu)dt, where the symmetric matri(t) is evaluated through the solution of the matrix

0
Ricatti differential equation

PA+A"P-PBR'B'P+Q=0 (6)
satisfying the final conditio(t;)=0.

In addition, with the feedback control (6), thexésts a neighborhoof, O ', ' T 0", of the origin such that if
X, Ol,, the solution X(t) =0, t=0, of the controlled system (4) is locally asymptalig stable, and

Jin = XgP(O) X,.Finally, if T=0" then the solutiony(t)=0, t>0, of the controlled system (4) is globally
asymptotically stable.
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Using the theorem by Rafikov and Balthazar the dyinaerrory can be minimized y - 0 ) (Chavarettet al,
2010a; 2010b; 2009; Rafikov and Balthazar, 2008).

3.1 Theorem (Rafikov and Balthazar, 2008).

If there is matrixe® andR, positive definiteQ symmetric, such that the matrix

Q=0Q-G" (x,X)P-PG(x,X) @)
is positive definite for the limited matri% , then the linear feedback control

u=-RB'Py (8)
is optimal, in order to drive the non-linear syst@jof any initial state to the terminal state

() =0 €)

minimizing the functional
J=[(y'Qy+u" Rujdt (10)
0

where the symmetric matrR is calculated from the nonlinear Riccati equation:
PA+ATP-PBRIBTP+Q=0 (11)

Next, we will apply this methodology in the maguatly levitated body (1).

3.2 Application of the Linear Optimal Control to the Non-linear System.

The equations (1) describing the magnetically &teid body controlled:
747 =-p 7 +0cosvt” +2a, 07 cosvt’ —a,z” —a,z° +m 6> +mr w2e> —m'r 6’

-mr'w;b dcosf,t” +y) +%m’kr*wgb*6’3 cosf,t +))+U, (12)
0+ (W; +Z.*Jt9 = —u,0+W2b cos,t” + ) +%W§93,
r
where the function of control U is defined in thiuation (1).
1 X~ Z 006 0 1 0 0
. . 1 X, — ?2 - 006 -1092 0057 -0.072 O
We will obtainB=| |, y= — |, x= , Q=lg, A= ,
1 X3 = X5 006 0 0 0 1
1 Xy~ Xl 006 0 -0.008 -0353 O
where the controllability matrix R of the systenthe pair [A,B] is obtained byR =[B| AB|A2 B...| Azn_lB] .
1 1 -11069 -1.2282
Thus, R = 1 -11069 -1.2282 11644 '
1 1 -0.3421 -0.3439

1 -03621 -0.3439 0.1386
71068 -0.8881 -0.5870 20366
Then the Matrix P(t) is done by p= -0.8881 63010 -16019 -34036|and (an optimal control)
-05870 -16019 38756 11664
20366 -34036 11664 8.3649
u=0.3834 +0.020%, + 0.1426x, + 0.4082Z,. The trajectories of the system with control may $een,
through Figure 6. According to the optimal contrdrification (Rafikov, Balthazar, 2008), the fumxti (4) is
numerically calculated acrods(t) = yTéy ,whereL(t) is defined positive and it is show in Fig. 6-g.
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We observe irFigures 6 and 7 that the performance of the propasettoller reduced the amplitude of oscillation
of the system, eliminating the chaotic behaviorvatan Figure 5. It is noted from Figure 7 that thebits of the
controlled system (blue) is smaller than the unudled (black). It is noted also that the positfeature presented in
Figures 6e and 6f and consequence of the propaserbtier illustrating the efficiency of this.

4. CONCLUSION

In this work, a dynamics of the magnetically letéth body proposed (Yabureb al, 2004) is investigated through
numerical simulations using the software Matlab®.Uhe model of the magnetically levitated bodyhnibhe active
vibration absorber is shown in Figure 1 and Figuishown the experimental setup this work (Yabetrad, 2004).

The Figure 4 illustrated the behavior dynamics pegal by (Yabunet al, 2004) and Figure 5 illustrated the chaotic
dynamic through of positive Lyapunov exponeént(.46) for magnetically levitated body.

This chaotic behavior illustrated in Figure 5, mated us to establish a stabilization control métamned at direct
cancellation of the parametric excitation withostng the auto parametric energy transfer that reguspecial tuning
of the natural frequencies of the main system dmedabsorber. We proposed the application of th@anaptlinear
control (Rafikov, Balthazar, 2008) to control thestable movement and this kind control strategyiced the chaotic
movement to a small stable orbit. Figures 6 anitLigtiates the effectiveness of the control strat&ge see Figures. 4
and 6, that the control technique applied to theotih system has the amplitude of the oscillatiecrdase.

The data obtained here are in agreement with thererental work by (Yabunet al, 2004), but with the difference
that in this work, we can see that the amplitudeosdillation of the controlled system is smallearththe result
presented by (Yabura al, 2004) allowing a gain in performance of the colféd system.
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