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Abstract. This work presents a new numerical methodol ogy to obtain self-equilibrated load cases from an aircraft load
envelope and a robust optimization procedure. The physical non uniform loading is represented by piecewise linear
functions defined at a number of arbitrary load control points including parameters that control the robustness of the
load representation. The load control points are arbitrarily distributed along the structure edges. A better correlation
between the physical loading and its numerical representation is achieved as the number of load control points
increases. This new methodology allows the representation of any arbitrary non uniform loading with a prescribed
degree of fidelity and robustness. As an example, the obtained load cases are used for the buckling load optimization of
an aircraft reinforced panel. The minimax strategy is used in the optimization process. the buckling load is maximized
with respect to the geometric properties and minimized with respect to the self-equilibrated load cases. The result is
the best geometric properties for the worst load case. A mass optimization external loop is implemented to yield a
minimum mass structural design that satisfies the design requirements within a prescribed safety margin.
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1. INTRODUCTION

The aeronautical structures are subjected to @ laagiety of loadings that result in a large numbecomplex
stress and strain distributions. Therefore, thersautical design could be non conservative if daing is considered
to be uniform. On the other hand, the computaticoat of the optimization procedure would be prdhié if hundreds
of load cases were taken into account. A goodratere is to determine the critical load cases eselonly them in the
optimization process.

In order to work with a reduced set of load caggdishakoff (1983) proposed to use a probability signfunction
associated with each loading. However, these pilityalistributions are not always known and it déficult to
mathematically express them.

Another methodology to deal with a reduced setoafll cases is the convex method (Bem_haim and Eb#ha
1990). In this method, a group of critical loadingsnilar to the vertices of a convex polygon,etested. A load space
is created with these loadings assuming that allelements of this load space have equal probalfitoccurring.
Cherkaev and Cherkaeva (1999) used this method@ndyproposed a procedure to maximize the bucktiad with
respect to the thickness of a panel and minimizi wespect to the load cases. This methodologydyiel robust
structure for the load cases applied to it.

The issue of selecting the critical load cased istmost importance for the optimization of aeraizal structures.
Typically, there are a very large number of loasesato be accounted for. Elishakoff (1983), Bemmhand Elishakoff
(1990) and Cherkaev and Cherkaeva (1999) presemt sateresting approaches to deal with this probbemthey do
not address some important aspects of the proff@mexample, the actual load cases of an aircafippnent are
always self equilibrating as the component may $®umed to be in static equilibrium. Moreover, ualtke typical
assumption used in most optimization works, they t@pically non uniform along the edges of the gdatlue to
stiffness variation along the component. Thereftre,load distribution usually changes as the dpétion procedure
changes the design variables (dimensions of this)pdihis problem is very complex and a robust pdoce needs to
be developed to account for this fact.

The methodology to represent the load cases prdpnsghis work is based on the work developed bgr@do et al.
(2005). It represents non uniform loadings by pigse linear functions defined along the boundaryhef structure
using loading control points. Assuming that the ponment is under static equilibrium the non unifdoadings should
be self-equilibrated. Moreover, in this case thekting modes are not affected by the position & tmposed
constraints to prevent rigid body movement. Howeureithe work developed by Conrado et al. (2005¢, obtained
self-equilibrated loadings have no correspondendié physical loadings applied to the structurerédver, as they
are self equilibrated, they have no magnitude. &imizing a structure based on the loadings obthiftom the
procedure developed by Conrado et al. (2005) iraplie getting an optimal structure considering lazdes that
possibly will not occur in practical situations uéigng in an over dimensioned design.
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The present work describes a procedure that retfa¢eshysical loading to the self-equilibrated liogd. Parameters
that control the design robustness with respeettth physical loading at each load control poirmevedso included in
the formulation. Therefore, the optimum panel isagted considering a set of physical load casesahto represent
the main load cases applied to the structure. iftddification makes the load representation closaral situations
and the robustness of the design may be arbitpardgcribed.

An important additional advantage of this methodglas that it takes advantage of the fact that maingraft
structures are statically determinate. For exampie,can compute exactly the moment distributiom eving based on
the pressure distribution obtained from an aerodyoaanalysis. These moments are independent orstifieess
distribution of the wing structure but they canused to compute integrals of the internal forcesiglthe edges. This
information can be used to define the magnitudin@fconsidered self equilibrated load cases. kwiay, the obtained
non uniform loading representation does not degemthe structural stiffness distribution. This featis suitable for
optimization problems since the structural stiffnescontinuously modified during the optimizatjmmocess.

The optimization of the panel geometric propertiesler the load cases that represents the physiads lis done
using the minimax strategy, as used in Faria amdefda (2003). In this work, the minimax strategyalgis to get
maximum buckling for the worst loading conditiorheTl objective function is minimized with respectthe loading
cases and maximized with respect to the desigablas. A mass optimization external loop is implated to yield a
minimum mass structural design that satisfies ggih requirements within a given safety margin.

The structure chosen for optimization is an isdtrgpanel with two reinforcers. The optimization alighm is
implemented in a Fortran code and software Abadgigs@sed for buckling computation. Using Abaqus©oa&zted
with a Fortran code makes the optimization procegupposed in this work more flexible and generak procedure
can be easily adapted for the linearized bucklipintzation of any type of aeronautical structukéso, the analysis is
more reliable using commercial software such asgfb®.

2. NON UNIFORM LOADING REPRESENTATION

The basic data required for the non uniform loadegresentation is the shear and compressive aressa panel
of an aircraft wing. These stresses are origin&t@u the vertical resultant forces distributiongnlling and torsional
moment distributions on the wing, which are origathfrom the wing pressure distribution. Figure d&picts the steps
for computing the compressive and shear stresfiaession a wing panel. Considering that the aftavéng is in static
equilibrium the forces and moments distributiond wot depend on the stiffness distribution of thimg. The same
holds for the resultant shear and compressivesatsasn the panels.
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Figure 1. Compressive and shear resultant stresses.

As an example, suppose that the bending momenteattain point along the wing is known from an agramic
analysis. Considering that the wing is in pure legdthe load corresponding to the integral of $hress resultant can
be easily estimated independent on the stiffnestilmlition of the wing. Therefore, the magnitude tbé self
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equilibrating loading cases can be determined kpyosing that their integral along this edge areldas computed
from the bending moment. Naturally, an arbitraryntuer of additional constraints may be imposed an ghlf-
equilibrated loading cases if the complexity of peysical load case requires.

This work assumes that the resultant shear and re@sipe stresses on the panel are known. Therdfadijrst
step of the non uniform loading representatioroipdrform the compressive and shear load disctetizalhese loads
are assumed to be discretized by piecewise lingaetibns distributed along the edges of the strect&igure (2)
depicts a non uniform load distribution appliedatstructure edge and the corresponding load dizatien.

fa

f3 fg

Figure 2. Load discretization.

In Fig. (2), points 1, 2, 3, 4, and 5 are definedaad control points; in these points the magmitafithe loads are
prescribed. The number and position of the loadtrobmpoints are arbitrary. They are chosen basedrade off
between computational cost and accuracy of physizal representation. As a general rule, in ordecdnsider the
load transfer mechanisms, the structure must hawecbincident load control points at each cornergtcount for
loads discontinuities between the edges) and oae e@ch reinforcement end (to account for loadati@an due to
sudden variation of stiffness). The loads magniuale defined by the loading paramefers, fs, f; andfs in Fig. (2).
Load parameterg may be either loads along theor y directions. Therefore, for a two dimensional pesb] at each
load control points correspond two loading paransete

After defining the loading discretization, it is aessary to enforce constraints in the finite elémmandel to
preclude rigid body motion. In the two dimensionake presented as an example in this work, ifcasfto constrain
the displacements of two nodes alongthdirection (these two nodes must not have the sagwordinate) and one
along they direction to preclude rigid body motion in tke plane. These boundary conditions do not causecspsur
reaction loads when self equilibrating load casesansidered.

In fact, if one considers an aircraft componentaunstatic equilibrium, all resulting load distribont are self
equilibrating. Since the load distribution mustdadf equilibrating, the equilibrium conditions afrées along andy
directions and moments along tleaxis must be satisfied. Of course, these equatappy only for the two
dimensional case presented herein. For the thmeerdiional case there would be six equations oflibfum. The
loading magnitudes at the load control points hesunknown in this system of equations describegqin(1):

> F,=0

2.F, =0 )

> My=0

The equilibrium equations can now be rewritten &tnx form as:

[GHX 0} @
where [3] is 3xm matrix,mis two times the number of loading control pointsyesponding th& andy components at

each load control point.{} is the loading magnitude vector containing the load magnittideach load control point.
Matrix [G] and vector ¥} are given, respectively, by:

|1+‘]1 0 |2+Jz 0 lm/2+‘]m/2 0
[G]: 0 |1+‘]1 0 I2""]2 0 Im/2+‘]m12 (3)
_(N1+Ol) T1+U1 _(N2+02) T2+U2 _(Nm/2+oml2) Tm /2+Um/2
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where the termk, J;, K;, L;, N;, O;, T; andU; represent the contribution of the loading disttiidno.

{ X}T = [ f’& f)’l fxz f)’z meIZ me/2:| (4)

It is possible to see that the number of unknowrgréater than the number of equations in Eq.G@hrado et al.
(2005) dealt with this numerical problem, minimigitne following function to obtain the self-equitiited loadings:

e =({n"-{x7) ({n}~{x}) )

where {} is an unit base vector. For example{’ ={1 0 0 ... 0}. In this case Eq. (2) is usedsasonstraint to the
problem and vectorX} is obtained according to the following equation:

(3} =([11-1eT'( 1e] [e]') [e] )i ©

since {n} can bem different vectors, it is possible to get different vectors of load magnitudeX}that are self-
equilibrated load cases. Since, the self equilibgatoads do not have magnitude, in Conrado ef28l05), for each
self-equilibrated load case, one optimization psscées performed to obtain the optimum design tatish the
maximum magnitude for this load case. This valuasisd to define the magnitude for each self eqailddl loading.
This procedure makes the computational cost high the resulting design may be very conservativeabse, in
practical situations, not all of these loads wikor simultaneously. Furthermore, the magnitudéndiein described
above for each self-equilibrated load cases isalated to the physical loads that act on the sirac

Aiming at bringing the structural optimal desigosgr to real situations, this work proposes sonamgés in the
approach of obtaining self-equilibrated load caseesd in Conrado et al (2005). The idea is to defiagnitudes for the
self equilibrated loadings that represent eachahgqtinysical load within the load envelope of theisture and provide
parameters that control de robustness of the agiinn procedure.

Therefore, the null vector in Eq. (2) is replacedvector {A}; which is null in the first three rows defining the
equilibrium conditions and have the physical loaggnitudes in the others rows. The indenefers to the load case
considered. This vector makes possible to get fegellibrated loading case that corresponds tohgsioal one.
Moreover, this approach can provide a meaningftihifien of self equilibrated loading with verytié computational

cost. The ] matrix in Eq. (2) is replaced by EG] matrix which includes extra rows. The first thnemvs still

representing the sum of forces and moments, therotimes represent the forces on the edges whenghlysical loads
are applied:

[GKX £ A, )

In this new methodology the function that shouldni@imized to solve Eq. (7) is also modified. H&g. (7) is
used as a constraint on the function in Eq. (8)miization:

e =(pR{n] -{x}]) (nF{n}, -{x},) (8)

wherep; is a dimensionless parameter arbitrarily chosehérrange [0, 1]. These parameters define therueghitude
percentage applied at each load control point. Sthescriptj refers to the load case considered arefer to the load
control point. This parametqy; provides the designer with the capability of chiogswhether the physical load
representation should be conservative or noip;lis chosen to be 1 the load magnitude at load cbint i
corresponding to theth physical load will tend to be very conservatias in Conrado et al. (2005). On the other hand,
if it is chosen to be zero the load magnitude atlloontrol point corresponding to thieth physical load will tend to be
very non-conservative. Typically, from the desigrnnp of view it is interesting to use a value betwehese two limits.

F. is the magnitude of the load applied at the loantrol point. It is defined from the load applied the edge

i
where load control point is located:

= 2A

T ()
e (T (&)
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whereA is the load applied on the edge considered. Theiso of this minimization problem yields vectax}:

(4, = 01-[aT;( [e],[6]) (], | mAi (o, +[6T (€] [6) 14, )

Vector {X}, is the self-equilibrated load capeorresponding to the physical load caskn this way, having the load
envelope of a structure, it is possible to optimizdor the specific load envelope. This procedueeluces the
computational cost and leads to a more efficiedtrabust design.

3. OPTIMIZATION STRATEGY

The minimax strategy (Dem’yanov and Malozemov, }984defined by Eq. (11). It is used in this workwthe
goal of getting the best design for the worst loaddition:

maxmin@ (t} {4} )= map {t} ) . ¢{4 F mind {§ {4} (11)

In the first part of the minimax strategy the obijee function is minimized with respect to load eads} by a
random search. In the second part of the minimeategty the objective function is maximized withpest to the
design variablest]. This is done by Powell's method (Vanderplaa®34 and Powell, 1964) which is a traditional zero
order optimization method. Geometric constraintsewiacluded in the optimization algorithm to gudesnthat the
search was performed only in the feasible region.

An external mass optimization loop is included I toptimization process to minimize the structuwalight
satisfying the design requirements. This exteroalpl was used in a previous work (Ferreira et a920with
satisfactory results. The complete optimizatiorcpss is represented in the diagram of Fig. (3).

I Optimization Strategy I
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Figure 3. Optimization process diagram.

It can be seen from the optimization diagram thathe end of the first part of the minimax stratéigis verified
whether the considered structure buckles or nat. bfickles, the structure mass should be increasedfirst part is
repeated until a not buckled structure is obtaifiéxd verification whether the structure is undeower dimensioned is
performed at the end of the second part of themaristrategy. If the structure satisfies the safedygins and design
requirements, the optimization process is compldfatt, the mass should be updated and part fuloeooptimization
process repeated.

One important issue is estimation of the requireassncorrection. An inappropriate mass adjustmestbifecan
result in an optimization process that does novvemye. The mass adjustment factor used in this warles with the
cubic root of the buckling optimal load. The thdma base for this mass adjustment factor is that flexural
structural stiffness varies with the cube of thizkhesses for flat plates. This factor is not exactthe structure
optimized in this work because of the flexural fagks of the reinforcements. However, it representgood
approximation.
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4. NUMERICAL RESULTS

The structure chosen for optimization is a rectéarggotropic plate with two reinforcers as repréed in Fig. (4).
The plate dimensions are 0.4 m in thdirection and 1.2 m in the direction. The material is aluminum with Young
modulus of 70 GPa, mass density of 2600 Rginmd Poisson ratio 0.3. The reinforcers are positicaix = 0.4 m anck
= 0.8 m, dividing the plate in three sections. Tesign variables are defined for obtaining a symimstructure. In
this way, the width and height of the two reinf@@mmprise two design variables, (= w, andh; = h,) and the three
sections comprise another two design varialtles {; andt,). Figure (4) depicts the reinforced panel withdesign
variables. A base plate is used to avoid null vafae the design variables. The same is done Wahré¢inforcers width
and height values. Since the magnitudes of theiosectthicknesses and reinforcers width and heigint be
significantly different, the design variables mbetnormalized in the optimization process.

The load control points are positioned accordingitp (5). It was assumed that the load envelopmisposed of
five load cases. Table 1 describes the consideetl dases. In Tab. 1, the symbol “x” means thagd kt an edge is
present; the total force represents the valueeirttegral of the force over the prescribed edges.
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Figure 4. Design variables.
Table 1. Load cases.
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Figure 5. Load control points positions.
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The finite element model to compute the bucklingdiavas implemented using Abaqus®©. It was used &0 s
elements for the panel and 10 beam elements ftrreatforcer.

This work presents three examples of panel optitimzathe difference among them is the loading i@dplThe
first example useg; = 0 in Eq. (10). The second example yses 1 and the third uses = 0.25.

4.1. Reinforced panel considering; = 0

In this work, twenty load control points were us&tlis quantity is justified by the necessity ofgitey load control
points near the reinforcers to account for the Idetkibution variation due to the stiffness vaoat From the load
control points distribution, Fig. (5), and plotEbrce x Edge distance, Fig. (6), it can be seenathaoints 3, 6, 13 and
16 the load magnitude is significantly lower beeatie segments length defined by these pointsnaaies compared
to the others. So, their contribution to the foscen at the edge is small. If at the physical loeithdp considered there
are significant loads at these points, it wouldnleeessary to create a new self-equilibrated loatowdor the load
control point considered usirg # 0. Furthermore, the self-equilibrated loading otetd whenp; is equal to zero is
almost uniformly distributed. This is not a reatistoad representation since physical loads are-umiformly
distributed.
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Figure. 6 Self-equilibrated loading for load casg;1= 0.

Table 2. Optimization resulfs = 0.

Initial Structure Initial Structure . Initial Structure .
Initial | Optimum | Initial | Optimum | Initial | Optimum
(mm) (mm) (mm) (mm) (mm) (mm)
t, 2.5 1.18 3.8 1.17 3.8 1.16
t, 2.5 1.18 1.2 1.14 1.071 1.17
w, 4 4 3 4 4 4
h 80 10.25 42 14.36 34.1B 11.57
mas:1 376 1.55 3.9 1.56 3.9 1.54
(kg)
A 9.94 1.02 1.32 1.00 0.94 1.00
A, 25.40 2.67 6.62 2.63 4.6 2.57
A 19.01 1.93 2.93 1.95 2.04 1.88
A 12.78 1.31 1.70 1.29 1.2 1.29
A 14.67 1.53 1.79 1.44 1.21 1.52

Table 2 presents the optimization results for thieforced panel under the load cases describedain I.The
optimization is performed for three different ialtistructures. The first and the second initialctuires are over
dimensioned for the load cases considered. Thegostifpads that are almost ten times and 32% laiger the ones
that are actually applied, respectively. The thiritial structure is under dimensioned, that ishitckles under the
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considered load cases. The buckling load is definekl The used stop criterion for the optimization 86, that is,
the optimization stops when the normalized objecfunction is in the range [1.00 — 1.02].

Analyzing Tab. 2 it is concluded that the load caseas the critical one resulting in the lowestKing values
before and after the optimization process. Using tass optimization external loop, the three ihisiuctures
converged to design variables that satisfy theggesquirements and safety margins. However, opsitnacture 3 can
be considered the best since its mass is the |@mesihg the three optimal structures.

4.2. Reinforced panel considering; = 1

Settingp; = 1 in Eq. (10) corresponds to assume that thieeeatlge load given byA}; is concentrated at load
control pointi. In order to compute the self-equilibrated loadings first necessary to determine the force nitage at

the load control point, given by p,F;. Seven self-equilibrated load cases were obtalnyedsing the methodology

described in Section 2. The first three self-equitied load cases were obtained using load case fij& 1 at load
control points 2, 5 and 8. This loading definitiwas adopted because it was concluded in Subsettlatihat the load
case 1 is the critical one. The others four selfldaated load cases are load cases 2 to Spyith0. Figure 7 presents

the self-equilibrated loading for load case 1 aratlicontrol point 2 and Tab. 3 presents the opéitiua results.
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Figure 7. Self-equilibrated loading for load casentl load control point ,; = 1.

Table 3. Optimization resulfs, = 1.

Initial Structure . Initial Structure . Initial Structure .
Initial | Optimum | Initial | Optimum | Initial | Optimum
(mm) (mm) (mm) (mm) (mm) (mm)
t, 2.5 151 3.8 151 3.8 151
t, 2.5 1.61 1.2 1.66 1.0 1.66
W, 4 4 3 3.08 4 4
h 80 18.32 42 21.64 34.1B 18.40
mass | 376 2.07 3.9 2.08 3.9 2.09
(kg)
A 4,75 1.01 2.43 1.00 1.72 1.00
A, 4,01 1.02 0.48 1.08 0.34 1.11
A 4.69 1.03 2.76 1.02 1.95 1.01
A, 25.40 5.67 6.62 5.63 4.64 5.59
A 19.01 419 2.93 417 2.0¢ 4.13
As 12.78 2.91 1.70 2.85 1.2 2.90
A, 14.67 3.77 1.79 3.86 1.21 4.09
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When, for example, parametggs is equal to one, it can be observed from the tmadrol point distribution (Fig.
(5)) and Force x Edge distance plots (Figs. (7} there is a large load concentration at sectiah the upper edge.
Physical loadings with such a load concentrati@rat common and the structure designed to supipest loadings
will probably be over dimensioned for practical kgations.

It is concluded from Tab. 3 that load case 1 igoali. For this case, the lowest buckling loadsiitdsefore and after
the optimization process. Optimal structure 1 leslowest mass, so it can be considered the glyitachum. Using
the mass optimization external loop, the thredah#tructures converged to design variables thtisfy the design
requirements and safety margins. Consistentlynhss of the optimal structures foy = 1 are larger than the ones
obtained wherp; = 0. This is expected since the load represemtatibenp; = 1 is more concentrated and non-
uniformly distributed.

4.3. Reinforced panel considering; = 0.25

Using the five physical load cases results in 32espiilibrated load cases fq; = 0.25 at all load control points.
Load case 1 is a compressive load acting at the adlty load control points 1 to 8; choosipg= 0.25 at each one;
eight self equilibrated load cases result. Loa@ @ais a compressive load acting at the edge wittl tontrol points 19
and 20; this yields another two self-equilibratedd cases. Load case 3 is a shear load defind &dge with load
control points 1 to 8 and at the edge with loadr@dpoints 19 and 20; this results in anotherdelfrequilibrated load
cases. Load case 4 is a compressive load at edpelagid control points 11 to 18 yielding anotheghti self
equilibrated load cases. Load case 5 is a shedrdefined at the edge with load control points ad 42 and on the
edge with load control points 17 and 18; this rssiml another four self equilibrated load cases.

Figure (8) presents the plots of Force x Edge digtawhem,, is equal to 0.25. The comparison between the load
distribution usingp; equal to one and the load distribution usiggqual to 0.25, can be made by comparing the load
control point distribution presented in Fig. (7)ddrig. (8). There is also load concentration atisecl at upper edge,
when parametep,, is equal to 0.25. However, this load concentrattosmaller than the one that happens whgis
equal to one. The overall load distribution in theases is more typical of non-uniform physicatling. The structure
designed to support these loadings will probablgpsut a large variety of loadings that are presanpractical
applications.

Analyzing Tab. 4 it is observed that the load chse critical load case. It yields the lowest bimglloads before
and after the optimization process. Optimal stmgg\? and 3 have the same mass (lower than omimeature 1) and
almost the same shape. Therefore, these two stescane the best ones. Using the mass optimizasitannal loop, the
three initial structures converged to design védemlhat satisfy the design requirements and safetgins. The mass
of the optimal structures has an intermediate valmpared to the ones obtained fyr= 0 andp; = 1. This is
consistent with the fact that the loading represettityp; = 0.25 is not as concentrated as the one repezsegp; = 1
and also not uniformly distributed as the one repnéed byp; = 0.
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Figure 8. Self-equilibrated loading for load casentl load control point 3; = 0.25.
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Table 4. Optimization resulfs = 0.25.

Initial Structure 1 Initial Structure 2 Initial IScture 3
Initial Optimun | Initial | Optimurr | Initial | Optimurr
(mm) (mm) (mm) (mm) (mm) (mm)
t 25 1.28 3.8 1.28 3.8 1.25
t, 25 1.32 1.2 1.31 1.071 1.29
W 4 2.48 3 3.73 4 4
h 80 17.59 42 12.00 34.1B 14.5
mas | 376 1.70 3.9 1.69 3.9 1.69
(kg)
A 8.21 1.04 1.81 1.05 1.2§ 1.02
A, 8.19 1.02 1.55 1.02 1.04 1.01
A, 10.27 1.29 1.33 1.33 0.94 1.33
A, 7.56 1.00 0.93 1.00 0.66 1.01
A 7.56 1.00 0.93 1.00 0.66 1.01
As 10.27 1.29 1.33 1.33 0.94 1.33
Ay 14.65 1.96 1.79 2.04 1.24 2.02

5. CONCLUSION

The methodology proposed in this work makes pasdibl extract self-equilibrated load cases with nitage
associated with physical load cases within an mnhitprescribed accuracy. The load representatiandre realistic
and the resulting designs robustness can be adjusieg parameterg;. If these values are close to zero the self
equilibrated loadings tend to be almost unifornth# values are close to one, self equilibrateditags tend to be more
concentrated. Therefore, these parameters musudieiqusly chosen by the designer to obtain a sgeliload
representation and, consequently, yield an optéasign that has a reasonable safety margin.

In the examples presented the mass of the optimaitgre were larger for larger values of paransepgr This
confirms thep; parameters ability to define the degree of romsgrof the optimal design. That ispjf are equal to
one, the loading is considered almost concentrateldhe optimum structure must be heavier to supisrunrealistic
loading; therefore, the design is very conservatifvp; are equal to zero, the considered loads are alomifsrm and
the optimum structure is lighter. But, the optinaEsign tends to be non conservative because néormnlioads
typically exist in practical applications. When are set equal to 0.25, the considered loading-undfiorm and the
optimal structure mass has an intermediate valueeShe loading representation with= 0.25 is more realistic, it is
possible to state that, for the studied example,citrresponding optimal structure would have bgitgformance in
practical application.

Parameterg; were shown to control the robustness of the dedigrthis work, these parameters were only
considered to be 0, 0.25 or 1.0 to demonstratefdaiture. But it must be emphasized that thosenpeters can be
chosen for each load control point for each padicload case. Therefore, these parameters offeabte flexibility to
the designer but there is a need to establish luidefor their choice. The development of a gelnaral realistic
representation of non-uniform loadings will be tubject of a future work. This will include a prdcee to select the
number of load control points and the value of pheparameters according to the nature of each phatiepplied
physical load.

The optimization using the minimax strategy makessible to obtain the best design and identify st
loading condition. In all cases tested the critlmatkling load was maximized and the mass reduced.

In summary, the proposed methodology can efficiepteld optimum structures under arbitrary non-anif
loadings. Moreover, the accuracy of the load repregion and the robustness of the design can hi¢raaily
prescribed. Therefore, this tool can be extremalyable for the preliminary design of aircraft stures.
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