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Abstract. The continuum-based (CB) finite element approach has been demonstrated to be a good choice for the modeling
of long thin structures, providing very good results. In this technique, the element formulation starts from the classical
continuum formulation. Then, assumptions on the motion and on the stress state of the elements are made so that they
behave like structural elements, e.g. beams and shells. Therefore, this methodology seems to be a simpler way for
developing structural elements than the use of classical theories.
In this paper the CB approach is used for the development of a multilayer three-node beam element for the solution of 2D
linear elastic problems and limit analysis using direct methods. The element displacements/velocities are quadratic along
the element axis and linear through the thickness. Bilinear interpolation functions are used to interpolate the stress fields
on each element layer. Continuity of the stresses through the element thickness can be also enforced. Different materials
can be defined on each element layer, allowing to model composite.
The use of mixed formulation allows the easy application of the element proposed herein on the solution of plasticity
problems using direct methods. The examples provided include simulations of linear elastic and limit analysis problems.
The results are used to verify the robustness and accuracy of the element.
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1. INTRODUCTION

Structural elements such as beams, plates and shells, are very important for modeling long thin structures especially
because the use of classical continuum elements for this task is computationally very expensive due to the huge number of
elements required. Moreover, modeling of long thin structures with continuum elements often leads to high aspect ratios
which can cause ill conditioning of the system of equations and loss of accuracy of the solution (Belytschko et al., 2001).

Structural elements can be formulated by using classical theories, e.g. Euler-Bernoulli and Timoshenko beam theories,
or by developing the element directly from a classical continuum element by imposing proper structural assumptions. This
second technique is named continuum based (CB) approach (and is also known as degenerate continuum approach).

In this work the CB approach is used for the development of a multilayer three-node beam element for the solution
of linear elastic problems (Hughes, 1987; Bathe, 1996) and limit analysis problems using direct methods (Maier et al.,
2003; Zouain, 2004). Other implementations of CB beam elements for different applications can be found in (Sosa and
Gil, 2009).

Particularly for plasticity problems using direct methods, structural CB elements are advantageous because the yield
function can be defined the same way as for continuum elements, without any approximation. However, for classical
beam elements, the yield function is approximated by using stress resultants: bending moment, shear and axial forces.

The element proposed herein is different from those originally given by Belytschko et al. (2001) mainly because it is
developed using a mixed formulation whereas Belytschko’s element employs a kinematical formulation. Nevertheless,
for the solution of limit analysis problems, implementing mixed elements is easier and, in general, more appropriate than
producing kinematical elements because the dissipation function for the discrete version of the kinematical formulation
needs to be exactly computed, which is only possible for simple interpolation schemes (Borges, 1991).

The proposed mixed CB beam element employs an interpolation scheme compatible with the Hellinger-Reissner func-
tional. Hence, it interpolates stress and displacement/velocity fields independently. In this case, displacements/velocities
are quadratic along the element axis and linear through the thickness. Stresses are interpolated by layers using bilinear
interpolation functions.

The implementation using the CB approach was easy and provided very good results, as demonstrated by the exam-
ples. Furthermore, one of the next steps of this research involves the development of shell elements for limit analysis
and shakedown problems. In this case the CB technique becomes specially appealing, since it avoids dealing with the
complexity of the governing equations involved in classical shell theories, mainly to describe the yield function.

The paper is structured as follows: Firstly the variational principles used to obtain the discrete versions for the linear
elastic and limit analysis problems are briefly presented. Secondly, some details for implementing the finite element are
provided along with the discrete versions of the variational principles previously described. Thirdly, two examples are
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given to demonstrate the element performance: the first involving a linear elastic analysis of a curved beam and the second
for the case of a limit analysis of a beam subjected to bending plus axial force. The results are presented and discussed.
Finally, some concluding remarks are made.

2. VARIATIONAL PRINCIPLES

One of the advantages of the continuum-based element formulation for modeling beams is that governing equations
for the structural element are identical to those for continua. The specialization of these equations to beams, which is
performed in the next section, is made imposing the assumptions of beam theory on the motion and on the state of stress.

In this section we briefly provide the variational formulations used to obtain the discrete equations for linear elasticity
and limit analysis.

2.1 Two-field mixed formulation in elasticity

The Hellinger-Reissner functional (Han and Reddy, 1999; Bathe, 1996) is given by

ΠHR(σ̂, û) = −1

2

∫
B
σ̂ · Ê−1σ̂dB +

∫
B
σ̂ · DûdB −

∫
B
û · b̂dB −

∫
Γτ

û · τ̂ dΓτ (1)

Invoking the stationarity of its first variation (δΠHR(σ̂, û) = 0) one can arrive at the following variational or weak
formulation, used for the development of the mixed CB beam for linear elastic problems:

Given the prescribed body forces b̂ acting on B and the boundary tractions τ̂ applied on the part Γτ of the boundary Γ
of B, find the displacement field û ∈ V and stress field σ̂ ∈ W ′ that satisfy

∫
B
δσ̂ · DûdB −

∫
B
δσ̂ · Ê−1σ̂dB = 0 ∀ δσ̂ ∈ W ′ (2)

∫
B
σ̂ · DδûdB −

∫
B
δû · b̂dB −

∫
Γτ

δû · τ̂ dΓτ = 0 ∀ δû ∈ V (3)

The space V consists of all vector fields sufficiently regular and satisfying homogeneous constraints in the part Γu,
of the boundary Γ of B. Note that since the first derivative of û and its variation δû appears in Eq. (2) and Eq. (3),
respectively, elements of V should have integrable derivatives, that in this case implies û, δû ∈ C0.

On the other hand, the field space W ′ comprises less regular functions. In fact, the elements of W ′ are symmetric
tensor fields which can be piecewise continuous functions, i.e., σ̂, δσ̂ ∈ C−1.The dual space of W ′ is the space of
admissible strain fieldsW .

The boundary partition, Γu and Γτ , is such that Γu ∪ Γτ = Γ and Γu ∩ Γτ is empty.
The fourth order tensor Ê determines the elastic stress-strain relation, andD is the tangent deformation operator which

maps V intoW . Then, σ̂ = Êε̂ and ε̂ = Dû, ε̂ ∈ W .

2.2 Limit Analysis

Under the assumptions of proportional loading, infinitesimal strains and small displacements, the limit analysis prob-
lem consists of finding a load factor α such that the body undergoes plastic collapse. For ductile structures when subjected
to the reference loads F ∈ V ′ uniformly amplified by α, plastic collapse happens when its load carrying capacity is ex-
hausted. The symbol V ′ denotes the space of load systems F which is the dual space of V . In turn, a system of loads
produces plastic collapse if there exists a stress field in equilibrium with these loads which is plastically admissible, and
related, by constitutive equations, to a plastic strain rate field being kinematically admissible (Lubliner, 1990; Borges
et al., 2001).

Thus, the limit analysis problem consist of finding α ∈ R, a stress field σ̂ ∈ W ′, a plastic strain rate field d̂p ∈ W and
a velocity field v̂ ∈ V such that

d̂p = Dv̂, v̂ ∈ V, (4)

σ̂ ∈ S(αF ), (5)

σ̂ ∈ ∂X(d̂p). (6)
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Equation (4) imposes that plastic strain rate d̂p is related to a kinematically admissible velocity field v̂ by means of D.
The symbol S(αF ) in Eq. (5) denotes the set of all stress fields in equilibrium with the given system of forces αF , i.e.,
satisfying the principle of virtual power:∫

B
σ̂ · Dδv̂dB = α

(∫
B
δv̂ · b̂dB +

∫
Γτ

δv̂ · τ̂ dΓτ

)
∀ δv̂ ∈ V (7)

Equation (6) gives the constitutive relation describing an elastic ideally plastic material. The symbol ∂X(d̂p) denotes
the subdifferential of the plastic dissipation function X , which is the set of all stress fields, such that

X(d̂
p∗

)−X(d̂p) ≥
∫
B
σ̂ · (d̂

p∗
− d̂p)dB ∀d̂

p∗
∈W. (8)

The dissipation function is related to the set P of plastically admissible stress fields by

X(d̂p) = sup
σ̂∗∈P

∫
B
σ̂∗ · Dv̂dB (9)

Frequently, the set P is defined as

P = σ̂ ∈ W ′ | f(σ̂) ≤ 0 in B (10)

where the above inequality is understood as imposing that each component fk, which is a regular convex function of σ̂, is
non-positive. Then, at any point of B, Eq. (7) is equivalent to the normality rule d̂p = ∇f(σ̂)λ̇, where∇f(σ̂) denotes the
gradient of f , and λ̇ is the m̂-vector of field plastic multipliers. At any point of B, the components of λ̇ are related to each
plastic mode in f by the complementary condition λ̇ ≥ 0, f ≤ 0 and λ̇f = 0 (these inequalities hold componentwise). The
classical extremum principles of limit analysis, i.e., the kinematical, statical and mixed formulations, can be derived from
optimality conditions, Eq. (4)-(6) (Christiansen, 1996; Borges et al., 1996). The discretized versions of these formulations
lead to a single type of finite dimensional problem, which can be given in four strictly equivalent forms, namely the statical,
mixed and kinematical discrete formulations, and the set of discrete optimality conditions.

3. FINITE ELEMENT DISCRETIZATION

3.1 Basic nomenclature for mixed CB beam elements

Figure 1 shows a 2-D mixed CB element and its respective parent element. Local coordinates of the parent element
are represented by ξ and η whereas global coordinates are given by x and y. As can be seen, mixed CB elements have
three different kinds of nodes: master, slave and stress nodes. Master nodes are represented by black dots. Its degrees of
freedom (d.o.f.), two displacements uIx and uIy and one rotation ωI , I = 1, ..., 3, describe the motion of the beam. The
line connecting master nodes is called reference line. Its position is arbitrary, and in this case it is chosen to coincide with
the mid line of the beam (η = 0).

The element has 6 “slave”nodes which define the underlying continuum element of the CB beam element. These
nodes are called slave because their displacements/velocities are determined by those from the respective master nodes.
Adopting the same nomenclature of Belytschko et al. (2001), lines of constant ξ are called fibers. Each master node is
connected to the pair of slave nodes lying on the same fiber. Lines of constant η are named laminae.

The unit vectors p aligned with the fibers are called directors or pseudonormals. They are used to describe the element
kinematics like normals in the classical beam theory. However, directors are not necessarily normal. Directors also
determine the coordinates of slave nodes.

Stress nodes, represented by squares in Fig. 1 , are used to interpolate the stress field in each element layer. The
number of layers (nc) depends on the kind of problem. To model beams made of homogeneous elastic material, only one
layer is needed. On the other hand, for limit analysis the accuracy of the response is highly dependent on the number of
layers. Particularly for the examples in this paper 8 layers proved to be adequate.

3.2 Assumptions

For the development of the CB Beam element, the following hypotheses are assumed:

1. The fibers remain straight;

2. The transverse normal stress is negligible;

3. The fibers are inextensible.
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Figure 1. Three-node mixed continuum based (CB) beam element

Although there is a contradiction between the hypotheses 2 and 3, this also happens in classical beam theory. An
approach to solve this inconsistency is to calculate the normal strain not from the motion but via constitutive equations
(Belytschko et al., 2001), allowing to consider changes in element thickness. See also (Lembo and Podio-Guidugli, 2001)
for a consistent bending theory.

3.3 Interpolation of displacement/velocity and stress fields

The discrete form of the variational principles described in the previous section is obtained by approximating dis-
placement/velocity and stress fields of the underlying continuum element using standard Lagrange finite element shape
functions.

The plane stress assumption (hypothesis 2) have to be imposed to convert the underlying element from a standard
continuum element to a CB element. This is performed firstly defining the components of the interpolated fields using
a corotational or laminar coordinate system. Corotational components are indicated using a superposed ˜. Then, the
condition that σ̃y = 0 for each point of the underlying continuum element is enforced.

The base vectors of the corotational system, depicted in Fig. 1, are constructed so that, for each point of the underlying
continuum element, ex̃ is tangent to the lamina and eỹ ⊥ ex̃.

Defining the parent coordinates of the CB element as ξ and η, the corotational basis {ex̃, eỹ} is related to the global
basis {ex, ey} as follows (Sosa and Gil, 2009):

[
ex̃
eỹ

]
=

 x,ξ√
x2
,ξ+y

2
,ξ

y,ξ√
x2
,ξ+y

2
,ξ

−y,ξ√
x2
,ξ+y

2
,ξ

x,ξ√
x2
,ξ+y

2
,ξ

[ex
ey

]
(11)

where x,ξ and y,ξ are the derivatives of coordinates x and y of the considered point of the CB element with respect to the
parent coordinate ξ.

3.3.1 Interpolation of displacement/velocity fields

Interpolated displacement/velocities fields u and v were assumed to be continuous through elements. The element
displacements/velocities are quadratic in ξ direction and linear in η direction. The shape functions for these fields, written
in matrix form, are

Nv =
[
g11 2 g21 2 g31 2 g41 2 g51 2 g61 2

]
(12)

where 1 2 is the 2× 2 identity matrix and gi are the following functions (Hughes, 1987):

g1 = 1
4ξ(ξ − 1)(1− η)

g2 = 1
4ξ(ξ − 1)(1 + η)

g3 = 1
2 (1− ξ)(1 + ξ)(1− η)

g4 = 1
2 (1− ξ)(1 + ξ)(1 + η)

g5 = 1
4ξ(ξ + 1)(1− η)

g6 = 1
4ξ(ξ + 1)(1 + η)

(13)
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Displacement/velocities vectors at slave nodes of element e are:

ues = [us1x us1y . . . us6x us6y ]T

ves = [vs1x vs1y . . . vs6x vs6y ]T
(14)

The vectors that store the d.o.f. of master nodes are:

ue = [u1
x u1

y ω1 . . . u3
x u3

y ω3]T

ve = [v1
x v1

y ω̇1 . . . v3
x v3

y ω̇3]T
(15)

It is emphasized that the interpolated fields are represented using components in the corotational coordinate system,
whereas the d.o.f. of master and slave nodes are chosen in the global coordinate system. The matrix that transforms the
displacement/velocity vectors of slave nodes from the corotational coordinate system to the global coordinate system is
given by:

R =


R 0 0 0 0 0
0 R 0 0 0 0
0 0 R 0 0 0
0 0 0 R 0 0
0 0 0 0 R 0
0 0 0 0 0 R

 where, R =

[
ex · ex̃ ey · ex̃
ex · eỹ ey · eỹ

]
(16)

The matrix that relates velocity/displacement components of slave nodes to degrees of freedom of master nodes, both
in the global coordinate system, is:

T =

T 1 0 0
0 T 2 0
0 0 T 3

 where, T I =


1 0 yI − yI−
0 1 xI− − xI
1 0 yI − yI+
0 1 xI+ − xI

 (17)

Subscripts I− and I+ are used to identify slave nodes located below and above the master node I . Hence, symbols xI
and yI denote global coordinates of the master node I and symbols xI− ,yI− , xI+ , yI+ represent the global coordinates of
slave nodes I− and I+. The matrix T I connects the degrees of freedom of the master node I with the degrees of freedom
of its pair of slave nodes.

Using the above definitions, we obtain the following equations for displacement and velocity fields of the element e:

ũ = Nvũ
e
s = NvRu

e
s = NvRTu

e

ṽ = Nvṽ
e
s = NvRv

e
s = NvRTv

e (18)

Analogously, the equations for the fields δu and δv are

δũ = Nvδũ
e
s = NvRδu

e
s = NvRT δu

e

δṽ = Nvδṽ
e
s = NvRδv

e
s = NvRT δv

e (19)

3.3.2 Interpolation of stress field

The interpolated stress field is assumed to be discontinuous through elements. Stress interpolation is performed in
each element first dividing the element in nc layers (see Fig.1).

Then, stress nodes are placed in each layer corner. If continuity of stress field between adjacent layers is enforced,
nodes at common boundaries are shared. Otherwise, each layer has its own set of four nodes, as depicted in Fig. 1.

Next, stress fields σ̂ and δσ̂ in each element layer c of the e-th element are approximated by

σ̃ = Nσ(σ̃c)e

δσ̃ = Nσ(δσ̃c)e
(20)

using the following shape functions:

Nσ =
[
t11 2 t21 2 t31 2 t41 2

]
(21)

where, tj = 1
4 (1 + ξjξ)(1 + ηjη) are standard Lagrange bilinear functions; the coefficients ξj and ηj , j = 1, ..., 4, are the

coordinates of the vertices of the layer c in the parent element; (σ̃c)e and (δσ̃c)e, given as follows, are the vectors that
store stress coefficients of each layer.

(σ̃c)e = [σ̃
1/c
x

√
2σ̃

1/c
xy . . . σ̃

4/c
x

√
2σ̃

4/c
xy ]T

(δσ̃c)e = [δσ̃
1/c
x

√
2δσ̃

1/c
xy . . . δσ̃

4/c
x

√
2δσ̃

4/c
xy ]T

(22)
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Finally, the vectors of stress coefficients of the element e, σ̃e and δσ̃e, are defined. These are obtained by assembling
the vectors of each layer c using standard finite element procedures and taking into account if there are shared degrees of
freedom between adjacent layers.

It is noteworthy to mention that for limit analysis, due to the convexity of the set P of plastically admissible stresses,
the piecewise linear functions chosen to interpolate the stress fields (see Eq. 20) enforces these approximated fields to be
plastically admissible. This is advantageous because plastic admissibility of stresses needs to be only verified at the stress
nodes to guarantee that the same happens in all element domain. Moreover, the inter-element discontinuity of interpolated
stresses leads to a global vector of stress parameters which is made up of disjoints sets of vectors corresponding to each
element. Then, the set of plastic admissibility constraints of each element e is only dependent on the separate set of stress
components of that element. This uncoupling also has important consequences for the computational feasibility of the
discrete limit analysis algorithm (Borges et al., 1996).

3.4 Matrix form of the linear elastic problem

The classical matrix form for the linear elastic problem is obtained firstly dividing the domain B in Eq. (2) and
Eq. (3) in ne elements, each element with nc layers. Then, displacement and stress fields are replaced by their respective
approximate fields, see Eq. (18), Eq. (19) and Eq. (22). Next, after some algebraic manipulation, one can obtainKu = F ,
where: K is the global stiffness matrix; F is the load vector and u is the vector of unknown displacements at master
nodes.

The global stiffness matrix is given by

K =

ne∑
e=1

Ke where, Ke = (B̃
e
)T ẼeB̃

e
(e-th element stiffness matrix) (23)

The load vector F is computed as

F =

∫
B
NT
v b̂dB +

∫
Γτ

NT
v τ̂ dΓτ (24)

Matrices B̃
e

and Ẽe are respectively the discrete deformation operator and the discrete elastic relation of element e.
The way that these matrices are obtained is explained in what follows, only for the case that the interpolated stress field is
discontinuous through layers.

3.4.1 Discrete deformation operator

In order to compute the discrete deformation operator B̃
e

we first compute B̃c, the contributions of each element layer
c as follows

B̃c =

∫
Bc
NT
σ D̃NvR dBc =

∫
Bc

[
A1 . . . A6

]
R dBc (25)

The deformation operator D̃ is defined to be compatible with the plane stress assumption. Hence

D̃Nv =
[
B̃

1
. . . B̃

6
]

where B̃
k

=

[
gk,x̃ 0

1√
2
gk,ỹ

1√
2
gk,x̃

]
(26)

and Ak =



t1 gk,x̃ 0
1√
2
t1 gk,ỹ

1√
2
t1 gk,x̃

t2 gk,x̃ 0
1√
2
t2 gk,ỹ

1√
2
t2 gk,x̃

t3 gk,x̃ 0
1√
2
t3 gk,ỹ

1√
2
t3 gk,x̃

t4 gk,x̃ 0
1√
2
t4 gk,ỹ

1√
2
t4 gk,x̃


(27)

Finally, the discrete deformation operator for the element e is assembled as follows

B̃
e

=

{
nc∑
c=1

∫
Bc
NT
σ D̃NvR dBc

}
T =

nc∑
c=1

B̃cT =


B̃1

...

B̃nc

T (28)
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3.4.2 Discrete elastic relation

The discrete elastic relation Ẽe is also calculated computing and assembling the contributions of each element layer c,
in this case Ẽc, such that

(Ẽe)−1 =

nc∑
c=1

(Ẽc)−1 where (Ẽc)−1 =

∫
Bc

NT
σ Ê−1Nσ dBc (29)

The stress-strain relation (elastic relation) Ê in the equation above considering the plane stress constraint (σ̃y = 0) is

Ê = E

[
1 0

0 1
1+ν

]
(30)

For now on the simplified notation n = Ê and m = Ê−1 is used. Thus, the following equation can be written (see
Eq. (21) and Eq. (29))

(Ẽc)−1 =

∫
Bc

NT
σ Ê−1Nσ dBc =

∫
Bc



t21m t1t2m t1t3m t1t4m

t1t2m t22m t2t3m t2t4m

t1t3m t2t3m t23m t2t4m

t1t4m t22m t1t4m t24m


dBc (31)

Next, if the stress field is discontinuous through layers, the integral in Eq. (31) for each element layer can be calculated
first computing and inverting for each layer c the auxiliary matrix ac such that

(ac)−1 =

∫
B



t21 t1t2 t1t3 t1t4

t1t2 t22 t2t3 t2t4

t1t3 t2t3 t23 t3t4

t1t4 t2t4 t3t4 t24


dB (32)

Then, the matrices Ẽc are calculated and finally assembled in Ẽe as shown in the equations below

Ẽc =



ac11n ac12n ac13n ac14n

ac21n ac22n ac23n ac24n

ac31n ac32n ac33n ac34n

ac41n ac42n ac43n ac44n


and Ẽe =



Ẽ1 0 . . . 0

0 Ẽ2 . . . 0

...
...

. . .
...

0 0 . . . Ẽnc


(33)

3.5 Discrete form of the limit analysis problem

The discrete limit analysis problem consists of finding a load factor α ∈ R, a stress vector σ ∈ Rq , a velocity vector
v ∈ Rn and a plastic multipliers vector λ̇ ∈ Rm such that the system represented by a deformation matrix IB : Rn → Rq
and a convex function f(σ) ∈ Rm undergoes plastic collapse for some load being proportional to a given force vector
F ∈ Rn. The matrix IB is obtained by assembling the elementary contributions B̃

e
(see Eq. (28)). It is assumed that all

rigid motions are ruled out by the kinematical constraints so that the kernel of IB contains only the null velocity vector.
The discretized version of the limit analysis formulation leads to a finite dimensional problem that can be seen as the

discrete version of Eq. (4)-(6), that is

IBv −∇f(σ)λ̇ = 0, (34)

IBTσ − αF = 0, (35)

F · v = 1, (36)
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fj(σ)λ̇j = 0, fj(σ) ≤ 0, λ̇j ≥ 0, j = 1, ...,m. (37)

In particular, for the mixed continuum based beam element, the yield function f is assumed to be

f = σ̃2
x + 3csσ̃

2
xy − σ2

Y (38)

which is the von Mises equation considering only the non-zero stress components of the element. The parameter cs is a
coefficient to consider contribution of the shear stresses to yielding. This coefficient can be set equal to 0 or 1. Therefore,
if cs = 0 the classical beam theory is simulated. Otherwise, cs = 1 and shear stresses are considered.

The discrete limit analysis problem is solved using a nonlinear optimization Newton-like algorithm where the plastic
behavior is described by means of a multimodal nonlinear yield function. This algorithm is described in (Borges et al.,
1996) and, for the sake of conciseness, is not discussed in this paper.

4. NUMERICAL EXAMPLES

The performance of the proposed element for linear elastic solution of thick to thin beams is presented in the first
example. In the last example the element is used to achieve the load that cause instantaneous plastic collapse in a beam
subjected to an axial force N and a bending moment M . For both examples the hypothesis of small displacements is
assumed.

4.1 Linear elastic solution of a curved beam

The first problem, depicted in Fig. 2, consists of a semi-circular arch subjected to a vertical load 2P . The beam has
a rectangular cross-section with width b, height h, area Ab = bh and moment of inertia I = bh3/12. Displacements and
rotation at points A and B (see Fig. 2) can be calculated by using Castigliano’s energy theorem as follows:

uany (A) = −
(

3π − 8

4

)
PR3

EI
− πPR

4EAb
− πPR

4GAbScc
(39)

uanx (B) =
PR3

2EI
− PR

2EAb
+

PR

2GAbScc
(40)

ωan(B) =
PR2

EI

(π
2
− 1
)

(41)

Figure 2. Semi-circular arch subjected to a load 2P

The applied load was P = 1.0. The material and geometric properties are set to the following values: Young Modulus
E = 1.0× 109, Poissont’s ratio ν = 0.3, shear modulus G = E/[2(1 + ν)], shear correction coefficient for a rectangular
section Scc = 0.85, R = 10 and b = 1. Four values of slenderness ratios R/h are tested: 10, 100, 700 and 1000. Due
to symmetry, only a half of the structure need to be modeled with proper boundary conditions. A mesh refinement study
is conducted applying four finite element meshes with increasing degrees of discretization: 1, 2, 5 and 10 elements. The
elements have only one layer for stress interpolation. The third term on the RHS of Eq. (39) and Eq. (40) are the part of
the displacement due to shear. These terms are usually negligible for thin beams.

Figure 3 summarize the results for the three slenderness ratios and for the four meshes. The graph on the left presents
the dimensionless displacement uy/uany at the center of the arch (point A in Fig. 2). The graphs on the center and on the
right exhibit respectively the dimensionless displacement ux/uanx and rotation ω/ωan at the support (point B in Fig. 2).
It can be seen for this test that the accuracy increased with discretization. The error in the displacements remains almost
stable when slenderness ratio increases and no locking is observed. Meshes with more than two elements presented errors
less than 0.8%.
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Figure 3. Element performance under various slenderness ratios

A comparison between the analytical deformed shape of the arch and the finite element results is illustratively given
in Fig. 4. The results shown are for the arch with R/h = 700. Three distinct FE meshes with increasing degree of
discretization are considered. The analytical expressions for tangential uant (φ) and normal uann (φ) displacements of the
arch centerline were obtained neglecting contributions due to shear, and are provided in Eq. (42) and Eq. (43). It can be
seen that the analytical and numerical results are in very good agreement.

uant (φ) =
1

2
R[2a · sinφ+ (2− π)a · cosφ− (a+ b)φcosφ− 2aφ− (2− π)a] (42)

uann (φ) =
1

2
R[(a+ b)cosφ− (2− π)a · sinφ+ (a+ b)φsinφ− 2a] (43)

where, a =
R2P

EI
and b =

P

EAb
(44)

Figure 4. Deformed shape: analytical solution versus FE results

4.2 Limit analysis in tension plus bending

As an example of limit analysis consider a beam with rectangular cross section (h is the height and b is the width)
under uniform external axial load N and external bending moment M , as sketched in Fig. 5.
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The axial stress σx is a scalar function of the transversal coordinate z and the equilibrium equations are:

N = b

∫ h/2

−h/2
σxdz, M = −b

∫ h/2

−h/2
σxzdz (45)

The material of the beam is perfectly plastic with yield stress σY . Plastic admissibility is determined by:

P : −σY ≤ σx(z) ≤ σY (46)

The collapse limits for pure traction and bending are, respectively, NY = bhσY and MY = bh2σY /4.

Figure 5. Beam under axial traction and bending moment

Considering that the system of loads is defined by the following non-dimensional load parameters n = N/NY and
m = M/MY and recalling that the loading (nc,mc) producing instantaneous plastic collapse satisfies n2

c + mc = 1,
hence, the collapse factor α for the load (n,m) is determined analytically by solving

(αn)2 + αm = 1 (47)

Figure 6 depicts a comparison between the analytical solution given by Eq. (47) and the results obtained with the
element proposed in this work. The beam is modeled with just one element. With the aim of assessing the effect of
a better representation of the stress distribution through the thickness in the accuracy of results, different number of
layers are considered: 2, 4, 8 and 16. The graph on the left presents the results obtained assuming that the stress field
is discontinuous between adjacent layers whereas the graph on the right depicts the results obtained when continuity of
stresses is enforced. It can be seen for the both graphs that the higher the number of layers, the closer the numerical results
are to the analytical solution, as expected. For elements with 8 or more layers numerical and analytical results are quite
close.

Figure 6. Bree diagram for a beam section under axial traction and bending moment: analytical solution versus FE results

It is also shown that, for the same number of layers, results for the element with no continuity of stress fields between
layers are more accurate. The maximum differences between numerical and analytical results for the elements with 8
layers are less than 1% for the element with discontinuous stress fields and less than 3% for the element with continuity
of stress fields (see Tab. 1). This better performance of elements with no continuity of stress is also predictable since axial
stress distribution through the thickness is not continuous in the collapse of a beam subjected to bending plus traction.

Nevertheless, elements with no continuity of stress fields between adjacent layers are computationally much more
expensive since they have almost twice stress nodes comparing to element with the same number of layers and continuity
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of stress fields. This implies in more points where plastic admissibility is verified by the optimization algorithm for limit
analysis increasing the computational time. Moreover, for this example, the accuracy of results of elements with similar
number of stress nodes are comparable as shown in Tab. 1.

Table 1. Maximum differences between analytical and FE results

Number of Elem. with discontinuous stress field Elem. with continuous stress field
Layers Number of stress nodes Max. error [%] Number of stress nodes Max. error [%]

2 8 11.1 6 33.3
4 16 2.8 10 8.4
8 32 0.7 18 2.1

16 64 0.3 34 0.5

5. CONCLUSION

A multilayer mixed continuum based beam element is presented for the solution of linear elastic and limit analysis
problems. Details of the element implementation are given to show how to impose the structural constraint for obtaining
the element from the classical continuum formulation.

The CB approach is adopted specially because for limit analysis it present advantages comparing to classical beam
theory. For instance, the yield function of the CB beam element can be defined the same way as for a continuum element,
without any approximation. Moreover, for the further development of shell elements this CB technique will avoid dealing
with the complexity of the governing equations involved in classical shell theories.

The element proposed herein is still in development and is going to be tested for the solution of shakedown problems.
However, despite the limited number of tests, for the examples given it demonstrates an excellent performance.
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