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Abstract. Perform numerical analysis of sound generation and propagation with accuracy and with lower computational
time are some of the main challenges for Computational Aeroacoustics (CAA), which had experienced some major im-
provements in the last decade. In the present work it was performed numerical study of two-dimensional propagation of
waves by solving LEE equations applied to a Gaussian pulse in pressure and density in an undisturbed mean flow with
different Mach numbers. A 4*"-order 4-steps Runge-Kutta scheme was adopted for time integration. The spatial deriva-
tives were calculated by a 4" -order DRP and a 6'"-order compact finite difference schemes. Additionally, the problem
was parallelized adopting MPI using 1-D and 2-D domain decompositions. A speed-up and efficiency analysis showed
that the computation time is reduced using this technique, being more effective for the compact finite difference scheme.
However, there was a decrease in efficiency probably due time spent in communication and synchronization.
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1. INTRODUCTION

The early studies of sound generated aerodynamically were based in the acoustic analogy given by Lighthill (1952) and
Lighthill (1954), by which the real problem involving a highly disturbed flow is restated as a problem of linear acoustics
in a medium at rest with equivalent acoustic sources. Further developments of Lighthill’s work were made by Ffowcs
Williams and Hawkings (1969) to include the presence of moving surfaces, for application to the noise from aerodynamic
rotors, among others.

These analogies have been used together with unsteady data provided by Computational Fluid Dynamic (CFD) cal-
culations to predict sound generated by complex flow (Wang et al., 2006; Y. Kalighi and Moin, 2008). Such procedure
is commonly known as hybrid simulation because the flow field is simulated separately from the acoustic field, with the
computation of the sound being some kind of post-processing of flow analysis. Thus, Wang et al. (2006) classify acoustic
analogies as modelling which should be applied with caution.

A different approach to predict sound generation and its propagation in a mean flow is to compute simultaneously the
flow and acoustic fields. Standard CFD schemes are generally not adequate due some particularities related to aeroacous-
tics problems: time-dependency, wide bandwidth frequency range, different scales (acoustic waves amplitudes are very
small compared to mean flow amplitudes), propagation to long distance from the source and slowly decay of disturbances
(Tam, 2006). These aspects impose some constraints over an aeroacoustics solver as: have extremely low numerical noise
to does not affect the correct noise amplitude; have minimal numerical dispersion and dissipation to preserve the acoustic
wave at long distances; and impose radiation boundary conditions to avoid reflection of outgoing sound waves from the
computational domain (Tam, 2006).

All these approaches are part of recent research area commonly known as Computational Aeroacoustics (CAA), which
had experienced some major improvements in the last decade. One aspect that contribute was the development of high
resolution spatial discretization schemes obtaining less dispersive and less dissipative finite difference schemes with fewer
points per wavelength (Lele, 1992; Tam and Webb, 1993). Another aspect was the development of better approaches to
radiation boundary conditions (Hu, 1996, 2001; Tam et al., 1998). However, even with these improvements, there is a
increase demand in the numerical methods for aeroacoustics problems, because the mesh and accuracy requirements are
higher. Therefore, the use of parallel computation is an excellent tool.

The main focus of the present paper is to perform a numerical study of two-dimensional propagation of waves by
solving the two-dimensional linearized Euler equations (LEE). The numerical code initially used by Santana and Souza
(20064a,b) was adopted here to perform the parallel numerical simulations. The spatial discretizations are performed using
two different finite difference schemes: an explicit 4'"-order DRP scheme (Tam and Webb, 1993) and a 6t"-order compact
finite difference scheme (Lele, 1992). A 4*"-order 4-steps Runge-Kutta scheme was adopted for time integration. Domain
decomposition using Message Passage Interface (MPI) is used to perform parallel simulation. Speed-up and efficiency
analysis are performed. The propagation of a Gaussian pulse in an undisturbed mean flow is simulated and compared with
exact solution. The effects of the boundaries are not considered by stopping the simulation before the wave reached the
domain boundaries. The paper is divided as folows: First, is presented the mathematical formulation used to study wave
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propagations and then, the numerical method used to solve the problem. After that, is performed a code verification of the
sequential and parallelized code. In the end are showed the results obtained for speed-up and efficiency analysis.

2. FORMULATION

To transport correctly aeroacoustic quantities, the Navier-Stokes (N-S) equations can be simplified. The Reynolds
number based in the wave length is given by:
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where A is the wave length, f is the frequency and v is the kinematic viscosity. For a typical problem of sound propagation
in air, these parameters are v = 1.4 - 107° m2/s, f = 20.0 Hz up to 20.0 kHz (human audible range); co = 340 m/s
(sound velocity in air) and A = ¢p/f = 0.34 m. These values leads to a typical Reynolds number of aeroacoustic
problems of Rey =~ 1-107 and 1 - 10°, respectivelly, which is very high. Thus, the viscous terms of N-S equation are
very small when compared with dynamic terms and can be neglected, leading to the Euler equations. Considering that
the order of the terms related to acoustic propagation is very small when compared with the order of the terms of the fluid
dynamic motion, it is possible to linearize the Euler equations over a reference base flow. Colonius ez al. (1992) shows that
this approach solves the problem with a smaller computational cost, without losing the quality of the numerical solution.
The non-dimensional form of LEE can be obtained using: length scales = Az = Ay, velocity scales = ¢, time scales
= Ax/cy, density scale = pg, pressure scales = poc3, where Az and Ay are the distance between two consecutive
points in the x and y directions, respectively, and indices 0 corresponds to a reference state. Using these parameters, the
non-dimensional LEE can be written as:
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where H* is the non-dimensional source term related to the gradients of the mean flow, which are equal to zero when the
mean flow is uniform, and
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are the respectively matrices, that are implemented in the numerical code. The terms ’ represent small perturbations
superimposed on the mean flow, which is used as a reference state.

2.1 Analytical solution of LEE for a pulse case

Tam and Webb (1993) presented the analytical solution of a two-dimensional Gaussian pulse on density and pressure
fields, as initial condition, in a fluid at rest, based on Green function provided by Williams (1963) for the LEE on a
Cartesian grid with constant mesh size. The initial conditions are defined as:
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and the boundary conditions as:
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where M a is the flow Mach number.
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In Figs. 1(a) and 1(b) are presented the initial state and the time evolution of the pressure wave for the given boundary
and initial conditions. As can be seen, there is a decay in the pulse amplitude, however, it is not due a diffusive behaviour,
but due the increase in the area swept by the wave, since it conservs its total energy. The exact solution for velocity,
pressure and density fields is given by:
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where 7 = [(z — Mt)? 4 ?]'/2, and Jy and J; are the Bessel functions of zeroth and first order, respectively. The

parameters used by Tam and Webb (1993) were pressure and density amplitude ¢; = 0.01, width at half height b = 3.0
and o; = In(2)/b?, and is also used in the present work.

. @low direction

001 -

0008

0006 -

Q, L
0.004 |-
o002 \

0 2 ‘

() (b)

Figure 1. (a) 3-d time evolution of a Gaussian pressure wave pulse pressure wave and (b) Gaussian pressure wave pulse
pressure wave time evolution

3. NUMERICAL METHOD

The set of equations — Eq. (2), needs only the evaluation of first spatial derivatives. In the present work, these are
calculated using two different finite difference schemes presented more detailed lately: an explicit 4:"-order DRP scheme
and an implicit 6"-order compact finite difference scheme. The time integration is performed using a 4‘"-order 4-steps
Runge-Kutta algorithm, which is commonly used in CAA. Considering a vector « that represents the solution values of
spatial functions and F' (&) being the finite difference derivatives, the n + 1 time step solution can be obtained by the
following explicit low storage 4-storage scheme:
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where are 51 = 1/4, fo = 1/3, B3 = 1/2 and B4 = 1, respectively.

The numerical tests were performed using the sequential and the parallel codes. Initially it was performed a code
verification of the sequential and parallel codes. The MPI was used to parallelize the code in two different ways: 1-D
domain decomposition in z-direction (flow direction) and 2-D domain decomposition in both z- and y-directions. In the



Proceedings of COBEM 2011 21st International Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

case of 2-D domain decomposition the flow direction, which is the more interesting region, was more decomposed than
transversal direction, as can be seen in Fig. 2 where are presented both domain decomposition strategies when used 8
processing elements. Afterward, speed-up and efficiency analysis were carried out to evaluate the parallel computation
performance for both finite difference schemes.
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Figure 2. (a) 1-D domain decomposition in z-axes and (b) 2-D domain decomposition in z- and y-axes

3.1 Finite difference schemes

Tam (2006) states that one of the basic needs of a CAA code is a scheme that can resolve high frequency short waves
using fewer mesh points per wave length, which leaded to development of high resolution large stencil CAA schemes.
According to the author, the Dispersion-Relation-Preserving (DRP) scheme of Tam and Webb (1993) and compact scheme
reformulated by Lele (1992) are the most widely used schemes in CAA. Thus, in the present work a 4t"_order DRP
scheme (Tam and Webb, 1993) and a 6‘"-order compact finite difference scheme (Lele, 1992) are used to calculate the
spatial derivatives.

The approximation of the first derivative, f’(x;), for DRP schemes can be obtained by solving Eq. (10), considering a
mesh with uniform space h, indexing the nodes by i and the values at the nodes by f(z;).

N
Pl =2 3 afa+ih) (10)
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where, for the DRP scheme used in the present work, N is equal three to obtain a five-point stencil, and the coefficients
ajare ap = a—1 = 0.79926643, az = a_» = —0.18941314 and a3 = a_3 = 0.02651995, respectively.

The 6'"-order compact finite difference scheme (Lele, 1992) for the first derivatives is obtained by solving an algebraic
system of equations formed by the generalised equation Eq. (11), applied to each nodal point:

by b
12h 12h
where a1 = a_1 = 1.0, ag = 3.0, by = 28.0 and b, = 1.0, respectively.

To analyse the finite difference schemes, their spectrum are analysed. Figure 3 shows the comparison between the
effective wave number KAz and the actual wave number KAz of each scheme used. As can be seen, the compact scheme

(CP) curve remained closer to the exact solution (straight curve) than the obtained with the DRP scheme, for higher actual
wave numbers. This means that this compact scheme is more accurate and can represent better higher wave numbers.

a_1fi_y+aofi+aifi, = fia—fio) + flia—fig) (11)

4. NUMERICAL VERIFICATION

The numerical verification of the sequential and parallel codes was performed using the Gaussian pulse case presented
in section 2.1 As no special treatment at the boundaries was carried out to avoid reflection of the waves outgoing the
computational domain, it was necessary to stop the simulation before the wave reached the domain boundaries. The
residue error defined by Eq. (12) was used to compare the numerical solution p} with the exact solution p;.

12)

where NV represents the total nodal points.
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Figure 3. Effective and actual wave number comparison

4.1 Sequential Code

In a first step, it was performed the sequential code verification implemented with the DRP and compact finite differ-
ence schemes presented earlier. It was used a mesh with 558 x 558 points in each direction for Mach numbers equal 0;
0.25; 0.50 and 0.75. Figure 4 show a comparison of the pulse for Ma = 0.50 and ¢ = 100.0. Figure 5(a) presents details
at the pressure peaks where can be observed that the compact scheme shows better agreement with exact solution than for
DRP scheme at the first pressure peak, but worst at the second peak. Figure 5(b) shows that DRP scheme present some
oscilations near the non-disturbed region (high gradient region), mainly after the second peak. The E'r)ss obtained for
both schemes are presented in Tab. 1, showing that the compat scheme presented higher accuracy, except for Ma = 0.
Furthermore, from the presented results the sequential code was satisfactorily verified.
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Figure 4. Pressure pulse comparison for Ma = 0.50 and ¢t = 100.0.

Table 1. Erpss for sequential code verification.

Mach Number 0.00 0.25 0.50 0.75
Compact scheme | 9.20-107% [ 5.52-107° | 5.47-1077 | 5.36- 10"
DRP scheme | 6.52-1077 [ 5961077 | 5.77-107° | 5.54- 1077
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Figure 5. Comparison detail at (a) the peak and (b) near the non-disturbed region

4.2 Paralleled Code

In a second step, it was performed the parallel code verification implemented with the DRP and compact finite differ-
ence schemes for the 1-D and 2-D domain decomposition strategies, as presented earlier. It was used a mesh with 558 x
558 points in each direction and M a = 0.50. In Tab. 2 are presented the F'rss and can be observed that both sequential,
1-D and 2-D codes implemented with DRP-scheme as sequential, 1-D and 2-D codes implemented with compact scheme
presented equal value among them, highlighting that it was not introduced any error due code paralleling procedure.

Table 2. Erass for sequential, 1-D and 2-D decomposition for both finite difference schemes.

2-D DRP
5.77-107°

1-D DRP
5.77-1077

seq. DRP
5.77-107°

1-D compact
5.47-107°

2-D compact
5.47-107°

Case | seq. compact

5.47-1079

Erus
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5. PARALLEL COMPUTATION PERFORMANCE ANALYSIS

When paralleling a code, some parameters as speed-up and efficiency can be used to evaluate the parallel code per-
formance. Speed-up, presented in Eq. (13), refers to how much an algorithm being processed in parallel is faster than
one being processed in a single processing element. An ideal speed-up is obtained when its value is equal the number of
processing elements and is called linear. Efficiency, presented in Eq. (14), is a typical value between 0 and 1 and esti-
mates how much effort is spent in communication and synchronisation among the processing elements. A good efficiency
presents values close to unit.

Ty
Sp=—— (13)
Top
where np represents the number of processing elements used, 1% and T, represents the total computational time with a

single processing element and with np processing elements, respectively.

T
Ef = 14
/ - Top (14)

In the present work, it was used domain decomposition using MPI to parallel a sequential code using two different
strategies, as showed in section 3. For a parallel computation performance analysis four different meshes (M1: 406x406;
M2: 558x558; M3: 710x710; M4: 854x854) were used. Also were used 2, 4 and 8 processing elements to run the
simulations.

From Figs. 6(a) and 6(b), which presents the speed-up behaviour for 1-D and 2-D domain decomposition strategies,
respectively, it is possible verify that this parameter was higher for the cases where it was used the compact scheme than
when used the DRP schemes, except for the cases when used 2 processing elements. This behaviour can be explained by
the fact that it is necessary to solve an algebraic system for the compact scheme. Thus, there is an increase the number of
actions performed by the code during simulation and it was optimized using the parallel procedure. Furthermore, it was
observed that speed-up was higher for the 2-D domain decomposition than 1-D case. However, it was not observed linear
speed-up for any case, showing that the code is losing time due to communication and synchronisation.

Figures 7(a) and 7(b) presents the efficiency results, where can be observed that, except for 2 processing elements,
the efficiency is higher for the compact scheme than for DRP scheme. However, efficiency decreases at around 0.5 for 8
processing elements which corresponds to 50% of computation time spent in communication and synchronisation.

6. CONCLUSIONS

In the present work it was performed numerical study of two-dimensional waves propagation by solving LEE equa-
tions. The spatial derivatives were calculated by a 4'"-order DRP and a 6‘"-order compact finite difference schemes.
Additionally, the problem was parallelized adopting MPI using 1-D and 2-D domain decompositions. The verification
shows that both methods gives accurate solutions, although the DRP scheme showed a small dispersion behaviour. The
parallelization did not affect the results obtained. Speed-up and efficiency analysis showed that the computation time is
reduced using this technique; however, there was a decrease in efficiency when the processing elements increase. This
behaviour can be explained by the increase in time spent in communication and synchronization. The parallelization was
more efficient when used the compact finite difference scheme.
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Figure 6. Speed-up for (a) 1-D domain decomposition and (b) 2-D domain decomposition
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Figure 7. Efficiency for (a) 1-D domain decomposition and (b) 2-D domain decomposition



