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Abstract. This work deals with the performance analysis of cylindrical and elliptical oil-lubricated journal bearings by 
using the finite element method. The Galerkin weighted residual method in conjunction with a linear perturbation 
method is applied on the classical Reynolds equation in order to render the zeroth- and first-order lubrication 
equations for the selected bearings. The thin fluid film domain is modeled through four-node rectangular 
isoparametric finite elements. The hydrodynamic pressure fields can be computed from the zeroth-order lubrication 
equations to allow the computation of the bearing static performance characteristics at several operating conditions. 
Furthermore, the first-order lubrication equations are solved to estimate the bearing dynamic force coefficients for 
different bearing geometric parameters. Static and dynamic performance characteristics of cylindrical and elliptical 
journal bearings are obtained in function of the Sommerfeld number and operating parameters. The results rendered 
in this work show that elliptical bearings present values of stiffness coefficients higher than those estimated for 
cylindrical bearings under low loading. Elliptical journal bearings offer more appropriate conditions for stable 
operation of rotating shafts than those provided by cylindrical journal bearings.  
 
Keywords: Cylindrical journal bearings, elliptical journal bearings, hydrodynamic lubrication theory 

 
1. INTRODUCTION 
 

The hydrodynamic journal bearings are widely used in industrial turbomachinery due to their large capacity of 
carrying static and dynamic loads, to their stiffness and damping properties, and to their good capability of controlling 
the shaft center position (Sternlicht and Lewis, 1968; Knöss, 1980). The increasing demand for more efficiency and 
productivity in industrial processes has caused an increase in the rotating machinery operating speeds. Consequently 
dynamic problems associated with the oil-film instability have become very common in high speed industrial 
turbomachinery. Those problems have generally been addressed and minimized in the oil, petrochemical, chemical, and 
general process industries by two ways (Knöss, 1980; Vance, 1988): 1. raising the rotating shaft critical speeds by 
reducing the distance between the bearing supports; 2. replacing the journal bearings by a different type of bearing 
design.  In operating industrial rotating machinery, the replacement of the bearing type becomes a more appealing 
solution to address the instability problems associated with the lubricant film because. 

The fixed-geometry cylindrical journal bearings are the type of bearing widely used in industrial rotating machinery 
[Faria et al., 2006]. The cylindrical journal bearings not only consist on the cheapest design among all fixed-geometry 
bearings, but also possess low hydrodynamic stability, although have good capacity of carrying loads. On the other 
hand, variable-geometry bearings have been applied when the oil film stability is a crucial operating requirement, 
mainly in high speed turbomachinery. Variable-geometry bearings, such as the tilting pad journal bearings, present 
higher costs of manufacture, assembly, and maintenance than those related to fixed-geometry bearings (Allaire and 
Flack, 1981). Moreover, variable-geometry bearings require larger oil flow rates and present smaller stiffness and load 
capacity comparatively to the fixed-geometry bearings. Nowadays the search for fixed geometry bearing profiles that 
can meet the rigorous design requirements of industrial turbomachinery and the determination of the more appropriate 
design and operating parameters for oil film non-cylindrical journal bearings are still two big challenges for engineers, 
technicians, and designers of industrial rotating machinery. 

In the technical literature, there is a large number of research works dealing with cylindrical journal bearings, but 
studies about other types of fixed-geometry bearing profiles are not common (Singh and Gupta, 1982).  To exemplify 
this gap in the literature, only very recently the German Institute for Standardization (Deutsches Institut für Normung -
DIN, 2007) has published notes about some non-cylindrical journal bearings.   

In order to analyze the behavior of fixed geometry bearings, this paper presents the development of a finite element 
(FEM) procedure for oil-lubricated elliptical journal bearings. A linearized perturbation method (Lund, 1987) is applied 
on the classical Reynolds equation to render the zero-th- and first-order lubrication equations for elliptical bearings. The 
numerical solution of the lubrication equations permits to obtain the static and dynamic characteristics of elliptical 
journal bearings. The two main reasons for investing efforts in the study of elliptical journal bearings presented in this 
work are: i. the manufacturing costs of elliptical journal bearings are very similar to those of cylindrical journal 
bearings, well below to the costs of other fixed-geometry non-cylindrical journal bearing designs; ii. the surface wear 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 
associated with start-up and cost-down operations, the bearing surface deformation related to sudden loading variations, 
and the induced strains generated during the bearing assembly change the cylindrical bearing profile along the time, 
transforming the cylindrical bearing into a non-cylindrical one. The results obtained in this work show several curves of 
steady-state and dynamic performance characteristics for elliptical journal bearings operating under stringent 
conditions. It is shown that elliptical journal bearings perform slightly better than cylindrical journal bearings from the 
point of view of oil-film stability.  
 
2. GEOMETRY AND BASIC EQUATIONS FOR ELLIPTICAL JOURNAL BEARINGS 
 

Figure 1 shows a schematic drawing of an elliptical journal bearing. The distance between the journal and bearing 
center centers is represented by the journal eccentricity e. W represents the applied load on the journal. The bearing 
length and diameter are described by L and D, respectively (D=2.R). The orthogonal axes (X, Y, Z) represent the inertial 
reference frame at the bearing center. The rotating system of coordinates (x, y, z) is attached to the journal Center 
(x=R.θ). The journal rotating speed is given by Ω. The bearing attitude angle is represented by �. 
 

 
Figure 1. Schematic drawing of an elliptical journal bearing. 

The classical Reynolds equation for an incompressible, istothermal, and isoviscous thin film flow can be expressed 
using cylindrical coordinates in the following form (Hamrock, 1994): 
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where R is the journal radius, p is the hydrodynamic pressure, h the fluid film thickness, U represents the tangential 
speed of the journal shaft (U = ωR), ρ is the fluid mass density and µ  is the fluid viscosity. The thin film fluid flow 
domain is described by 0 ≤ θ ≤ 2π e -L/2 ≤ z ≤ L/2. The bearing hydrodynamic pressure is subjected to a periodic 
boundary condition along the circumferential direction, p(θ, z, t) = p(θ + 2π, z, t). The bearing sides are at ambient 
pressure pa, p(θ, L/2, t) = p(θ, -L/2,t) = pa. The condition of half Sommerfeld is employed in the computation of the 
hydrodynamic pressure (Hamrock, 1994). The fluid film thickness “h” can be written in the following form. 
 
      ( ) ( ) ( ) ( ) θθθ senMPcsentetech yx .cos +++=                                                                                                            (2)      
 
where the vertical and horizontal components of the journal eccentricity are expressed ex e ey, respectively. The bearing 
radial clearance is given by c. MP represents the elliptical journal bearing preload (Correia, 2007). 
 
3. DERIVATION OF THE LUBRICATION EQUATIONS  
 

The computation of the bearing load capacity and dynamic force coefficients is performed using the lubrication 
equations obtained from the application of a linearized perturbation procedure on the Reynolds equation (Lund, 1987). 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  

The journal equilibrium position ( ) is perturbed by small amplitude motions at an excitation frequency ω. Hence, 
the perturbed fluid thin film thickness can be written as. 

00
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where  represents the steady-state or zero-th-order film thickness, = cos (0h xh θ ),   = sen (yh θ ) e i = 1− . Small 
oscillations in the fluid film thickness cause small perturbations in the hydrodynamic pressure field.  The linearized 
perturbed hydrodynamic pressure field is expressed by.  
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where  represents the steady-state or zero-th-order hydrodynamic pressure, and  e  are the first-order 
hydrodynamic pressures. Inserting Eqs. (3) and (4) into Eq. (1) renders the zero-th- and first-order lubrication equations 
for elliptical journal bearings, which are represented by Eq. (5) and Eq. (6), respectively. 
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Bilinear shape functions (i=1,2,3,4) (Bathe, 1982) are employed to represent the discrete zero-th- and first-order 

hydrodynamic pressure fields. Equation (5) represents the zero-th-order lubrication equation that allows the 
determination of the bearing pressure fields. The bearing dynamic force coefficients can be estimated from the first-
order lubrication equation represented by Eq. (6). The zero-th- and first-order pressure fields are interpolated within a 
finite element domain  using the expressions  and , respectively, where i=1,2,3,4 and σ = 
X,Y.  
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Within a finite element domain , the weighted-residual method of Galerkin is employed on Eq. (5) to render the 
discrete finite element zero-th-order lubrication equation, which is written as (Correia, 2007) 
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where  represents the lubricant mass flow through the finite element boundary Γe. Equation (7) consists of a linear 
system of algebraic equations that represent the steady-state form of the Reynolds equation within a finite element 

nm&
eΩ , 

which can expressed in the following form. 
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The fluid matrix  can be obtained by using an integration scheme based on the Gauss quadrature (Bathe, 1982). The 
weighted-residual method of Galerkin is also used to render the finite element equations associated with the perturbed 
pressure Field, which are given as. 
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Equation (9) can be rewritten in matrix form as follows. 
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The fluid film reaction forces can be estimated from Eq. (11), in which pa represents the ambient pressure.  
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The computation of the first-order hydrodynamic pressure field is performed through a system of complex 

equations, which is obtained from the superposition of the finite element equations (Eq. (10)) over the fluid film flow 
domain. The numerical integration of the perturbed pressure field renders estimates for the complex impedance 

. The linearized bearing stiffness coefficients, , and damping coefficients, , 
associated with the hydrodynamic action of the perturbed fluid film, are expressed as. 
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4. RESULTS 
 

Primarily, an example of elliptical journal bearing is selected to perform the mesh sensitivity analysis of the finite 
element procedure implemented in this work. The bearing baseline parameters are shown in Tab. 1. The predictions of 
bearing load capacity (W), direct stiffness coefficients (KXX) and direct damping coefficients (CXX) are obtained for 
different mesh sizes. Table 2 shows the results obtained in this example. The mesh size is represented by the global 
number of finite elements employed in the fluid film domain. A mesh with 2945 finite elements is chosen as a reference 
mesh in the computation of the relative errors. The results show that meshes with few elements can be used to render 
satisfactory results for the steady-stated and dynamic characteristics for the bearing analyzed. 

 
Table 1. Elliptical bearing data for the mesh sensitivity analysis. 

c = 75.0 x 10-6 m MP = 0.30 D = 0.100 m 
ρ = 892.0 kg/m3 L/D = 0.75 L = 0.075 m 

µ = 8.4 x 10-3 ω = 2000 rpm U = 10.47 m/s 
 

 
Table 2. Numerical results for the mesh sensitivity analysis. 

Number of 
finite elements 

Load (N) Relative error (%) KXX (MN/m) Relative error (%) CXX (kN.s/m) Relative error (%) 

340 1106.0 0.985 2.418 0.206 24230.0 1.062 
600 1112.0 0.448 2.421 0.083 24370.0 0.490 
810 1114.0 0.269 2.422 0.041 24410.0 0.237 

1190 1116.0 0.090 2.423 0 24450.0 0.163 
1480 1116.5 0.045 2.423 0 24470.0 0.082 
1960 1117.0 0 2.423 0 24484.7 0.022 
2330 1117,0 0 2.423 0 24490.0 0 
2945 1117.0 0 2.423 0 24490.0 0 

 
 
Secondly, an example of elliptical journal bearing (Singh and Gupta, 1982) is chosen to evaluate the accuracy of the 

finite element procedure developed. Predictions of the bearing load capacity rendered by the current finite element 
procedure (FEM) are compared with the results presented by Singh and Gupta (1982) for a bearing with slenderness 
ratio (L/D) equals to 1.  Figure 2 depicts the curves of bearing dimensionless load capacity ( ) versus 
the journal eccentricity ratio (ε=e/c) rendered by the FEM procedure comparatively to the results presented by Singh 
and Gupta. The finite element mesh in this example employs 1190 finite elements. The results for this example shows 
that there is a very good agreement between the FEM predictions and the values presented by Singh and Gupta for load 
capacity mainly at  journal eccentricity ratios equal to or smaller than 0.5. For larger values of journal eccentricity ratio, 

)../(* DLpWW a=
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the maximum relative error does not reach 10%.  This example of validation shows that the finite element procedure 
developed in this work can generate reliable predictions for elliptical journal bearing load capacity. 

Now, the finite element procedure can be employed to analyze different oil-lubricated elliptical journal bearings. 
Two geometric parameters extremely important for the design of elliptical journal bearings are the preload (MP) and the 
slenderness ratio (L/D). If the preload is zero that means that the journal bearing has a circular profile. The analysis 
presented in this work aims at showing the influence of the bearing preload and slenderness ratio on the performance of 
elliptical journal bearings. The baseline parameters used for the bearing analysis are shown in Tab. 3. The finite element 
mesh uses 1190 bilinear finite elements in the modeling of the fluid film flow.  

 

 

Singh and Gupta (1982) 

FEM 

Figure 2. Curves of dimensionless load capacity versus eccentricity ratio for an elliptical journal bearing (L/D =1) 
obtained by Singh and Gupta (1982) and by the current finite element procedure (FEM).  

 
Table 3. Baseline elliptical bearing parameters. 

D = 0.10 m MP = 0.1; 0.3; 0.5 e 0.7 c = 75.0x10-6 m 
ω = 2000 rpm L = 0.05 m; 0.075 m; 0.1 m ρ = 892.0 kg/m3

µ = 8.4 x 10-3 Pa.s L/D = 0.5; 0.75 e 1.0 U = 10.47 m/s 

 
The Sommerfeld number (So) is a dimensionless number used to characterize journal bearings, including some 

bearing operating and geometric characteristics, and is expressed by  
P
N

c
RSo ..2

2

µ=  (Shigley et al., 2003), where “N” 

represents the journal speed in  hertz and “P” the bearing unit load ( P = W / (L/D)). Firstly, the curves of the 
Sommerfeld number versus eccentricity ratio are obtained for journal bearings with different values of preload (MP = 
0.1; 0.3; 0.5 and 0.7) and slenderness ratio (L/D) of 1.0. Figure 3 depicts the influence of the preload and journal 
eccentricity on the bearing Sommerfeld number. The journal rotating speed of 2000 rpm is kept constant in this 
analysis. It can be noticed that the Sommerfeld number increases as the preload increases. Considering a journal 
bearings operating at constant speed, So can be increased by using a lubricant with larger viscosity and or by reducing 
the journal eccentricity. The results presented in Fig. 3 indicate that non-cylindrical journal bearings are capable of 
supporting larger loads than cylindrical journal bearings do.   

In order to show the influence of the slenderness ratio (L/D) on the static performance of elliptical bearings, at the 
same value of preload, Fig. 4 depicts four curves of the Sommerfeld number versus the journal eccentricity ratio for 
three values of (L/D). These curves show that the Sommerfeld number increases as the slenderness ratio decreases. 
Consequently, long bearings are able to support larger loads than short bearings do.  

Another interesting analysis consists on predicting the bearing direct damping coefficients (CXX e CYY) and the direct 
and cross-coupled stiffness coefficients (KXY e KYX) for bearings under several operating conditions. The ratio of the 
direct damping coefficient to the cross-coupled stiffness coefficient permits to evaluate the level of effective damping 
provided by the fluid film bearing. Figure 5 depicts the curves of the bearing dimensionless damping coefficient (CYY = 
C.CYY.ω/W) in function of the Sommerfeld number. The curves of the dimensionless cross-coupled stiffness coefficients 
(KXY = C.KXY/W) in relation to the Sommerfeld number are shown in Fig. 6. From the results presented in Fig.5 and 
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Fig.6, Pait can be noticed that the behavior of the direct damping coefficient is quite similar to that presented by the 
cross-couples stiffness coefficient.  

 

7 
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3 

Figure 3. Curves of the

 

Figure 4. Curves

Analyzing Fig.5 and Fig
values of the cross-coupled
that the cross-coupled stiff
bearings. When the bearing
for small L/D. Then, it can 
low load (high So). Only elli
(Correia, 2007). 
MP = 0.
MP = 0.
MP = 0.
 

MP = 0.1 

 Sommerfeld number versus the journal eccentricity ratio at four values of bearing preload 
(L/D =1). 

 

 

L/D = 0.5 

L/D = 0.75 

L/D = 1 

 of the Sommerfeld number versus the journal eccentricity ratio for bearings with different 
slenderness ratios. 

 
 

.6, it can be observed that for small values of the Sommerfeld number (So), close to zero, the 
 stiffness KXY are large and do not suffer influence of the ratio L/D. The analysis also shows 
ness coefficients KXY assumes small values for any value L/D and So, in elliptical journal 
 presents large values of preload MP and So, the cross-coupled stiffness KXY will exist only 
be concluded that cylindrical journal bearings (MP ≈ 0) are not adequate for conditions of 
ptical journal bearings with high values of preload (MP) possess cross-coupled stiffness KXY 
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Figure 5. Curves of dimensionless direct horizontal damping coefficients CYY versus the Sommerfeld number at 

MP=0.5. 
 

 

L/D = 0.5 L/D = 0.75 

L/D = 1 

L/D = 1 

L/D = 0.75 L/D = 0.5 

Figure 6. Curves of the dimensionless cross-coupled stiffness coefficients KXY  versus the Sommerfeld number at 
MP=0.5. 

 
5. CONCLUSIONS 
 

This work presented a brief analysis of some steady-state and dynamic performance characteristics of elliptical 
journal bearings. The influence of some bearing geometric and operating parameters, such as the preload, the 
slenderness ratio, and the journal eccentricity, is analyzed by using a special finite element procedure. The numerical 
results rendered in this work show that cylindrical journal bearings can become unstable at high speeds and light loads. 
The elliptical journal bearings can be a good alternative for those operating conditions because they perform slightly 
better than cylindrical journal bearings.  Several curves of bearing characteristics provide important subsides to 
understand the behavior of oil-lubricated elliptical journal bearings under different operating conditions and different 
geometric parameters. The results can help engineers and technicians to evaluate the applicability of elliptical journal 
bearings in a rotating machine. The analysis shows clearly that cylindrical journal bearings are not adequate for bearing 
applications with high values of the Sommerfeld number.  
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8. NOMENCLATURE 
 

c Bearing radial clearance (m) 
Cαβ ( Y,X, =σβ ) Damping coefficients (N.s/m) 
D Bearing diameter (m) 
e Journal eccentricity (m) 
eX, eY Vertical and horizontal journal eccentricities (m) 
Fσ (σ =X,Y) Bearing reaction forces (N) 
h Fluid film thickness (m) 
h0 Steady-state fluid film thickness (m) 
Kαβ ( Y,X, =σβ ) Stifness coefficients (N/m) 
L Bearing length (m) 
MP Bearing preload (m) 
p Hydrodynamic pressure (Pa) 
pa Ambient pressure (Pa) 
p0 Zero-order pressure (Pa) 
pσ (σ =X,Y) First-order pressure (Pa/m) 
P Bearing unit load (N/m2) 
R Bearing radius (m) 
So Sommerfeld number (dimensionless) 
U Tangential velocity (m/s) 
W Applied load (N) 
ε (=e/c) Journal eccentricity ratio (dimensionless) 
µ Fluid viscosity (Pa.s) 
ρ Fluid mass density (kg/m3) 

e
iΨ  Shape functions  

ω Journal rotating speed (rad/s) 
eΩ  Finite element domain 
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