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Abstract A human long bone analytic model is developed taking in account the existence of two bone tissues. An 
elliptic cross section is used to represent a real long bone medial cross section, with an internal trabecular tissue and 

an external constant thickness cortical tissue. Mechanics of solids is used, at a basic level, to establish an explicit 

relationship between static loads and the stresses developed at external cortical bone surface. Also, the results of 

analytic model are compared with the results of a professional finite element software, used as a reference.  
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1. I�TRODUCTIO�  

  
An analytic composite model for long bones is presented. A real human long bone cross section is modeled by an 

elliptic form, with constant thickness wall. In this model the existence of two types of bone tissues is recognized, 
cortical and trabecular, each modeled as homogenous and isotropic material. During the development of the analytic 
composite model the mathematical manipulations were kept at an introductory level, as well as, the application of the 
theory of mechanics of solids.  

As done at former works (Kenedi, 2009a) and (Kenedi, 2009b), several limiting hypotheses have to be made in 
order to assure viability of this model. For instance, cortical and trabecular bones, are supposed to be homogenous and 
isotropic. Loading conditions are static. Loads and restrains are positioned only at extremities of long bones, no side 
ligaments or muscles are recognized. The analysis is made at medial cross section, therefore far from long bone ends.  

Special attention was given to maintain the analytic model expressions as simple as they could be. Instead of 
generating a reduced set of complex expressions, it was preferred generate an extended set of more simple governing 
expressions. To simplify the model implementation the expressions were fully developed, avoiding expressions with 
integrals as in (Kenedi, 2009.b).  

A finite element (F.E.) model is implemented, with the utilization of a well known commercial FEM package, to 
serve as reference. It is set linear and elastic, with little displacements and rotations. Two materials are set, trabecular 
and cortical tissues, through the utilization of isotropic mechanical properties. The human femur geometry, quite 
complex, was imported from a real human femur scanned geometry. The utilization of a predetermined path to present 
the stress, at a chosen cross section, increase the results effectiveness.  
 
 2.  A�ALYTIC MODEL 

  
The analytic model was generated through the implementation of stress analysis of a composite cross section. For 

cortical tissue it is used a hollow elliptic cross section with constant thickness wall. For trabecular tissue it is used a full 
elliptic cross section. The model expressions have straightforward application, but its calculations are rather laborious. 
The utilization of mathematical software, like MathCad, is strictly necessary.  

Although mechanics of solids is used in introductory level, the elliptic model of two materials, cortical and 
trabecular tissues generates a relatively large set of expressions. The model uses two axis systems, a local that 
accompanies the elliptic cross section angular position and a global that always maintains the same reference angular 
position.  

It is supposed that the loadings were divided between bone tissues, configuring a parallel arrangement. The 
estimation of axial, bending, transverse shear and torsional stresses, as is shown at section 2.2, is function of several 
mechanical proprieties ratios, well understood that only isotropic mechanical properties were recognized for cortical 
and trabecular tissues. The analytic model stresses estimative are done at external surface of a long bone medial cross 
section. The analytic model also generates principal and maximum shear stresses, which are key variables to 
implementation of any failure criteria.  
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2.1 – Equivalent loading at a cross section 

 

Figure 1 shows human femur representation, hypothetical cut at a generic medial section. A static force P is applied 
at femur's head, at a distance d away from the generic medial cross section centre, where equivalent forces and moments 
are shown.  

        

 

(a) (b) 
 

Figure 1. (a) Static load of a human femur’s head and (b) medial cross section equivalent force and moments, in local     
coordinates. 
 

The static force P and distance d are represented by its components in global coordinates system. The force and 
moments components, at the chosen medial cross section, in global coordinates are:  

 

 P kPjPiP zgygxg

rrr
++=    and  d kdjdid zgygxg

rrr
++=    (1) 

 

 
































=

zg

yg

xg

zg

yg

xg

P

P

P

V

V

V

    and  
















−

−

−

















=

xgygygxg

zgxgxgzg

ygzgzgyg

zg

yg

xg

PdPd

PdPd

PdPd

M

M

M

  (2) 

 
Where, the variables presented in bold-faced letters are vectors, the vectors components with g subscripts are 

referenced to global system coordinates. ! is the axial force, V is the shear force, M is the bending moment and T is the 

torsional moment. ji
rr

, and k
r
are unit vectors. Note that !Vzg = , TM zg = . The forces and moments components, 

written in local coordinates, are: 
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The force (3.a) and the moments (3.b) components, written in local coordinates, are represented at Figure 1.b.  The 
angle between global and local coordinates is φ. Note that the φ angle is different for each distance d, because each 
medial cross section of a human femur bone has a different orientation.  
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2.2 - Expressions of composite analytic model  

 

Former work estimates the stress distribution at external surface of a medial hollow elliptic cross section of a 
cortical long bone (Kenedi, 2009b). In this work the analytic composite model, besides cortical external tissue, also 
consider a trabecular internal tissue.  Figure 2, shows the geometry and the coordinate systems of the composite analytic 
model. 

 

    
   (a)                 (b)  

Figure 2. (a) Idealized composite elliptic cross section and (b) local and global coordinate systems. 
 

Figure 2.a shows a composite elliptic cross section. It has constant thickness wall t, with long axis 2a and short axis 
2b. The cortical and trabecular cross sectional tissue areas are respectively Ac and At. Figure 2.b shows two coordinates 
systems, local and global. The local coordinates (x,y,z) are attached to cross section, where x and y axis are respectively, 
coincident with 2a and 2b axis. The z axis is obtained by right-hand rule. In other words, each cross section has its own 
local axis configuration, always maintaining x axis coincident with 2a axis. Global coordinates (xg,yg,zg) has always the 
same orientation in space, where xgyg is the horizontal plane, xg,zg and yg,zg are vertical planes.  

Figures 1.b, 3 and 5.a shows the angle γ, that locates the point of interest angular position, at external bone surface, 
referred to x axis. The angle θ represents the element of area orientation (at Figure 1.b, θ = 0°) at external bone surface. 

Figure 3 shows the composite analytic model bending and transverse shear variables.                   

 
                (a)                 (b)  

Figure 3. Composite elliptic cross section: (a) Bending and (b) transverse shear variables.   
 

The analytic model expressions will be presented in following sequence: axial and bending normal stresses; 
torsional and transverse shear stresses.  

It is supposed that cortical and trabecular tissues are in coaxial arrangement, sharing axial load !. The cortical and 
trabecular axial stress components, respectively, !Cσ  and !Tσ , are (Crandall, 1978): 
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Where the longitudinal modulus of elasticity of cortical and trabecular tissues are, respectively, CE and TE . The 

ratio between the two modulus of elasticity is n.  
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The bending theory was developed for a homogeneous cross section. For a composite cross section, is usual to 
“transform” the different materials in only one material (Beer, 2006). The cortical bending stresses 
components,

xBCσ and 
yBCσ ; and trabecular bending stresses components 

xBTσ and
yBTσ are estimated (Crandall, 1978):  
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Where, xC(γ) and yC(γ) are, respectively, the perpendicular distances from axis y and x to external cortical bone 

surface and  xT(γ)  and yT(γ) is the same to the internal cortical bone surface. xI and yI are second moments of area.  

ro(γ) and ri(γ) are, respectively, the outer and inner radius (shown at Figure 3). Figure 4 shows the transformed section 
model for trabecular to cortical tissue used to generate second moments of area expressions:  

 
(a) 

             
(b) 

Figure 4. Transformed section model from trabecular to cortical tissue with respect to: (a) x-axis and (b) y-axis. 
 

To estimate cortical and trabecular torsional stress components, respectively,
TC
τ and 

TT
τ , it was supposed that 

cortical and trabecular tissues were in a coaxial arrangement, sharing the torsional moment T (Craig, 2003): 
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Where, the cortical and trabecular bone polar second moments of area are, respectively, 

C
J  and

T
J . The cortical and 

trabecular bone shear modulus are, respectively, 
C

G and
T

G . The area inside a line which passes in middle thickness 

wall of cortical bone cross sectionis is A. The ratio between two polar second moments of area is p and the ratio 
between two shear modulus is q. 
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The transverse shear theory was developed for a homogeneous cross section. For a composite cross section, is usual 
to “transform” the different materials in only one material (Craig, 2003). The cortical transverse shear stress 
components, 

xVC
τ and 

yVCτ ; and trabecular transverse shear stress components,  
xVT

τ and 
yVTτ , were estimated as: 

yyc

xyc

VCx
It

VQ
=τ     and  

xxc

yxc

VCy
It

VQ
=τ     and    

yyc

xyt

VTx
It

VQ
n=τ     and    

xxc

yxt

VTy
It

VQ
n=τ     (13) 

where, 

( )
xxt

C
xc kt

b

y
at −








−=

2

12
γ and ( )

yyt
C

yc kt
a

x
bt −








−=

2

12
γ  and ( ) ( ) 2

12 







−

−−=
tb

y
tat C

xt

γ and ( ) ( ) 2

12 







−

−−=
ta

x
tbt C

yt

γ  (14) 

( )( ) ( ) ( )[ ]
















−−








−
−

+−= xCCxc kytb
tb

ta
yb

b

a
Q

23222322

3

2
γγ ( kx = 0 for  ( )tbyC −≥ , kx = 1 otherwise)  (15) 

( )( ) ( ) ( )[ ]
















−−








−
−

+−= yCCyc kxta
ta

tb
xa

a

b
Q

23222322

3

2
γγ (ky = 0 for  ( )taxC −≥ , ky = 1 otherwise)   

( ) ( )[ ] ( )( ) ( ) ( )[ ]222322 1
3

2
γγ TTxt ytbntaytb

tb

ta
Q −−−−+−−








−
−

=   

( ) ( )[ ] ( )( ) ( ) ( )[ ]222322 1
3

2
γγ TTyt xtantbxta

ta

tb
Q −−−−+−−








−
−

=  

Where, 
xcQ ,

ycQ ,
xtQ  and 

ytQ  are first moments of area, 
xct ,

yct ,
xtt  and 

ytt are thicknesses. 

 
2.3 – Mohr Circle 

 
Using Mohr circle approach is possible to transform non-principal stresses in principal and maximum shear stresses.  

The resultant of normal and shear stresses can be estimated as shown at (16) and (17) expressions: 
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The principal stresses and angles at surface of a long bone are:  
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The maximum shear stress and angles at surface of a long bone are: 
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Figure 5.b shows a Mohr circle for three angular orientations numbered from 1 to 3, at same external surface point.  

 
(a)     (b) 

Figure 5. (a) Element of area at a point of interest at a medial bone surface and (b) Mohr circle. 
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The first angular orientation corresponds to the actual situation shown at Figure 5.a. The second angular orientation 
turns θ at external surface of long bone from its initial position (2θ at Mohr circle) to reach the angle of principal 
stresses. The third angular orientation, add 45° to second position (add 90° at Mohr circle) to reach the angle of 
maximum shear stresses. Note that at Mohr circle the angle θ is doubled (Crandall, 1978). 
 

2.4 – Analytic Results 

 
Figure 6 shows curves generated with the application of (1)-(19) expressions. At Figure 6 all graphics abscissa 

shows a complete turn of γ angle at external or internal cortical tissue surfaces, at a medial section of a long bone. The 
geometric and load data were the same of former work (Kenedi, 2009b).  

Some material properties were picked from technical literature as (Rapoff, 2007) and (Rincón-Kohli, 2009):  
Ecortical = 20 GPa, νcortical = 0.235 and  Etrabecular = 18 GPa, νtrabecular = 0.181. Other material properties were estimated as: 
Gcortical  = 8.1 GPa and Gcortical = 7.6 GPa to maintain bulk modulus positive.  
 

     
            (a)               (b)         
 

        
           (c)             (d) 
 
Figure 6. Graphical representation of: (a) Normal stress components, (b) shear stresses components, (c) cortical 
combined normal stress and (d) cortical combined shear stress. 
 

Note that vertical scale of Figures 6.a and 6.c are bigger than ones of Figures 6.b and 6.d. At Figure 6.a and 6.b both 
cortical and trabecular stress components are represented for didactic reasons. At Figures 6.c and 6.d only cortical 
combined normal and shear stresses are represented. Indeed Figures 6.c and 6.d are, respectively, the graphical 
representation of expressions (16.a) and (16.b).  

Analyzing Figures 6.a and 6.b it is clear that the stress components at cortical tissue are larger than stress 
components at trabecular tissue. Comparing Figures 6.c and 6.d, is apparent that normal stresses are bigger than shear 
stresses.  

Although is almost indistinguishable Figure 6.a shows different values for !Cσ  and !Tσ axial stresses, for cortical 

and trabecular tissues. Figure 6.b shows a cortical torsional stress, modeled as constant, and a variable trabecular 
torsional stress. Also at Figure 6.b, the curve smoothness of cortical transverse shear stress components are affected by 
the elliptic form, changing when the thickness reach the interface between full and hollow section.    
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3.  FI�ITE ELEME�T MODEL 

 
A finite element model was implemented, with the utilization of a well known commercial F.E. package. The model 

results were used as reference to composite analytic model. The geometry was imported into ANSYS Design Modeler 
from a Parasolid file format. Figure 7.a shows a representation of cortical tissue, Figure 7.b shows a representation 
trabecular tissue and Figure 7.c shows a representation of the composite model, with cortical and trabecular tissues 
joinned together. 

 

                       
(a)                    (b) 

 

 
(c) 
  

Figure 7. F.E. human femur model: (a) cortical tissue, (b) trabecular tissue, (c) composite model, with cortical and 
trabecular tissues. 
 

The F.E. model of a human femur is linear and elastic, with little displacements and rotations. The geometry is quite 
complex, but could be imported from a real scanned human femur geometry. Figure 8.a shows the mesh of geometric 
model and Figure 8.b shows an example of longitudinal stress post-processing result. For this F.E. model was used 
62375 Nodes and 38290 Elements (SOLID186 and SOLID187). 

 

 

  
    (a)      (b) 

Figure 8. Human femur finite element model: (a) mesh and (b) longitudinal stress (SZ). 
 

Figure 8.b shows an usual way of longitudinal stress representation (parallel do Z axis) at external surface of cortical 
tissue, which not gave many details about the stress distribution at a specific area.  
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An alternative way of stress representation is shown at Figure 9. A path is created at a chosen cross section, where 
the stress variations can be readily accessed. Evidently the stresses of every node of each path can be also listed.  

 

         
 (a)         (b)  

 

      
 
 (c)      (d) 

Figure 9.  F.E. model results: (a) longitudinal, (b) maximum shear, (c) minimum principal and (d) maximum principal 
stresses. 

 
Note that each path are, at the same cross section, at external surface of cortical tissue. The stresses level mantain 

under 30 MPa at external cortical tissue surface. At Figure 9.a, the longitudinal stresses shows that the stress 
distribution agree with the prevalence of bending stress in comparison with pure axial stress.  

  
4.  COMPARATIVE STUDY 

 
The results of the composite analytic model expressions are compared with the results of F.E. model at Figure 10.  

 
Figure 10. Comparative diagram of results: analytic and F.E. models.  
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Figure 10 shows the results of principal and maximum shear stresses (σ1, σ3 and τmax) for points positioned in a path 
at external surface of a human femur medial cross section. As the maximum and the minimum principal stresses are 
opposite in sign, as can be also seen qualitatively at Figure 5.b, the maximum shear stress is the average value between 
maximum and minimum principal stresses. The results of two models, F.E. (used as reference) and the composite 
analytic model, are plotted resulting in a close match.  
 
5.  CO�CLUSIO�S 

 
A simple composite analytic model was developed, with limiting hypothesis, to describe the stress distribution, 

normal and shear componentes, at external surface of a human long bone medial cross section. Principal and maximum 
shear stresses are also calculated.  The performance of analytic model was improved in comparison to former models by 
the utilization of two bones tissues, cortical and trabecular. The estimative of principal and maximum shear stresses at 
external surface of long bones, which are key variables to implementation of any failure criteria, are the major goal of 
this work.  
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