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Abstract. Chaos is a kind of nonlinear system response that has a dense set of unstable periodic orbits (UPOs) 
embedded in a chaotic attractor. The idea of the chaos control is to explore the UPO stabilization obtaining dynamical 
systems that may quickly react to some new situation, changing conditions and their response. The OGY (Ott-Grebogi-
Yorke) method achieves system stabilization by using small perturbations promoted in the neighborhood of the desired 
orbit when the trajectory crosses a specific surface, such as a Poincaré section. This paper investigates the state space 
reconstruction applied to a multiparameter (MP) method based on OGY approach in order to control chaotic behavior 
using different control parameters. As an application of the proposed multiparameter general formulation it is 
presented an uncoupled approach where the control parameters do not influence the system dynamics when they are 
not active. This method is applied to control chaos in a nonlinear pendulum. Results show that the proposed procedure 
is a good alternative for chaos control since it provides a more effective UPO stabilization than the classical single-
parameter OGY approach. 
 
Keywords: Chaos control, nonlinear dynamics, pendulum, state space reconstruction 

 
1. INTRODUCTION 
 

Chaos is a kind of nonlinear system response that has a dense set of unstable periodic orbits (UPOs) embedded in a 
chaotic attractor. The idea of the chaos control is to explore the UPO stabilization obtaining dynamical systems that 
may quickly react to some new situation, changing conditions and their response. Chaos control may be understood as 
the use of tiny perturbations for the stabilization of UPOs embedded in a chaotic attractor. Chaos control methods may 
be classified as discrete or continuous techniques. The first chaos control method was proposed by Ott et al. (1990), 
nowadays known as the OGY method as a tribute of their authors (Ott-Grebogi-Yorke). This is a discrete technique that 
considers small perturbations promoted in the neighborhood of the desired orbit when the trajectory crosses a specific 
surface, such as some Poincaré section (Grebogi & Lai, 1997; Shinbrot et al., 1993). On the other hand, continuous 
methods are exemplified by the so called delayed feedback control, proposed by Pyragas (1992), which states that 
chaotic systems can be stabilized by a feedback perturbation proportional to the difference between the present and a 
delayed state of the system. There are many improvements of the OGY method that aim to overcome some of its 
original limitations, as for example: control of high periodic and high unstable UPO (Otani & Jones, 1997, Ritz et al., 
1997 and Hübinger et al., 1994), control using time delay coordinates (Dressler & Nitsche, 1992; So & Ott, 1995; Korte 
et al., 1995; and Pereira-Pinto et al., 2004), control using different control parameters (de Paula & Savi, 2007; Otani & 
Jones, 1997; Barreto & Grebogi, 1995).  

This contribution considers the application of the uncoupled approach of semi-continuous multiparameter (SC-MP) 
chaos control method, method built upon the OGY method (De Paula & Savi, 2007), using state space reconstruction. 
As an application of the general formulation a two-parameter control of a nonlinear pendulum is carried out. Is it 
considered that only the scalar time series of pendulum position is available and system dynamics is reconstructed by 
using delay coordinates method.  Results show that the procedure is a good alternative for chaos control since it 
provides an effective UPO stabilization. 
 
2. MULTIPARAMETER CHAOS CONTROL METHOD 
 

A chaos control method may be understood as a two stage technique. The first step is known as learning stage where 
the unstable periodic orbits are identified and some system characteristics are evaluated. After that, there is the control 
stage where the desirable UPOs are stabilized.  

The OGY approach is described considering a discrete system of the form of a map ),(1 pF nn ξξ =+ , where p ℜ∈  

is an accessible parameter for control. This is equivalent to a parameter dependent map associated with a general 
surface, usually a Poincaré section. The control idea is to monitor the system dynamics until the neighborhood of a 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 
desirable point is reached. After that, a proper small change in the parameter p causes the next state ξ i+1 to fall into the 
stable direction of the desirable point. In order to find the proper variation in the control parameter, δp, it is considered a 
linearized version of the dynamical system near this control point. The linearization has a homeomorphism with the 
nonlinear problem that is assured by the Hartman-Grobman theorem (Savi, 2006). The semi-continuous control method 
introduces as many intermediate control stations as it is necessary to achieve stabilization of a desirable UPO. In order 
to use N control stations per forcing period T, one introduces N equally spaced successive Poincaré sections 

),...,1( Nnn =Σ .  

The semi-continuous multiparameter (SC-MP) chaos control method considers Np different control parameters,ip  

( pNi ,...,1= ). By considering a specific control station, only one of those control parameters actuates. Under this 

assumption, the map F , that establishes the relation of the system behavior between the control stations nΣ  and 1+Σn , 

depends on all control parameters. Although only one parameter actuates in each section, it is assumed the influence of 
all control parameters based on their positions in station nΣ . On this basis,  

 

),(1 nnn PF ξξ =+
 (1) 

 

where nP  is a vector with all control parameters. By using a first order Taylor expansion, one obtains the linear 

behavior of the map F  in the neighborhood of the control point nCξ  and around the control parameter reference 

position, 0P , is defined by.  
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This equation may be rewritten as follows 

 
nnnnn PWJ δδξδξ +=+1  (3) 

 

where 111 +++ −= n
C

nn ξξδξ , n
C

nn ξξδξ −= , 0PPP nn −=δ  is the control actuation, 
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ξξξ ξ  is the Jacobian matrix and 
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nn PFDW

==
= ξξξ  is the sensitivity 

matrix which each column is related to a control parameter. In order to evaluate the influence of all parameters 
actuation, it is assumed that the system response for all parameters actuation is given by a linear combination of the 
system responses when each parameter actuates isolated and the others are fixed at their reference value. Therefore,  

 
nnn pBP δδ =  (4) 

 

where nB  is defined as a ][ pp NN ×  diagonal matrix formed by the weighting parameters, i.e., n
ii

nBdiag β=)( . This 

can be understood considering that each parameter influence is related to a vector with 

components )( 0i
n
i

n
i

n
i

n
ii ppWpWq −== δ , and the general actuation is given by: 

 

pp NN qqqq βββ +++= K2211  (5) 

 

and iβ  weights each parameter influence in the system response. Notice that q may be written as follows: 

 
nnnn

N
n
N

n
N

nnnnnn pBWpWpWpWq
ppp

δδβδβδβ =+++= K222111  (6) 

 
Moreover, by assuming that only one parameter actuates in each control station it is possible to define active 

parameters, represented by subscript a, n
a

n
a

n
a pBP δδ =  (actuates in station nΣ ), and passive parameters, represented by 
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subscript p, n
p

n
p

n
p pBP δδ =  (does not actuate in station nΣ ). At this point, it is assumed a weighting matrix for active 

parameter, n
aB , and other for passive parameters, n

pB . Therefore,  

 
n
p

nn
a

nnnn PWPWJ δδδξδξ ++=+1  (7) 

 

Now, it is necessary to align the vector 1+nδξ  with the stable direction 1+n
sν : 

 
11 ++ = n

s
n ανδξ  (8) 

 
where ℜ∈α  needs to be satisfied as follows: 

 
1+=++ n

s
n
p

nn
a

nnn PWPWJ ανδδδξ  (9) 

 

Therefore, once the unknown variables are α  and the non-vanishing term of the vector naPδ , one obtains the 

following system: 
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The solution of this system furnishes the necessary values for the system stabilization: α  and n
aipδ , where n

aipδ  is 

related to the non-vanishing element of the vector n
aPδ . Notice that the actuation is given by: n

ai
n

ai
n
ai Pp βδδ /= .  

A particular case of this control procedure has uncoupled control parameters meaning that each parameter returns to 
the reference value when it becomes passive. Moreover, since there is only one active parameter in each control station, 
the system response to parameter actuation is the same as when it actuates alone. Under this assumption, passive 
influence vanishes and active vector is weighted by 1, which is represented by: 

 

0=n
pB  and IBn

a =  (11) 

 
where I is the identity matrix. 

Therefore, the map F , that establishes the relation of the system behavior between the control stations nΣ  and 

1+Σn , is just a function of the active parameters, ),(1 n
a

nn PF ξξ =+ , and the linear behavior of the map F  in the 

neighborhood of the control point nCξ  and around the control parameter reference positions, 0P , is now defined by:  

 
n

a
nnnn PWJ δδξδξ +=+1  (12) 

 

where the sensitivity matrix nW  is the same of the previous case. Moreover, since IBn
a = , it follows that n

a
n
a pP δδ =  , 

thus the value of n
aPδ  corresponds to the real perturbation necessary to stabilize the system. In order to align the vector 

1+nδξ  with the stable direction, the following system is obtained: 
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2.1. State Space Reconstruction 
 
A time series of a dynamical system can be understood as a time evolution of an observable variable of the system. 

It can be a state variable or a representation of that. An essential point related to the time series analysis is that it 
contains all information related to system dynamics. Therefore, the dynamics can be reconstructed by a scalar time 
series. There are different alternatives to perform the state space reconstruction. The method of delay coordinates is an 
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alternative employed in this paper. Basically, this method may be used to construct a vector time series that is 
equivalent to the original dynamics from a topological point of view. The state space reconstruction needs to form a 
coordinate system to capture the structure of orbits in state space, which could be done using lagged variables. Then, it 
is possible to use a collection of time delays to create a vector in a De-dimensional space. The application of this 
approach is associated with the determination of delay parameters, time delay, τ, and embedding dimension, De. The 
average mutual information method is an alternative to determine time delay (Fraser & Swinney, 1986) while the false 
nearest neighbors method is used to estimate embedding dimension (Rhodes & Morari, 1997). 

In terms of control purposes, it should be highlighted that the state space reconstruction by delay coordinates method 
causes the map F to be dependent on all control parameters perturbations performed in the time interval tn − τ ≤ t ≤ t 

n, 
where τ  is the time delay (Dressler & Nitsche, 1992). Thus, it is necessary to consider perturbations until δpn-r, where r 
is the biggest value so that δpn-r is inside the considered interval (tn − τ ≤ t ≤ t 

n). Therefore, the use of state reconstructed 
by delay coordinates method implies that: 

 

),...,,,( 11 rnnnnn PPPF −−+ = ξξ  (14) 

 
By considering the same steps employed from equation (1) to equation (3), it is obtained:  
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In order to obtain system stabilization, the same procedure presented at section 2 must be considered and the vector 

1+nδξ  has to be aligned with the stable direction 1+n
sν . 

 
3. SIMULATION RESULTS 
 

As an application to the proposed chaos control procedure, a system with high instability characteristic is of 
concern. A nonlinear pendulum actuated by two different control parameters is considered. The motivation of the 
proposed pendulum is an experimental set up discussed in De Paula et al. (2006) that proposed a mathematical model to 
describe the pendulum dynamical behavior. Basically, the pendulum consists of an aluminum disc with a lumped mass. 
An electric motor harmonically excites the pendulum via a string-spring device, which provides torsional stiffness to the 
system. 

The mathematical model for the pendulum dynamics describes the time evolution of the angular position, φ, 
assuming that ϖ is the forcing frequency, I is the total inertia of rotating parts, k is the spring stiffness, ζ represents the 
viscous damping coefficient and µ the dry friction coefficient, m is the lumped mass, a defines the position of the guide 
of the string with respect to the motor, b is the length of the excitation arm of the motor, D is the diameter of the 
metallic disc and d is the diameter of the driving pulley. The equation of motion is given by (De Paula et al., 2006): 
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where )()sin(2)cos(2)( 2
2

2
22 batlbtablbatf −−∆−−∆++=∆ ϖϖ  and ∆l1 and ∆l2 correspond to actuations. 

Numerical simulations of the pendulum dynamics are in close agreement with experimental data by assuming 
parameters used in De Paula et al. (2006): a = 1.6×10−1 m; b = 6.0×10−2 m; d = 4.8×10−2 m; D = 9.5×10−2 m; m = 
1.47×10−2 kg; I = 1.738×10−4 kg m2; k = 2.47 N/m; ζ=2.386×10-5 kg m2 s-1; µ=1.272×10-4 N m; ϖ =5.61rad/s.  

Position and velocity time series are obtained from numerical integration of the mathematical model with 
ϖ=5.61rad/s, a frequency related to chaotic behavior. UPOs embedded in chaotic attractor are identified by using the 
close return method (Auerbach et al., 1987). This identification consists in the first step of the learning stage being 
common to all control methods.  
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It is assumed that a scalar time series of angular position is acquired with sampling time 2π/(120ϖ), where ϖ is the 
forcing frequency. For ϖ =5.61rad/s, the sampling time is τS ≈9.3×10-3s. In order to reconstruct the dynamics of the 
system from time series, the method of delay coordinates is employed. The average mutual information method is 
employed to determine time delay (Fraser & Swinney, 1986) while the false nearest neighbors method is used to 
estimate embedding dimension (Rhodes & Morari, 1997). Thus, κ is determined by the minimum value of I(κ) curve, 
shown in Figure 1(a), and De is determined by Figure 1(b) when the false nearest neighbors percentage is approximately 
zero. Therefore, it is obtained that 32≈κ and 3=eD . Figure 2 shows the reconstructed state space and Poincaré 

section related to chaotic behavior, employing these immersion parameters. Under this assumptions, note that the time 
delay is ss τκττ 32== while the embedding dimension is De=3. 

 
 

  
 

Figure 1: Delay parameters determination. Left: time delay, κ; and Right: embedding dimension, De. 
 

 

  
 

Figure 2: Reconstructed dynamics. Left: Phase space; and Right: Poincaré section. 
  
 
At this point, the capability of the uncoupled approach of the SC-MP to stabilize UPOs using delay coordinates 

reconstruction is of concern. With this aim, it is considered 4 control sections (S1, S2, S3 and S4) uniformly distributed in 
one forcing period. Moreover, once the signal is sampled 120 times per forcing cycle, the time interval between two 
consecutive control sections, Στ , correspond to 30 samples, sττ 30=Σ . On the other hand, the time delay is sττ 32= . 

Thus, to include all control parameters influence in the interval tn − 32τs ≤ t ≤ t 

n it is necessary to consider the 

perturbations nPδ , 1−nPδ  and 2−nPδ . This implies that only sensitivity matrixes nW0 , nW1  and nW2  should be 

determined during the learning stage. If τ  is smaller than Στ , only the influence of nPδ  and 1−nPδ  would be enough. 

A control rule is defined for the stabilization of four different UPO in the following sequence: a period-7 orbit 
during the first 500 periods, a period-5 from period 500 to 1000, a period-1 from 1000 to 1500 and, finally a period-6, 
from period 1500 to 2000. Maximum perturbation of |∆l1max|=5mm and |∆l2max|=15mm are assumed with reference 
position being ∆l10=∆l20=0mm. Figure 3 presents the UPOs of the control rule at the considered control sections S1, S2, 
S3 and S4. 
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Figure 3: UPOs to be stabilized by the control rule at: (a) S1; (b) S2; (c) S3; and (d) S4. 
 
After determining the fixed points of the UPOs at control sections, the local dynamics expressed by the Jacobian 

matrix and the sensitivity matrix of each fixed points at each control station are determined using the least-square fit 

method (Auerbach et al., 1987; Otani & Jones, 1997). Sensitivity matrixes nW0 , nW1  and nW2  are estimated by the 

procedure described in Dressler & Nitsche (1992). After that, the SVD technique is employed for determining the stable 
and unstable directions near the next fixed point. After the learning stage, the control stage starts and parameters 
perturbations are calculated by using Equation (16). 

Figure 5(a) and Figure 6(a) show system time evolution at control stations S1 and S2, respectively, while Figure 5(b) 
and Figure 6(b) show the actuators behavior in the same control stations. These results show that this control approach 
is effective to stabilize all orbits of the control rule 

 

  
 

Figure 5: System stabilization at S1. Left: Position; and Right: Control signal. 
 

(a) (b) 

(c) (d) 
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Figure 6: System stabilization at S2. Left: Position; and Right: Control signal. 
 
Details of the stabilized UPOs of periodicity 7, 5, 1 and 6 are presented at Figures 7-10, respectively, showing the 

orbit phase space, temporal evolution of pendulum position and control perturbations. It can be observed that the 
controller is able to stabilize all UPOs of the control rule. Moreover, after a transient time the perturbation values 
become periodic.  

 

   
 

Figure 7: Period-7 UPO stabilization details: (a) Phase space; (b) Position; (c) Perturbations. 
 

   
 

Figure 8: Period-5 UPO stabilization details: (a) Phase space; (b) Position; (c) Perturbations. 
 

   
 

Figure 9: Period-1 UPO stabilization details: (a) Phase space; (b) Position; (c) Perturbations. 
 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 
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Figure 10: Period-6 UPO stabilization details: (a) Phase space; (b) Position; (c) Perturbations. 
 
The obtained results show that it is possible to achieve the stabilization of UPOs from scalar time series by 

employing the uncoupled approach of the MP-SC using delay coordinates to reconstruct system dynamics.  
 

4. CONCLUSIONS 
 

This contribution presents the application of the uncoupled approach of semi-continuous multiparameter method to a 
nonlinear pendulum. Two different control parameters are of concern and only time series of the pendulum position is 
available. Under these conditions, it is necessary to perform the state space reconstruction. The method of delay 
coordinates is employed to reconstruct system dynamics. The stabilization of some identified UPOs is successfully 
achieved showing the possibility of using such approach to control chaotic behavior in mechanical systems using state 
space reconstruction. 
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