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Abstract. Chaos is a kind of nonlinear system response liagt a dense set of unstable periodic orbits (UPOs)
embedded in a chaotic attractor. The idea of theoshcontrol is to explore the UPO stabilizationahing dynamical
systems that may quickly react to some new situatizanging conditions and their response. The QG¥-Grebogi-
Yorke) method achieves system stabilization bygusimall perturbations promoted in the neighborhobthe desired
orbit when the trajectory crosses a specific sugfaguch as a Poincaré section. This paper investgthe state space
reconstruction applied to a multiparameter (MP) hwt based on OGY approach in order to control citao¢havior
using different control parameters. As an applioatiof the proposed multiparameter general formolatit is
presented an uncoupled approach where the conticdrpeters do not influence the system dynamics wiegnare
not active. This method is applied to control chaoa nonlinear pendulum. Results show that theppsed procedure
is a good alternative for chaos control since ibypides a more effective UPO stabilization than d¢lessical single-
parameter OGY approach
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1. INTRODUCTION

Chaos is a kind of nonlinear system response #mmihdense set of unstable periodic orbits (UP@gedded in a
chaotic attractor. The idea of the chaos contrdabigxplore the UPO stabilization obtaining dynamhisystems that
may quickly react to some new situation, changiogditions and their response. Chaos control mayriaerstood as
the use of tiny perturbations for the stabilizat@inJPOs embedded in a chaotic attractor. Chaog@amethods may
be classified as discrete or continuous technigubs. first chaos control method was proposed byeO#l. (1990),
nowadays known as the OGY method as a tributeedf duthors (Ott-Grebogi-Yorke). This is a discregehnique that
considers small perturbations promoted in the rimgiood of the desired orbit when the trajectolyseses a specific
surface, such as some Poincaré section (Grebogai&1997; Shinbrot et al., 1993). On the other hamhtinuous
methods are exemplified by the so called delayediifack control, proposed by Pyragas (1992), whiates that
chaotic systems can be stabilized by a feedbadkinpation proportional to the difference betweea ghiesent and a
delayed state of the system. There are many impremnts of the OGY method that aim to overcome sofmigso
original limitations, as for example: control ofghi periodic and high unstable UPO (Otani & Jon@§71 Ritz et al.,
1997 and Hubinger et al., 1994), control using tdety coordinates (Dressler & Nitsche, 1992; SOt& 1995; Korte
et al., 1995; and Pereira-Pirgbal, 2004), control using different control paramet@hs Paula & Savi, 2007; Otani &
Jones, 1997; Barreto & Grebogi, 1995).

This contribution considers the application of theeoupled approach of semi-continuous multiparam(&e-MP)
chaos control method, method built upon the OGYhmet(De Paula & Savi, 2007), using state spacensgnaction.
As an application of the general formulation a tarameter control of a nonlinear pendulum is cdroet. Is it
considered that only the scalar time series of pkmd position is available and system dynamice@nstructed by
using delay coordinates method. Results show tti@tprocedure is a good alternative for chaos obrsince it
provides an effective UPO stabilization.

2. MULTIPARAMETER CHAOSCONTROL METHOD

A chaos control method may be understood as atagegechnique. The first step is known as learstage where
the unstable periodic orbits are identified and s@ystem characteristics are evaluated. After thate is the control
stage where the desirable UPOs are stabilized.

The OGY approach is described considering a dis@gitem of the form of a ma;b”"l =F(&", p), wherepd O

is an accessible parameter for control. This isivedent to a parameter dependent map associatdd avigeneral
surface, usually a Poincaré section. The contred it to monitor the system dynamics until the meighood of a
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desirable point is reached. After that, a propealsohange in the parametercauses the next stafé™ to fall into the
stable direction of the desirable point. In ordefind the proper variation in the control paramefp, it is considered a
linearized version of the dynamical system neag tuntrol point. The linearization has a homeomismphwith the
nonlinear problem that is assured by the Hartmawb@ean theorem (Savi, 2006). The semi-continuousracbmethod
introduces as many intermediate control stationi$ issnecessary to achieve stabilization of armddde UPO. In order

to use N control stations per forcing period, one introducesN equally spaced successive Poincaré sections

Z,(n=1...,N).

The semi-continuous multiparameter (SC-MP) chasdrobmethod considerid, different control parameterp;
(i=1..,Np). By considering a specific control station, omlye of those control parameters actuates. Under thi
assumption, the map , that establishes the relation of the system ieh&etween the control statiors, and 2,4,

depends on all control parameters. Although onky parameter actuates in each section, it is assthmeedfluence of
all control parameters based on their positiorstation >, . On this basis,

&M =F(E" P )

where P" is a vector with all control parameters. By usidirst order Taylor expansion, one obtains thedn
behavior of the mapF in the neighborhood of the control poizﬁr:‘ and around the control parameter reference

position, P, , is defined by.

&M =D F(E"P") gﬂ:;g,pn=p055n +DaF(E"P") {nzgg,pn:pod’” (2
This equation may be rewritten as follows

HEML = INAEN 4 WD 3)
where oM = gl _ gl N =¢gn-¢g, PN =pP"-p, is the control actuation,

JN= D{nF(f”,P”) is the Jacobian matrix anw" = DPnF(én,P”) is the sensitivity

&M=¢1,P=Ry &N=¢1 P=Ry

matrix which each column is related to a controtapzeter. In order to evaluate the influence of ptameters

actuation, it is assumed that the system respamsallf parameters actuation is given by a lineanlgimation of the
system responses when each parameter actuatdedsafal the others are fixed at their referenceevalherefore,

P"=B"p" (4)

where B" is defined as &N p XN ] diagonal matrix formed by the weighting parametiees diag(B"); =B". This
can be understood considering that each parameteffuence is related to a vector with
components; =W."&" =W"(p" - pgi) , and the general actuation is given by:

q=path + B2z +.--+ B, AN, ®)
and ,6’, weights each parameter influence in the systeporese. Notice thaj may be written as follows:
q= AW DL + BIWS 3 +...+ By Wy Py =W"B D" ®)
p p p

Moreover, by assuming that only one parameter getum each control station it is possible to defactive
parameters, represented by subsajpfP;' = Bdp) (actuates in statioll ,), and passive parameters, represented by
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subscriptp, g =Bpdpp (does not actuate in statidfy, ). At this point, it is assumed a weighting matidx active

parameter,Bn , and other for passive parameteﬁ. Therefore,
&M= 36" + WP + WP U]

Now, it is necessary to align the vect.(S;Y”+1 with the stable direction2+1:

&I’Hl — aV2+l (8)
where @ J[J needs to be satisfied as follows:
IS +W P WP = av T 9)

Therefore, once the unknown variables @eand the non-vanishing term of the vecmPa", one obtains the
following system:

d::’an — n_ ,n+ly-1r qn n 55“
L ] Wi-vs T 37 W ]LPJ (10)

The solution of this system furnishes the necesgalyes for the system stabilizatioa: and &y, where &g is

related to the non-vanishing element of the ved®). Notice that the actuation is given bgpl; = &Py / G5 .

A particular case of this control procedure hasoupded control parameters meaning that each paeamettirns to
the reference value when it becomes passive. Meresince there is only one active parameter i eaotrol station,
the system response to parameter actuation isame @s when it actuates alone. Under this assumptessive
influence vanishes and active vector is weighted byhich is represented by:

Bp =0 andBf =1 (11)

wherel is the identity matrix.
Therefore, the magF , that establishes the relation of the system Hehaetween the control statiors,, and

341, iS just a function of the active parametedS;™ = F(¢",P)), and the linear behavior of the mdp in the

neighborhood of the control poirétg and around the control parameter reference pasitig, , is now defined by:
M = 33" + W] (12)

where the sensitivity matrixv" is the same of the previous case. Moreover, $gcel , it follows that &Py =) ,
thus the value ofP; corresponds to the real perturbation necessastatilize the system. In order to align the vector

&&™1 with the stable direction, the following systenolstained:

a

|:d3an:| - _[an_V2+1]—1J nd;(n (13)

2.1. State Space Reconstruction

A time series of a dynamical system can be undeds&s a time evolution of an observable variablhefsystem.
It can be a state variable or a representatiorhaf tAn essential point related to the time seaealysis is that it
contains all information related to system dynamitiserefore, the dynamics can be reconstructed bgaéar time
series. There are different alternatives to perfirenstate space reconstruction. The method ofydelardinates is an
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alternative employed in this paper. Basically, thiesthod may be used to construct a vector timeesdhat is
equivalent to the original dynamics from a topotadipoint of view. The state space reconstructieads to form a
coordinate system to capture the structure of ®ihistate space, which could be done using laggedbles. Then, it
is possible to use a collection of time delays t@ate a vector in ®.-dimensional space. The application of this
approach is associated with the determination tdfydparameters, time delay, and embedding dimensiob,. The
average mutual information method is an alternativdetermine time delay (Fraser & Swinney, 1986)levthe false
nearest neighbors method is used to estimate ernmgedidnension (Rhodes & Morari, 1997).

In terms of control purposes, it should be hightigghthat the state space reconstruction by delasdomates method
causes the malp to be dependent on all control parameters pettiorsmperformed in the time intervéll- r<t <t",
wherer is the time delay (Dressler & Nitsche, 1992). Thtuis necessary to consider perturbations uifll’, wherer
is the biggest value so thgt™" is inside the considered intervél € 7<t<t"). Therefore, the use of state reconstructed
by delay coordinates method implies that:

EML=F (&, P, PP (14)
By considering the same steps employed from equétipto equation (3), it is obtained:

BE™ = JNEN + WGP AW P+ WP (15)

where J" = D{nF(g‘(’;‘,dbn,d:’”'l,...,dbn"r) and w'" = Dap”‘i (&L,0P", " ..., ") . By considering active and

passive control parameters:
™= I 3" +WRHP) + WP + W dP ™ +Wh PRI+ + W P + W P (16)

In order to obtain system stabilization, the samee@dure presented at section 2 must be consiéethe vector
™1 has to be aligned with the stable directidfi™*.

3. SIMULATION RESULTS

As an application to the proposed chaos controtgmare, a system with high instability characterigs of
concern. A nonlinear pendulum actuated by two diffié control parameters is considered. The motiwatf the
proposed pendulum is an experimental set up disdussDe Paul&t al. (2006) that proposed a mathematical model to
describe the pendulum dynamical behavior. Basictily pendulum consists of an aluminum disc withraped mass.
An electric motor harmonically excites the pendulima string-spring device, which provides torsibstiffness to the
system.

The mathematical model for the pendulum dynamicscriges the time evolution of the angular positign,
assuming thatois the forcing frequency,is the total inertia of rotating partsjs the spring stiffnesg] represents the
viscous damping coefficient andthe dry friction coefficientin is the lumped mass,defines the position of the guide
of the string with respect to the motdr,is the length of the excitation arm of the motorjs the diameter of the
metallic disc andl is the diameter of the driving pulley. The equatid motion is given by (De Pau al,, 2006):

. 0 1 0
{5):1}: _kd®_¢ {;(1}+ Kd At (1) - 1) - MIDSeNts) _ 24 arctangix,) (19)
2 2 1

21 1 21 21 7l

where Af (t) = \/a2 +b? + AI22 - 2abcosat) — 20Al, sin@t) - (a—b) and4l; and4l, correspond to actuations.

Numerical simulations of the pendulum dynamics iareclose agreement with experimental data by assgimi
parameters used in De Paafaal. (2006):a = 1.6x10* m; b = 6.0<10° m; d = 4.8x10%m; D = 9.5<10°m; m =
1.47102kg; | = 1.738x10¢ kg nf; k = 2.47 N/m{=2.386<10° kg nfs™; u=1.27%10* Nm; w=5.61rad/s.

Position and velocity time series are obtained froomerical integration of the mathematical modethwi
w=5.61rad/s, a frequency related to chaotic behaldl®0Os embedded in chaotic attractor are identifigdising the
close return method (Auerbaeh al, 1987). This identification consists in the fistep of the learning stage being
common to all control methods.
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It is assumed that a scalar time series of angudsition is acquired with sampling timevgLl20w), wherew is the
forcing frequency. Fow =5.61rad/s, the sampling time i§=9.3x10°s. In order to reconstruct the dynamics of the
system from time series, the method of delay coettés is employed. The average mutual informatiethod is
employed to determine time delay (Fraser & SwinrE386) while the false nearest neighbors methodsed to
estimate embedding dimension (Rhodes & Morari, 199fus, « is determined by the minimum value I¢k) curve,
shown in Figure 1(a), ard, is determined by Figure 1(b) when the false neareighbors percentage is approximately
zero. Therefore, it is obtained that=32and D, =3. Figure 2 shows the reconstructed state spacePaimtaré

section related to chaotic behavior, employing ¢h@smersion parameters. Under this assumptions, that the time
delay ist = k7 = 32rswhile the embedding dimensionis=3.
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Figure 2: Reconstructed dynamics. Left: Phase spaxkRight: Poincaré section.

At this point, the capability of the uncoupled aggrh of the SC-MP to stabilize UPOs using delayrdioates
reconstruction is of concern. With this aim, itensidered 4 control sectior$ (S, S andS;) uniformly distributed in
one forcing period. Moreover, once the signal imglad 120 times per forcing cycle, the time intéatween two
consecutive control sectionsy , correspond to 30 samples; =307r. On the other hand, the time delayris 3274 .

Thus, to include all control parameters influenoethe intervalt" — 327, < t < t" it is necessary to consider the
perturbationsP", "' and "2, This implies that only sensitivity matrixe#/;', W," and W,' should be

determined during the learning stager Ifis smaller tharrs , only the influence oP" and " would be enough.

A control rule is defined for the stabilization fufur different UPO in the following sequence: aipéf7 orbit
during the first 500 periods, a period-5 from pdr&D0 to 1000, a period-1 from 1000 to 1500 anwiliy a period-6,
from period 1500 to 2000. Maximum perturbation M },,|=5mm and4l,,.=15mm are assumed with reference
position beingAl;=Al,.=0mm. Figure 3 presents the UPOs of the contrel atilthe considered control secti@sS,,

S; andS.
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Figure 3: UPOs to be stabilized by the control attqa)S;; (b) S; (¢) &; and (d)S..

After determining the fixed points of the UPOs attol sections, the local dynamics expressed byJdtobian
matrix and the sensitivity matrix of each fixed jsi at each control station are determined usiegeast-square fit
method (Auerbaclet al, 1987; Otani & Jones, 1997). Sensitivity matrixag', W," and W,' are estimated by the
procedure described in Dressler & Nitsche (198&2r that, the SVD technique is employed for detieing the stable
and unstable directions near the next fixed politer the learning stage, the control stage startd parameters
perturbations are calculated by using Equation. (16)

Figure 5(a) and Figure 6(a) show system time eimiwat control station§, andS,, respectively, while Figure 5(b)
and Figure 6(b) show the actuators behavior insttrae control stations. These results show thatthigol approach
is effective to stabilize all orbits of the contrale
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Figure 5: System stabilization &t Left: Position; and Right: Control signal.
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Figure 6: System stabilization 8t Left: Position; and Right: Control signal.

Details of the stabilized UPOs of periodicity 7,15and 6 are presented at Figures 7-10, respegtisiebwing the
orbit phase space, temporal evolution of pendulwsitipn and control perturbations. It can be obsérthat the
controller is able to stabilize all UPOs of the tohrule. Moreover, after a transient time thetpdyation values
become periodic.
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Figure 7: Period-7 UPO stabilization details: (Apfe space; (b) Position; (c) Perturbations.
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Figure 8: Period-5 UPO stabilization details: (Apfe space; (b) Position; (c) Perturbations.
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Figure 9: Period-1 UPO stabilization details: (Apfe space; (b) Position; (c) Perturbations.
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Figure 10: Period-6 UPO stabilization details:Rapse space; (b) Position; (c) Perturbations.

The obtained results show that it is possible thieae the stabilization of UPOs from scalar timeiese by
employing the uncoupled approach of the MP-SC udglgy coordinates to reconstruct system dynamics.

4. CONCLUSIONS

This contribution presents the application of theaupled approach of semi-continuous multiparameatgthod to a
nonlinear pendulum. Two different control parametare of concern and only time series of the pemdyosition is
available. Under these conditions, it is necessaryerform the state space reconstruction. The odetif delay
coordinates is employed to reconstruct system digganThe stabilization of some identified UPOs igcessfully
achieved showing the possibility of using such apph to control chaotic behavior in mechanicaleyst using state
space reconstruction.
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