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Abstract. The dynamical analysis of large-scale structuresfi special interest of aerospace applicationpeeilly
the ones involving smart materials. This paper ge@th an archetypal system with two degrees @fdioen resembled
to the use of SMA elements as vibration isolatigstesns on a sparse aperture satellite array. Tleesy has SMA
elements in two perpendicular directions connedted mass. Each SMA element is connected to a diaseture.
Numerical tests of this system are of concern sigt¥ie general dynamical behavior of the system.
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1. INTRODUCTION

The dynamical response of shape memory alloy (SEi&}ems presents a very rich and complex behaviertal
the remarkable thermomechanical characteristicSM#s. Periodic, quasi-periodic and chaotic respsrese usually
presented for dynamical system with SMA elementseré are several researches efforts dealing withkind of
systems. Savi and Braga (1993a) treated the dymémesponse of SMA systems showing periodic andtha
behaviors. Machadet al. (2004) discussed bifurcation and crises in an Stgillator. Both articles employed a
polynomial constitutive model to describe the themmechanical behavior of SMAs. Savi and Braga (19%8ldied an
SMA oscillator employing another constitutive motieldescribe the restitution force of the osciltalcacarbonarat
al. (2004) investigated the nonlinear response of @AMA oscillator with a thermomechanical conshteitmodel
and numerically demonstrated that a rich classatiitions, including discontinuity of frequency respes, quasi-
periodicity and chaos could arise in nearly adigbzdnditions. Bernardini & Rega (2005) investighte IDOF system
by considering a different thermomechanical modesenting the same richness for SMA oscillatorspekss as
nonlinear resonant conditions and thermomechagimapling influence were treated. Satial. (2008) discussed the
SMA response by considering a constitutive modedt timatches experimental data for quasi-static amaly
Investigations included tension-compression asymmand showed interesting results as multistabiiind chaos.
Machadoet al. (2009) proposed a procedure to evaluate Lyapunperents in hysteretic systems, presenting SMA as
an application of the general procedure. Once agaiich response is related to the SMA system.

The dynamical behavior of SMA systems with multgoees of freedom seems to be much more complex.&av
Pacheco (2002) presented an investigation conaglerie- and two-degree of freedom systems. Machtdb (2003)
revisited the 2DOF system showing different aspeftbifurcation of chaos. Large-scale structureghhicontain
hundreds of connected nodes, being related to uediiee of freedom systems. This kind of structaref special
interest for aerospace applications including amsn Therefore, aerospace industry demands for rerge
comprehension of dynamical behavior of multi-degrgEeedom SMA systems.

A typical large-scale structure with embedded SMAuators is shown in Figure 1, representing a timeedsional
lattice connected by SMA elements. An archetypatieh@f this large-scale structure is also represkim Figure 1,
being composed by a single mass connected by SktAegits.
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Figure 1 — SMA lattice.

Archetypal models are usually employed in stabd#ibalysis of structures, providing a global compredion of the
system behavior. The two-bar truss is an exampkhisfkind of model that presents the snap-thrdogimavior. This
kind of systems allows one to analyze bifurcati@ensrios related to stability changes associatdd different
characteristics of buckling behavior. Symmetric #av truss, known as the von Mises truss, represare of the most
popular system related to stability analysis. $\al. (2002a) analyzed a two-bar truss built with shayeenory alloys
(SMAs) that presents a very complex behavior. RilgerSavi & Nogueira (2010) revisited this trussing a more
realistic constitutive model. The combination obgeetrical and constitutive nonlinearities makeslim@ar dynamics
of this structure especially complex.

This article deals with the dynamical response &DaSMA grid. Adaptive trusses with shape memonpyal
actuators are examples of dynamical systems thgtbehave as the structure considered in this paypeiterative
numerical procedure based on the operator splinigoe (Ortizet al, 1983), the orthogonal projection algorithm (Savi
et al., 2002b) and the classical fourth order Runge-Kuatigthod is developed to deal with nonlinearitiesthe
formulation. Numerical investigation is carried @ansidering free and forced responses of the psdastic structure
showing a number of interesting, complex behaviors.

2. MATHEMATICAL MODEL

The SMA lattice archetypal is composed of SMA elatagn two perpendicular directions linked by a smadsach
SMA element is connected to a base structure,@srsin the schematic picture of Figure 2 that shtivesSMA lattice
at the ideal situation, where all SMA elements htéhe same lengthL,. The perturbed undeformed configuration
represents a situation with perturbations fromiteal configuration in which all SMA elements ared stress-free
state. Figure 3 presents the perturbed undeforneadfiguration and the deformed configuration. Thisrtprbed
undeformed configuration may be related to a genoatimperfection, for example. Figure 3 also pr#s the system
of coordinates and the restitution forces actinthexmass.

Figure 2 — Schematic picture of the SMA lattice.
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Figure 3 — Different configurations of the SMA le&.

The SMA grid stress-free state is defined by baiades: X,y ,9,.@,,.#5,8,. This state defines the length of each

SMA actuator] ;) ,,I5,i,, and the origin of the coordinate systegwj. With the help of geometric considerations, it is
possible to write:

=X+X
=y+y @
Q = ¢-| +¢i (I = 1121314)

The length of each bar is given by:

L= \/(I_lcosail +X)2+(Y+y)?2, I =4/(,cos,)? +V?

L, = \/(I_Zcosai2 -y)2+(x+x)?%, 1, =4/(,co80,)* +X* 2)
Ly = \/(I_3cos?¢'3 -X)2+(V+y)?, I3=4(,c080,)% +y?

L, = \/(I_4co§ﬁ4 +y)2+(x+x)?, I, =4/(,c050,)% +X*

These lengths can be used to evaluate the defamaftieach bar as follows:

£§=—"—1 (1=1,234) ®3)
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The angles that define the SMA actuator positien ar

cosy = licospy +x , sing = ?
1 1
cosp, zl_zcoLﬁ , sing = )_(L+X 4)
2 2
cosg, = —l_3COL@3 X sing, =Yy
3 L3
cos%:m()liﬂ , sin(04:)_(+X
4 4

By assuming a mass excited by an external force characterized byrassiidal excitation with amplitudg, andF,
in directionx andy, respectively, and frequeney, and w, in the same directions. Besides, it is assumet dta
dissipations different from hysteretic behaviodig to a viscous damping, described by the coeffic. The balance
of momentum is expressed through the following &iqna of motion:

MK + cx + F, cosg — F, sing, + Fycosg, + F, sing, = F, sin(wt) (5)
my +cy + Fysing + F, cosg, - F3sing, + F, cosg, = -mg+ F, sin(a,t) (6)

whereF; (i = 1,2,3,4) is the force on actuatoiThe thermomechanical description of this forcey i@ done by a proper
constitutive model described in the next subsection

2.1. Congtitutive M odel

The description of each SMA actuator fofgds related to the SMA thermomechanical behaviat iais assumed
that phase transformations are homogeneous thrthglelement. There are different ways to descritee $MA
behavior and here, a constitutive model with irdénariables previously discussed in different refees (Sawet al,
2002b, Baéta-Nevest al, 2004, Paiveet al, 2005, Savi & Paiva, 2005; Monteigd al, 2009; Aguiaret al, 2010;
Oliveiraet al, 2010) is employed.

In order to present the constitutive equations,uketconsider straing), temperature (T), and three more state
variables associated with the volume fraction ahephasefs" is associated with tensile detwinned martengi{e is
related to compressive detwinned martengierepresents austenite. Actually, it is considesefburth phaséM
related to twinned martensite, that can be obtafrad phase coexistence conditigft'= 1 —g™* + g™ + £%). With
this assumption, it is possible to obtain a congpkt of constitutive equations that describestiibemomechanical
behavior of SMAs as follows:

(10)

g=Ec+[a+Ea"|(BM " -pMN)-02(T-T,) )

g = L{ ae+ A" +[2a"a +E@@")?)(BM - M) +a"[Ee- (T -To)|- 0,9, }*5131 (®)
n

A= { —ae+ A" ~[2a"a +E@" (B - M) - a"[E - 2(T-To)]- 0,3, }+62J* ©
n

’A:i{ 1 EA_EM e+a" (M - M+)] + 10+
n 2

)T To)[€+0' B~ ﬂM+)]—63J7, }+63JX

where E=EM +,8A(EA—EM) is the elastic modulus while2 = QM +/3A(QA—QM) is related to the thermal
expansion coefficient. Note that subscrigt’ ‘refers to austenitic phase, whilé1* refers to martensite. Moreover,
parametergl™ = /M (T) and A" = AA(T) are associated with phase transformations steasdsl Parameted" is
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introduced in order to define the horizontal widththe stress-strain hysteresis loop, wliléelps vertical hysteresis
loop control on stress-strain diagrams.

The termsd, J,, (n = 1,2,3) are sub-differentials of the indicatondtion J,, with respect tg5, (Rockafellar, 1970).
The indicator functionJ , = J,,(,Bl,ﬂz,,é’s) is related to a convex sat which provides the internal constraints related
to the phases’ coexistence. With respect to exalugiquations of volume fractiong,represent the internal dissipation
related to phase transformations. Moreovgd, (n = 1,2,3) are sub-differentials of the indicafenction J, with

respect tog" (n = 1,2,3) (Rockafellar, 1970). This indicatomdtion is associated with the convex getwhich

establishes conditions for the correct descriptibmternal subloops due to incomplete phase tmnsdtions and also
avoids phase transformatiokt™ — M orM ~ — M.
Concerning the parameters definition, temperatepeddent relations are adopted figrand/, as follows:

v, A
=Ny +—=—(T-Ty) if T>T,
/‘M = /‘0 TM (T M) l M (11)
- if T<Ty
A
T INA W
A= /|0+TM (T-Ty) if T>T,, (12)
-/ if T<Ty

Here, Ty is the temperature below which the martensiticsphiaecomes stable in a stress-free state. Besﬂ@’bs,

MM A8 and A are parameters related to critical stress for @lanisformation.

In order to contemplate different characteristi€she kinetics of phase transformation for loadargd unloading
processes, it is possible to consider differentieslto the internal dissipation paramegg(n =M *, M ~, A): n- and
nh’ during loading and unloading process, respectiviety more details about the constitutive modes, Baivaet al.
(2005) and Savi & Paiva (2005).

2.2. Equations of Motion

Based on constitutive modeling, it is possible &iculate the force in each SMA actuator and theatgus of
motion are given by:

mX + cX + F, cos@ — F,sing, + Fycosg, + F, sing, = F, sin(42,t) (13)

mY + ¢Y + F;sing + F, cosg, - F3sing, + F, cosg, = -mg+ F, sin(2,t) (14)

i :ET% Ha+Eal(B" -A") -2 -To) . (=1234) (15)
1

By defining the dimensionless variables:
Y. 5T (16)

wherel, is a reference length defined in the ideal comion (X=yY=0; ¢, =@, =¢; =9, =0) as shown in Figure
2. Dimensionless equations of motion are given by:

X'+&X + [ cosy —,sing, + [5cosg, + [, sing, = J, sin@,7) 17)
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V' +&Y +sing + 1/, cosg, — 5sing, + I, cosg, = —%+dysin(wyr) (18)
R
Ii= pte +la +utaf (B - g -l (6 -6)  (=1234) (19)
where
ml meg, migef  Er mLoah migah  ErA
Q:QRATR:QRTR, ,UEZE, 'u-ozﬁ; w:i (20)
mlef  Er Er Qg Wy

From now on,Xx and y will be replaced by andy, respectively.

3. NUMERICAL SIMULATIONS

Numerical simulations are performed employing therth-order Runge-Kutta scheme with time steps ehds be
less tharA7 = 77(400c). In all simulations, we have used the materiabprties presented in Table 1, which represents
typical SMA behavior obtained for a strain driviggasi-static simulation &t = 373K. It is considered that all SMA
actuators have length, at ideal situationl_gf2.236m and a cross section are#o0.25nf. Therefore, the parameters
defined in Equations (16) and (20) assume the sabfer? = 6x10° , §=128, 4 = 278x107%, Q= 917x10™.
Some simulations are performed considering twoetsifit situations: a perturbed undeformed configumatvith an
initial position of X=y =01 and the ideal case where=y=0. Free and force vibrations are of concern.
Concerning forced vibrations, only vertical exditatis treated, and therefosg = 0. No other dissipation different
from SMA hysteresis is considered and therefore viicous dissipation is neglect&d=<0). A pseudoelastic system is
treated which means that the austenitic phasealidesat stress-free state.

Table 1. SMA constitutive parameters.

3.1. FreeVibrations

Ex (GPa) Ew (GPa) | a(MPa) a A (MPa) | AM (MPa) | A (MPa) | AN (MPa)
54 54 15C 0.05: 0.1F 41.F 0.62 18E
Oy (MPa/K) | Qu (MPa/K) | Tu (K) Ta(K) | 7~ (MPa.s)| 7Y (MPa.s)
0.7¢ 0.17 291. 307.7 10 27

Let us start with the free vibration analysis bysidering an initial velocity in the x-direction @rix =y = 0.1.

Under this condition the system tends to dissigatergy due to the hysteresis loop. Results fronulsitions are
presented in Figure 4 that presents two subspdcih gphase space related to the free-respondeedittucture. We
calledx-space, built withx, x") andy-space, y'). Note that in the-space, hysteretic behavior dissipates energy until
elastic response is reached in the steady-statey-Shace presents response only at elastic regims.bEhavior can

be understood by observing the thermomechanicavehof each SMA element. Figure 5 presents voldiraetion
evolution of each phase at each actuator whilerEigpresents the stress-strain curves of each &difator.
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Figure 4. State space of the free response.
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Figure 5. Volume fraction evolutions of the fregpense.
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Figure 6. Stress-strain curves of the free response

The coupling between both directions is causedhleyperturbed undeformed configuration. By assuniirag the
undeformed configuration coincides with the ideiliation (X=y =0), the system presents the same qualitative

behavior except for the fact that the movemengséricted to the-direction.
3.2. Forced Vibrations

This section considers the forced vibration analysi the system. Initially, let us consider agdie perturbed
undeformed configuration witk =y = 0.1 and thaw, = 0.04 and2, = 0.5. Under this condition, the system presents a
periodic response as shown in Figure 7. This stssatg response is related to phase transformatibat
preponderantly occur in vertical elements (2 andGtjce again, the perturbed undeformed configurgimmotes a
coupling betweerx-y directions. Large transients are expected, eshedmthe x-direction due to a less amount of
phase transformation.

0104 0.104
0.051 0.051
> 0.00 Q =, 0.00
-0.051 -0.051
-0.101 -0.101
02 0.1 0.0 0.1 02 0.2 0.1 0.0 0.1 02
X y

Figure 7. Periodic response due to an excitaijen0.04 and2, = 0.5.
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Let us now consider a different excitation, witlegger amplitudesi, = 0.4 and?2, = 0.5. This excitation produces a
chaotic-like response as presented in Figure 8.ifitrease of the complexity of this response is tduthe nonlinear
response of all SMA elements. Basically, phasestamations are occurring in all the four actuaiarsontrast of the
previous example, where only two actuators prelsegé amount of phase transformations.

0.4 0.4
0.2+ 0.24
< 0.01 >~ 0.04
-0.2- -0.24
0.4+ -0.4
—0|.6 —O|.4 —O‘.2 O.‘O O.‘2 O.|4 Oj6 —O‘.6 —0'.4 —0|.2 OTO 0.‘2 0.I4 0f6
X y

Figure 8. Chaotic-like response due to an excitaije= 0.4 and2, = 0.5.

By analyzing the ideal situatiorX(= ¥ = 0) the coupling betweexry directions does not occur anymore. Therefore,

the system dynamics is restrictedytdirection. Figure 9 presents excitation previousiylyzed. By considering, =
0.04 and@, = 0.5, system presents a periodic response pesbénthe left panel of Figure 9. Note that thispense
has the same pattern of that obtained in FiguBy7ncreasing the excitation parametersife 0.4 and?, = 0.5, the
system response presents a periodic response €Fguight panel) in contrast with the chaotic-liesponse of Figure
8.

0.104
0.4
0.05- 02
X, 0.00 %, 0.0
-0.05] -0.24
044

-0.104
0.2 0.1 0.0 01 02 06 -04 -02 00 02 04 06
y y

Figure 9. Forced vibration of the system when uodeéd configuration coincides with ideal situation=y =0).
Left panel:.g, = 0.04 and2, = 0.5; Right paneb, = 0.4 and?, = 0.5.

4. CONCLUSIONS

This article deals with the dynamical response &aSMA grid that represents adaptive trusses wlihpe
memory alloy actuators. An iterative numerical grdure based on the operator split technique, thigogonal
projection algorithm and the classical fourth orBemge-Kutta method is developed to deal with mardrities in the
formulation. Numerical investigation is carried mansidering free and forced responses of the pedastic structure
showing a number of interesting, complex behavitirgs important to highlight how imperfections catter system
characteristics providing a coupling between bataations.
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