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Abstract. Phononic band-gap materials prevent elastic waves from propagating at certain frequency ranges. These ma-
terials are called Phononic Crystals (PCs). PCs have been applied to manufacture frequency filters, vibration protection
devices, waveguide and to improve ultrasound imaging transducers. Periodic band-gap materials are designed by choos-
ing the location and the size of the band gaps. Many works have been performed on the systematic design of band-gap
materials by using topology optimization method (TOM) which is applied to design and optimize periodic materials con-
taining different types of inclusions. Topology optimization is a method which defines the best distribution of material in
a design domain in according to an objective function and some constraints. In usual formulation a design domain is dis-
cretized into finite elements and a pseudo density is assigned at each element as a design variable. However, the optimal
solution presents some elements with intermediate density values. To obtain the manufactured solution the gray scale is
often removed which implies changes in the dynamic behavior of the material. To minimize this problem, in this work,
the concept of FGM is applied. Functionally graded materials (FGMs) are two component composites characterized by
a continuous gradient from one material phase to the other. By combining TOM with FGM an optimal solution closer to
the manufactured solution can be found. The modelling of phononic band-gap materials is obtained by using the linear
finite element method based on four nodes isoparametric elements combined with Bloch-Floquet relations. This model
provides dispersion curves from which results of physical interest can be extracted, such as: identification of propagation
modes, cutoff frequencies, passbands and stopbands. In the topology optimization formulation a material model based on
the Solid Isoparametric Microstructures with Penalization (SIMP) is used. Sequential Linear Programming (SLP) is used
for solving the non-linear optimization problem. To validate the proposed approach bi-dimensional phononic structures
are designed and their performance are evaluated.
Keywords: phononic band gaps, topology optimization, functionally graded materials, finite element method, Bloch-
Floquet

1. INTRODUCTION

Periodic material, such as porous or fibrous materials and composites, have arisen a great deal of interest and are
now widely used in underwater acoustics, signal processing, as well as for medical imaging applications. Particularly,
elastic composite materials (phononic materials) exhibit frequency band gaps within which sound and vibrations at certain
frequencies are forbidden to propagate. Wave propagation in heterogeneous media is dispersive, it means that a wave
decomposes into multiple waves with different frequencies. In this kind of media there are ranges of frequencies, known
as stopbands or band gaps, over which all incident waves are effectively attenuated.

Because of the potential application of the band gap property of phononic materials there has been growing interest in
the systematic design of structure that possesses a desired band gap (Tanaka et al., 2000). Although it is very challenging
issue, a plenty of works has been done to enlarge the width of band gaps (Sigmund and Jensen, 2003; Wu et al., 2009;
Vatanabe and Silva, 2010). Many authors (Langlet et al., Nov. 1995; Sigmund and Jensen, 2003) have built accurate
mathematical models for the propagation of harmonic elastic waves through periodic materials based on the Bloch-Floquet
theory. Thanks for Bloch-Floquet only one unit cell needs to be analysed.

Functionally graded materials (FGMs) are composites characterized by a continuous gradient from one material phase
to the other (Suresh and A., 1988; Miyamoto et al., 1999). They are characterized by spatially varying microstructures
which intend to take advantage of certain desirable features of each of the constituent phase.

In the literature, the design of phononic materials are usually found by parameters studies based on fixed inclusions
shapes, however a powerful method for systematic design of band gap structures is the topology optimization method
(TOM) (Sigmund, 2003). In topolology optimization the design domain is discretized by finite elements and a pseudo-
density is analysed at each element node as a design variable, i.e., it is determined which elements should be solid and
which ones should be void inside a given domain (Sigmund, 2000). Although, the binary (0 − 1) design is an ill-posed
problem and a typical way to seek a solution consists of relaxing the problem by defining a material model that allows for
intermediate (composite) property values (Sigmund, 2003), it means that the discrete material function is substituted by
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a continuous function. The material model applied is called Simple Isotropic Material with Penalization (SIMP) which
tries to recover the binary design of the optimal solution by applying a penalization coefficient. Despite of applying
the penalization coefficient to recover the binary model design (0 − 1), some gray scale remains. It can be treated by
post-processing the optimal solution. However, those small corrections imply changes in the material dynamic behaviour
which means changing of bandgaps. On the other hand, if the FGM concept is applied the gray scale is intrinsic to the
model and it does admit solutions with intermediate values of the material field. This approach has been recently explored
by Silva and Vatanabe (2010) who used the chain matrix method together to TOM to design one-dimensional functionally
graded piezocomposite materials with prescribed band gaps.

In the present work, the objective is to systematically study the design of two-dimensional functionally graded ma-
terials that maximize the first band gap for different unit cell symmetry conditions. It is considered a two-dimensional
model based on finite element method (FEM) combined with Bloch-Floquet relations (Langlet et al., Nov. 1995). During
the development of the work it is intended to explore two-dimensional models considering a non bi-symmetric unit cell.
This paper is organized as follows: in Section 2, the theoretical formulation regarding mathematical model, unit cell mod-
elling and the boundary conditions applied are presented. In Section 3, the topology optimization problem is described
by defining material model and the gradient control applied. Finally, in Section 4, preliminary results are presented and
in the Section 5, some conclusions are given.

2. Theoretical formulation

2.1 Mathematical model

The presented model is based on a doubly periodic material. It is a infinite elastic medium with periodic array of a
inclusion in a matrix. It is considered that inclusions are infinite and set parallel to the z axis. Consequently, the problem
is bidimensional and only depends on the x and y coordinates, using plane strain conditions.

The whole domain is split into successive unit cells. Due to the material symmetry conditions and thanks for the
Bloch-Floquet relations it is only necessary to analyse one unit cell. Therefore, A1 and A2 lines are parallel to the y axis
and B1 and B2 lines are parallel to the x axis. Those lines limit the unit cell which is 2da wide in the x direction and 2db
wide in the y direction. Corners are marked by the letter C.

The material is excited by a plane and monochromatic wave, the direction of incidence of which is marked by an angle
θ with respect to the positive y axis. The incident wave is characterized by a real wave vector k. The modulus of which
is called the wave number and it is denoted by k. The time dependence is written as e−jωt. The schematic description of
the unit cell is presented in Fig.(1).

Considering the Bloch-Floquet relation, any spacial function F has to verify the following equation Eq.(1).

F (x+ 2da, y + 2db) = ej2dak sin θej2dbk cos θF (x, y) = ejϕaejϕbF (x, y) (1)
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Figure 1. Unit cell schematic description.

2.2 Unit cell finite element modelling

By using Eq.(1) only one unit cell needs to be analysed by finite element. Using Eq.(1) for node displacement values
separated by one period, the boundary conditions between adjacent cells are obtained. Considering a modal analysis the
whole system of equations is represented by Eq. (2).

([K]− ω2[M])U = 0 (2)
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where [K] and [M] are respectively, the structure stiffness and mass matrices, ω is the angular frequency, U is the nodal
displacement unknown vector.

This problem is characterized as a complex eigenvalue problem with k varying on the first Brillouin zone. Eq.(2)
should be solved for any wave vector k, however due to the periodicity it is possible to restrict the wave vector to the first
Brillouin zone k ∈ [−π, π]

2 (Brillouin, 1953), as presented in Fig. (2).
Firstly, due to the square symmetry of the unit cell, it is adopted that the area can be restricted further to the triangle

defined by the lines. In principle the whole triangle should be searched, but, although unproved, many researches claim
that the information required can be obtained by searching points only on the boundary lines. Later, it will be explored
another formulation, based on the non-symmetry of the unit cell. Besides, it will be considered the whole area and not
just the points in the boundary lines in the First Brillouin zone.
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π
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Figure 2. The first Brillouin zone.

2.3 Periodic boundary conditions

The application of the periodic boundary conditions implies that the phase relation Eq. (1) between nodal values
belonging to the A1 and A2 lines, on one hand, to the B1 and B2 lines, on the other hand, has to be incorporated in the
matrix equation Eq. (2). The unit cell is divided into nine parts: the four lines A1, A2, B1, and B2, the four corners C1,
C2, C3 and C4, and the inner domain I . Displacement vector U and force vector F are then split into the corresponding
nine parts. Due to Eq. (1), their components have to verify:

UA2 = UA1e
jϕa ,UB2 = UB1e

jϕb ,UC2 = UC1e
jϕa ,UC3 = UC1e

jϕb ,UC4 = UC1e
(jϕa+ϕb) (3)

Defining the reduced vector UR as a vector containing the nodal values of the displacement on the A1 and B1 lines,
on the C1 corner and in the inner domain I, Eq. (3) implies a simple matrix relation between U and UR. In the same way,
a matrix relation can be defined between the vector F, which contains the nodal values of applied forces, and the reduced
vector FR. Also, the same is done for the mass matrix. Consequently, the equation to be solved can be reduced to:

([KR]− ω2[MR])UR = FR (4)

where KR and MR are, respectively, the stiffness and mass reduced matrix.
The dispersion curves are built by varying k (wave vector) on the first Brillouin zone, for a given propagation direction.

3. Topology optimization method

3.1 Material model

The topology optimization formulation implemented in this work considers a material model based on the SIMP
(Solid Isotropic Material with Penalization) (Sigmund, 2003). After all the considerations in the above section, the design
domain is defined by the unit cell domain. The objective is to maximize the first band gap. The SIMP model defines that
the effective property ΨH at each point of the domain is a mixture defined by the linear interpolation between the two
constitutive materials. That relation can be applied to calculate the density and elastic property. A generic equation is
given by Eq. (5).

ΨH = ρiΨB + (1− ρi)ΨAi = 1 . . . N (5)

where ΨA and ΨB are the constituent material properties. The variable ρ is a design variable describing the amount of
material at each point of the domain, which can assume values between 0 and 1, also N is the number of nodes in the finite
element mesh.
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In this work the design variables are defined for each finite element node and the distribution of the design variables
inside the finite elements is calculated by interpolation, considering a continuous distribution. Besides, the optimization
problem is solved by using the MMA (Method of Moving Asymptotes) algorithm (Svanberg, 1987), which requires the
calculation of gradients of the objective with respect to the design variables. It is also applied a gradient control constraint
in the unit cell based on projection technique aiming to control the influence of FGM gradation in the unit cell. By this
way, it is possible to impose a smother gradation, making manufacturing easier.(Carbonari et al., 2007).

3.2 Optimization process

The objective of the optimization process is to maximize the PC first band gap. Thus, the optimization problem is
described as follows:

Maximize : F (ρi) = ωn+1 − ωn
ρi(x)
subject to : ([K]− ω2[M ])U = F

0 < ρi ≤ 1, i = 1 . . . N

(6)

The optimization problem is solved following the steps described by the flowchart above.

Figure 3. Iterative routine flowchart

4. Results

Here the results of the optimization are presented considering the maximization of the first band gap width. For the
preliminary tests it is observed the influence of material choices in PC’s design. It is important to emphasize that the more
is the difference between the constituent material properties values, better are the chances to obtain a large band gap. The
results are presented for two pairs of material:

1. Cooper and resin

2. Alumina and aluminium

The constituent material properties values are described in Tab. 1.
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Table 1. Constituent materials properties.

Property Cooper Resin Alumina Aluminium
Density (Kg/m3) 8940 1180 4000 2700

Young’s Modulus (GPa) 129.8 3.6 400 70
Poisson’s coefficient 0.343 0.376 0.24 0.325

4.1 Material analysis

Considering the two pairs of materials, the following results are obtained.
After 7 iterations the unit cell design and the corresponded dispersion diagram are obtained. Normalized frequencies

of the first band gap are 0.422 and 1.167.

Figure 4. Unit cell designed (cooper and resin). Figure 5. Dispersion curve (cooper and resin).

The same steps are described to analyse alumina and aluminium. In that case, the first band gap normalized frequencies
are 0.443 and 0.523, which are smaller than the band gap provided by cooper and resin.

4.2 Gradation analysis

Comparing Fig. (5) with Fig. (9) it is observed the gradation material influence in the band gap width by applying a
continuous gradation between the two materials (cooper and resin), after 10 iterations, first band gap normalized frequen-
cies equal to 0.492 and 0.524 is obtained (Fig. 9). Besides, in this case, the unit cell presents intermediate pseudo density
values (Fig. 8).

5. Conclusion

From the preliminary results it is observed that a carefully choice of the materials is relevant. In the first case (copper
and resin) band gap width is 0.745 (normalized value). On the other hand, in the second case the band gap is 0.08. Thus the
first one is more than eight times bigger. It is important to notice that the difference between copper and resin constituent
material properties is much bigger than between alumina and aluminium. For example, the ration between the density and
the Young’s modulus regard cooper and resin is, respectively, 7.57 and 36. Nevertheless, by applying the same thought
to alumina and aluminium the same ratio is equal to 1.48 and 5,71, respectively. Thus, higher is the difference between
constituent materials compounding, wider is the PC band gap.

Another important factor is the influence of the gradation between materials. It is observed that applying a smooth
gradation the band gap width (cooper and resin) is reduced to 0.032 (normalized frequency), it means 4.3% of the band
gap width obtained by applying a discrete gradation for the same materials in Section 4.1.

For the further studies it will be discussed the influence of the symmetry condition of the unit cell.
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Figure 6. Unit cell designed (alumina and alu-
minium. Figure 7. Dispersion curve (alumina and aluminium).

Figure 8. Unit cell designed (cooper and alu-
minium. Figure 9. Dispersion curve (cooper and aluminium).
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