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Abstract. The present work aims at development of a versatile formulation via the Galerkin finite element method (GFEM)
to approaches fluid-structure interaction problems. This topic is very interesting to the national oil industry (for example
large submerged structures as Manifold, PLET and PLEM). The study of theoretical and computational fundamentals to
fluid-structure interaction problems is associated to technical and scientific developments (the fluid problem, the solid
problem, the problem of motion of the fluid subdomain, coupling problem, for instance). The initial idea to describe free
surfaces and interfaces by level set functions. The fluid problem (flow) is approached by Eulerian formalism, while the
solid (or solid structure) is described according to Lagrangian formalism. The use of level set functions enables to obtain
a compact weak form of the problem. Hence, improving discretization and solution of resulting system. The Augmented
Lagrange Multiplier Method is used to fluid-structure coupling.
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1. INTRODUCTION

The numerical simulation of mechanical behavior of solids and industrial fluids is widely used in companies for
viability verification, improvement and optimization of projects. The scientific origins of fluid-structure interaction (FSI)
are associated to aerospace and nuclear industries, among others. The FSI problems have proposed some challenges to
scientific community, specifically related to applied mathematics and computational mechanics. Some references can be
found in specialized literature (in scope of nuclear , civil, aerospace, ocean, chemical, and mechanical engineering) as
(Bisplinghoff et al., 1983), (Roma et al., 1999), (Fung, 2000), (Dowell et al., 1995), (Dowell and Ilgamov, 1988), (Wilson
and Khalvati, 1983), (Chen and Taylor, 1990), (Page, 1982), (Blevins, 1994), (Paidoussis, 1998), (Paidoussis, 2004) and
(Paidoussis and Issid, 1974).

The main idea of this methodology is the description of fluid-solid interface for level set functions (Osher and Fedkiw
(2003) and Sethian (1999)). This approach ensures concise and compact weak formulation of the problem. It is important
to point out that the level set functions provides an elegant way to couple the fluid and solid media in problem formulation
(see Park et al. (2001); Chessa and Belytschko (2003); Chessa et al. (2002, 2003)). This methodology shares some of
the advantages of the methods called fictitious volumes (see Glowinski et al. (2001) and Patankar et al. (1984)) that
were initially developed to approach fluid flow interaction with rigid particles. Subsequently, the fictitious volumes
technique were extended to deformable solids. Nevertheless, this technique was not suitable for fluid-structure interaction
in thin solid structures. Other methods for FSI as the immersed boundary method will be mainly used in the case of
incompressibility of fluid medium (Peskin (2002)). This approach has some limitations as the velocity of solid domain is
computed by sum of the fluid domain velocity with a superimposed relative velocity.

In this work the Augmented Lagrange Multiplier Method combined with level set functions provide a consistent
approach to fluid-structure interaction in coupled systems. In this sense, the problem formulation is two-dimensional
(plane stress, infinitesimal strain and axial symmetry) as first analysis and some possible applications are presented. It is
important to comment that this work is the first part of an undergraduate scientific initiation project.

2. MATHEMATICAL STRATEGY FOR FSI PROBLEM

Among several possible strategies for approach of FSI problems, will be adopted here, due to its robustness, the method
referred to as Eulerian-Lagrangian (Eulerian description for the fluid and Lagrangian for solid/structure). In contrast
to the aforementioned technique can highlight the method called arbitrary Eulerian-Lagrangian (ALE) in which it is not
necessary movement of the mesh on the domain of the fluid to match the motion of fluid-structure interface, for details one
can observe the following works [(Belytschkoand and Kennedy, 1978), (Farhat et al., 2003), (Farhat et al., 2001), (Hu
et al., 2001)]. You can also comment that the method used here achieves better results in problems that are considered large
topological changes in the field solid / structure. In these applications the LEA methods fail.

2.1 Problem Identification

Consider the domain ΩCD = ΩF∪ΩS ⊂ R2 comprising the areas open to the fluid medium ΩF and the solid structure.
ΩS . Denoting by x Eulerian spatial coordinates, vF (x, t) the velocity field of fluid domain denoted and x = xS (X, t)
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the motion of solid domain. As X ∈ ΩSo the reference configuration of solid domain. The velocity field is given by:

vS (X, t) =
∂xS (X, t)

∂t
. (1)

or

vS (x, t) = vS (X, t) ◦
(
xS (X, t)

)−1
. (2)

However, in discretization, the description of the material is Lagrangian. The external stresses in boundary of fluid
domain ΓFτ are designated by τF . Aiming just written a more simplified of the equations at this moment, it is assumed
that no external tractions prescribed in boundary of the solid domain.

The interface boundary ΓFSI between fluid and solid domains is defined by a Level Set Level Set-φ (or implicit
function):

ΓFSI(t) = {x ∈ ΩCD|φ (x, t) = 0} , (3)

and φ (x, t) = 0 corresponds to the interface of the domains. Hence, for a instant t ∈ R+ we have:

φ (x, t) > 0⇒ x ∈ ΩF ;

φ (x, t) < 0⇒ x ∈ ΩS .
(4)

In this sense the normal vector of the boundary of the solid domain can be defined as follows:

n̂S =
∇φ
‖∇φ‖

, (n̂Si = φ,i), (5)

where the notation (.),i designates derivative with respect to xi,thus in this region the normal to the fluid domain is given
by nF = −nS , could have the following definition

φ (x, t) = min
x̃∈ΓFSI

(‖x− x̃‖) sign
[
n̂S · (x− x̃)

]
. (6)

The implicit functions are given in terms of conventional norms, such as the Euclidean norm. It should also comment
that when another interface is required in the computational domain studied, the implicit function must attain the value,
φ (x, t) = 0, which describes the boundary of fluid domain in contact with other domains. We also observe that in the
case of interfaces "not smooth" can determine the normal vector according to the technique described in Sethian (1999).

The problem called strong form can be stated as:

Problem 1. Determine u (x, t), for each t ∈ R+, such that

∇ · σS (x, t) + ρS (x) bS (x, t) = ρS (x) ü (x, t) ,∀x ∈ ΩS ; (7)

∇ · σF (x, t) + ρF (x) bF (x, t) = ρF (x) ü (x, t) ,∀x ∈ ΩF ; (8)

σS (x, t) · n̂S (x, t) = −λ,∀x ∈ ΓFSI ; (9)

σF (x, t) · n̂F (x, t) = λ, ∀x ∈ ΓFSI ; (10)

σF (x, t) · n̂F (x, t) = τF (x, t) ,∀x ∈ ΓFτ ; (11)
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u̇S (x, t) = u̇F (x, t) ,∀x ∈ ΓFSI ; (12)

ρ̇F +∇ ·
(
ρF u̇F (x, t)

)
= 0,∀x ∈ ΩF . (13)

with τF ∈ [H
1
2 (ΓFτ )]2 e b(.) ∈ [L2(Ω(.))]

2, λ ∈ [L2(ΓFSI)]
2 (Lagrange multipliers), where the Cauchy stress tensor

is designated by the letter σ(.) e ρ(.) designates the density. As a matter of ease of writing consider the omission of the
boundary conditions associated with zero speed.

The equations 7 and 8 refer to the equations of momentum for the solid and fluid domains respectively. The eq. 11
matches with the boundary condition of traction for the fluid domain. The eq. 13 is the continuity equation, and equations
9 and 10 matches with the condition

σF (x, t) · n̂F (x, t) + σS (x, t) · n̂S (x, t) = 0,∀x ∈ ΓFSI . (14)

For the Augmented Lagrangian Method the equations 3 and 4, could be rewritten as

σS (x, t) · n̂S (x, t) + λ (x, t) + β
(
u̇S (x, t)− u̇F (x, t)

)
= 0,∀x ∈ ΓFSI ; (15)

σF (x, t) · n̂F (x, t)− λ (x, t)− β
(
u̇S (x, t)− u̇F (x, t)

)
= 0,∀x ∈ ΓFSI . (16)

Setting up, at this point, the following sets for each t ∈ R+

Kinu̇(ΩCD) =
{

u̇ : ΩCD → R2 | u̇ ∈
[
H1(ΩCD)

]2
, u̇ (x, t) = 0 in x ∈ ΩCD

}
;

Kinρ(ΩF ) =
{
ρ : ΩF → R+ | ρ (x, t) ∈ H1(ΩF ), in x ∈ ΩF

}
;

Kinλ(ΓFSI) = {λ : ΓFSI → R | λ (x, t) ∈ L2(ΓFSI), in x ∈ ΓFSI} .

denoting, for each t ∈ R+,

zm
(
u̇F , u̇S , λ; δvF , δvS , δλ

)
=

∫
ΩCD

{[
ρF
(
bF − üF

)
· δvF − σF : ∇δvF

]
H (φ)

+
[
ρS
(
bS − üS

)
· δvS − σS : ∇δvS

]
H (−φ)

}
dΩ

+

∫
ΓFτ

τF · δvF dΓ + δ

[∫
ΓFSI

λ ·
(
u̇F − u̇S

)
dΓ

]
+
β

2
δ

[∫
ΓFSI

∥∥u̇F − u̇S
∥∥2
dΓ

]
,

∀
(
δvF , δvS , δλ

)
∈ Kinu̇(ΩCD)×Kinu̇(ΩCD)×Kinλ(ΓFSI).

(17)

and

zc
(
u̇F , ρF ; δρF

)
=

∫
ΩCD

[
ρ̇F +∇ ·

(
ρF u̇F (x, t)

)]
δρFH (φ) dΩ,∀δρF ∈ Kinρ(ΩF ), (18)

which has the state equations for the pressure in a fluid medium
where the function H(z) is the Heaviside step function, which is equal to 1 if z is positive and vanishes otherwise.

In order to enforce the continuity of the velocity on the interface, the above includes a Lagrange multiplier field λ and a
penalty with penalty parameter scalar β.

The equation (17) is the weak form of the continuity equation. This equation is not needed in the solid because a
Lagrangian description is used there and an algebraic equation ρSJS = ρS0 suffices to verify conservation of mass.

To show that the above weak form implies the strong right way, we need the following identities:
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H,i(φ) = δ(φ)φ,i = −δ(φ)n̂Fi (19)

and

H,i(−φ) = −δ(−φ)φ,i = −δ(φ)n̂Si (20)

from which it follows:

∫
ΩCD

fH,i(φ)dΩ = −
∫

ΩCD

fδ(φ)n̂Fi dΩ = −
∫

Γ

fn̂Fi dΓ (21)

and∫
ΩCD

fH,i(−φ)dΩ = −
∫

ΩCD

fδ(φ)n̂Si dΩ = −
∫

Γ

fn̂Si dΓ (22)

Eq. (19) is simply the chain rule combined with (5). The eq. (21) is based on (19) and the fact that the Dirac delta
function of the level set gives a boundary integral, i.e. a surface integral in three dimensions or a line in two dimensions.

The second term of the first integral of (17) can be transformed as follows by integration by parts and using the
condition that δu̇ = 0 on ΓCD:

∫
ΩCD

δüFσFH(φ)dΩ =

∫
ΩCD

{(δu̇FσF ),j − δu̇FσF,jH(φ)− δu̇FσFH(φ),j}dΩ

=

∫
Γout

δu̇FσF n̂F dΓ−
∫

ΩF

δu̇FσF,jdΩ +

∫
ΓFSI

δu̇FσF n̂F dΓ,

(23)

where Γout denotes the entire exterior boundary of the fluid. In the above, the second and third lines follow by using
(19) and (21).

Similarly in the solid:

∫
ΩCD

δüSσSH(−φ)dΩ = −
∫

ΩS

δu̇SσS,jdΩ +

∫
ΓFSI

δu̇SσSn̂SdΓ, (24)

Substituting (23) and (24) into (17), yields:

∫
ΩF

(bF + σF,j )dΩδu̇F +

∫
ΩS

(bS + σS,j)δu̇
SdΩ−

∫
ΓFout

σF n̂F δu̇F dΓ +

∫
ΓFτ

τF δu̇F dΓ

+

∫
ΓFSI

δλ(u̇F − u̇S)dΓ +

∫
ΓFSI

{δu̇F (−σF n̂F + λ+ β(u̇F + u̇S))}dΓ

+

∫
ΓFSI

{δu̇S(−σSn̂S + λ+ β(u̇F + u̇S))}dΓ = 0

(25)

To the equation of state for the fluid

p(ρF ) = ρFRT (for perfect fluids);

p(ρF ) = ρFo c
2

(
1− ρFo

ρF

)
, com ρFo − initial density (for water).

(26)

So the problem can be written as

Problem 2. Determine
(
vF ,vS , λ, ρF

)
∈ Kinu̇(ΩCD)×Kinu̇(ΩCD)×Kinλ(ΓFSI)×Kinρ(ΩF ) for each t ∈ R+,

such that

z
(
u̇F , u̇S , λ, ρF ; δvF , δvS , δλ, δρF

)
= (zm,zc)T = 0, (27)

∀
(
δvF , δvS , δλ, δρF

)
∈ Kinu̇(ΩCD)×Kinu̇(ΩCD)×Kinλ(ΓFSI)×Kinρ(ΩF ).
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Denoting u =
(
vF ,vS , λ, ρF

)
∈ KinU = Kinu̇(ΩCD)×Kinu̇(ΩCD)×Kinλ(ΓFSI)×Kinρ(ΩF ) has

Problem 3. Determine u ∈ KinU for each t ∈ R+, such that

z (u; δu) = 0, (28)

∀δu ∈ KinU .

To solve the problems defined in equations 27 and 28 can be used the Newton’s method.

2.2 Discretization

The fluid and solid velocities are discretized by using the following approximations for the velocity field:

u̇F (x, t) = NF
I (x)V FiI (t)H(φ(x, t)), (29)

The fluid and solid velocities are discretized by using the following approximations for the velocity field:

u̇S(X, t) = NS
I (X)V SiI (t), (30)

where V FiI and V SiI are respectively, the nodal velocities for the fluid and solid and NF
I and NS

I are respectively, the
shape functions for the fluid and for the solid. All repeated upper case indices are repeated over their range, which, for
example, are the fluid nodes and the solid (or structural) nodes in (29) and (31) respectively. Note that the velocities are
approximated by shape functions that are expressed in terms of the spatial coordinates for the fluid, but are a function
of the material coordinates for the solid. The shape functions for the fluid and solid may be different. The density is
approximated by the same shape functions as the velocity for the fluid:

ρF (x, t) = NF
I ρ

F
I (t)H(φ(x, t)). (31)

The Lagrange multipliers are discretized by the following:

λ(ζ, t) = Nλ
I (ζ)ΛiI(t), (32)

where ΛiI are the nodal values of the Lagrange multipliers, and ζ are the local coordinates that describe the fluid–solid
interface. The mesh for the Lagrange multipliers must conform to the interface φ = 0 and must satisfy the Babuska–Brezzi
stability condition. We choose linear shape functions in the following; we have not investigated its stability as well as the
interface consistency as described in Park et al. (2001). The mesh for the Lagrange multipliers is the set of points which
are the intersection points between the structure and the fluid mesh .

Substituting (29), (30) and (32) into (17) yields:

−
∫

ΩCD

ρFNF
J N

F
I V̇

F
iI H(φ)dΩ−

∫
ΩCD

ρFNF
J u̇F üFH(φ)dΩ−

∫
ΩCD

NF
J,jσ

FH(φ)dΩ

−
∫

ΩS0

ρSNS
J N

S
I V̇

S
iIH(φ)dΩ0 −

∫
ΩS0

∂NS
J

∂Xj
σSdΩ0 +

∫
ΓFτ

NF
J τ

F dΓ + β

∫
ΓFSI

NF
J (NF

I V
F
iI −NS

I V
S
iI )dΓ

− β
∫

ΓFSI

NS
J (NF

I V
F
iI −NS

I V
S
iI )dΓ +

∫
ΓFSI

NF
J N

λ
I ΛiIdΓ−

∫
ΓFSI

NS
J N

λ
I ΛiIdΓ

+

∫
ΓFSI

Nλ
J (NF

I V
F
iI −NS

I V
S
iI )dΓ = 0

(33)

Dropping the indicator function on the solid domain ( using a Lagrangian description ), the integral can always be
expressed in terms of the initial domain. The gravity is omitted in the discretized form of the equations. Substituting (31)
into (18), yields the discretized form of the continuity equation:

∫
ΩCD

NF
J N

F
I ρ̇

F
I H(φ)dΩ +

∫
ΩCD

NF
J (ρF u̇F ),iH(φ)dΩ = 0 (34)

3. APLICATIONS

In this first approach aims to make the study of fluid-structure interaction formulation, that is a known problems in the
oil industry. In most cases such problems have a strong committed relationship involving costly and even dangerous. Some
of the proposed feasible study would be a numeric evaluation of the structural behavior of submerged equipment as de-
scribed below.
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3.1 Manifold, PLET e PLEM

For example, the design of large subsea structures used in drilling for oil, as Manifold (see Fig.1), PLET and PLEM,
require the correct determination of the loads involved in transport, installation and operation. For transportation and
operation of these loads can be defined with little difficulty. But in the process of installation, beyond dynamic components
of motion of the boat, waves and currents, there are also hydrodynamic components. The installation can be separated
into two distinct steps: entry into the water (Splash Zone) and with the equipment fully submerged. Documents created
by companies such as DNV (Det Norske Veritas) assist in determining these charges, however, depends on factors to set
important values as the added mass. This is also important to assess the dynamic status of equipment, along with the
damping provided by sea water.

Figure 1. Manifold being installed (left) and Manifold Model for testing (right) (font: (Petroleo, TN))

The added mass is often drawn from literature that provides factors for geometries behaved. Thus, the equipment is
simplified, turned into cylinder, blocks and/or plates. The values obtained are usually higher than the reality and structure
will be oversized and therefore uneconomic the equipment and increase the installation cost, which might even derail the
project.

Another way to obtain these values is by testing with reduced models that also provide dynamic conditions. That is,
provides condition of loading for the equipment. The problem with this solution is cost and, especially, the time required
to complete the test. Moreover, if the equipment has changed considerably in its mass or geometry, the test should be
completely redone, which rarely occurs.

3.2 Dynamic of Risers

It is notorius the importance of offshore oil exploration, especially in Brazil, and Risers are essential structures for
this activity. A good understanding of the dynamics of these bodies and the stresses they are submitted, has generated a fer-
tile field of research, aiming at the understanding of very complex phenomena/effects that determine the design and the
life time. Also comments that, at pŕesent, the theoretical models,Can an even comment on that at present the theoretical
modeling, both analytical and numerical, and experimental techniques are employed in a complementary way.

The dynamics of Risers involves issues such as structural mechanics of risers, pipelines, mooring lines, dynamic
positioning of platforms and floating units, as well as nonlinear dynamics and hydrodynamics applied. The deep wa-
ter offshore engineering has been the main stage of operation of these lines of research, the evolution of the national oil
industry has required the analysis of stresses of different natures in submerged structures.

The transport of fluid and power between platforms or vessels on the surface and the fields of exploration on the
ocean floor is made by structures called Risers, which are submerged in a inside water and assist in drilling and in the
production of wells. The classification of these structures is rigid Risers and flexible Risers (see Fig.2).

The rigid vertical Risers do not support large curvatures, and in general, are used primarily in drilling wells (and also in pro-
duction of wells), has a tensioner at the top end (to avoid buckling) and a articulated joint at the bottom that allows max-
imum inclination around the 10°. If there are major problems with the movement of the platform, the Riser can be hy-
draulically disconnected from the well. Risers, catenary-shaped, has also been used in deep water exploration.

The flexible Risers, mainly used in producing wells, are designed to have great flexibility and thus support the stress of
the platform and the hydrodynamic loads. So these structures must have high axial rigidity and low flexural strength.

The drilling activity assisted by rigid vertical Risers is characterized by the guided installation of drill , by specific
devices, at the wellhead. In this Riser is injected the called “drilling mud” (made of clay, water and chemicals) that aims
to lubrication and cooling of the drill and provides support to the Riser and prevent the rise of undersirable oil. Further-
more, in the activity of the production, the Riser’s function is to transport the fluids products of well to the platform.

Whatever the activity (drilling or production) the Risers are subject to internal stresses (hydrostatic pressure of the
fluid carried inside) and external (surface waves and ocean currents that can cause mats vortices around the structure) com-
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Figure 2. Examples of Riser. (fonte: Patel and Sayed (1995))

plex in nature (for details [(Meneghini, 1993), (Ferrari, 1999), (Jeong and Hussain, 1995), (Blevins, 1990),(Petroleo,
TN)]).

In this sense, a very appropriate approach to the problems arranged in section 2.1 is the numerical simulation, since
has not an exact analytical solution and explicit to the mentioned coupled problems (due to the complexity of his models).
Allied to this fact, the numerical-computational approach can take advantage of the geometry of 3D CAD models already
available and thus accrete gain of time and decrease the final cost of a series of procedures. Thus, the numerical analysis
of structural dynamics and fluid flow become of paramount importance in these applications fluid-structure interaction,
providing an important tool of estimation and analysis the complex phenomena involved.

4. CONCLUSION

This work proposes a formulation to FSI problems with intention of oil industry future applications as two prob-
lems that are shown on offshore platforms. The proposed formulation shows a compact form of the weak formulation of
the problem that turn discretization process less complex. Considering the next steps of this research, in computational
sense, three distinct stages are named: the fluid problem, the solid structure and the fluid-structure coupling. Initially we
will intend to create a basic structure for FSI problems (elastic solid and incompressible fluid, monophase and Newtonian)
which actually is in development in MATLAB. After this, we proceed to the enrichment of this structure (a priori and
posteriori error estimators, adaptivity mesh, improved conditioning of the discretized operators, sensitivity analysis and
applications to classical FSI problems).
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