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Abstract. The numeric simulation of the mechanical behaviour of industrial materials is widely used in the compa-
nies for viability verification, improvement and optimization of designs. This work presents the main ideas of Tikhonov
Regularization Method applied to dynamic elastoplasticity problems (J2 model with damage and isotropic-kinetic hard-
ening), besides some mathematical formalities associated to the formulation (well-posed/existence and uniqueness) of the
dynamic elastoplasticity problem. The numeric problems of this approach are discussed and some strategies are sug-
gested to solve these misfortunes satisfactorily. The numerical technique for the physical problem is by classical Gelerkin
method.
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1. INTRODUCTION

Some matrials has a rate independent (in deformation sense) mechanical behaviour, in this case the eslastoplastic
models have been widely used for forecast of these materials behaviour (see Desai (2001)). The numerical approch from
this models come across ill-conditioning matrix problems, as for the case to finite or infinitesimal deformations (see Owen
(1980)) due to the tangent operator to be sufficiently near of the identicaly null fourth order tensor operator on critical/limit
points neighbourhood.

A complete investigation of the non linear behaviour of structures it follows from the equilibrium path of the body,
in which come the singular (limit) points and/or bifurcation points. Several techniques to solve the numerical prob-
lems associated to these points have been disposed in the specialized literature, as for instance the call Load controlled
Newton-Raphson method and displacement controlled techniques. Although most of these methods fail (due to problems
convergence for ill-conditioning) in the neighbour of the limit points, mainly in the structures analysis that possess a (λ-
load factor,u-displacement) snap-through or snap-back equilibrium path shape (see Bashir-Ahmed and Xiao-zu (2004)).

Aiming at to transpose these difficulties this work proposes the use of the L-curve Tikhonov regularization method (see
Calvettia et al. (2000), Bloom (1991), Hansen (1998) and Viloche Bazán (2008)) for the treatment of these limit points.
The main objective are a first investigate of the potential of this approach under the mathematical formalism inherent to
the formulation of the elastoplastic problem for inifinitesimal strain measurement. In the next section, it is presented the
weak form and correpondig strong form for elastic problem. An overview of elastoplastic contitutive model is shown in
section 3. Details about incremental approach are presented in sections 4 and 5. In section 6, it is presented the L-curve
Thikhonov regularization method and main properties are shown. In section 7, a numerical problem case are presented to
verify the efficacy of this proposed approch and concluding remarks are made in section 8.

2. THE ELASTIC PROBLEM

Under kinematic motion of deformable continuum body hypothesis, one has u (x, t) = u (ϕt (xo) , t) = ū (xo, t) on
xo ∈ Γuo , where for each t ∈ S, ϕt : Ωo → Ω is a sufficiently regular motion function. The relationship between normal
vectors to surfaces in reference configuration (.o) and actual configuration can be expressed by

ndA = det (F) F−TnodAo, (1)

where no is the external normal unit vector to surface in reference configuration. In this way, it follows the strong and
weak formulation.

2.1 The Strong Formulation: Reference Configuration

The problem is given by:
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Problem 1. Determine uo (xo, t), for each t ∈ S, such that

divP (xo, t) + ρo (xo) b̄ (xo, t) = ρo (xo) üo, in xo ∈ Ωo; (2)
P (xo, t) no (xo, t) = t̄o (xo, t) , in xo ∈ Γto; (3)

uo (xo, t) = ūo (xo, t) , in xo ∈ Γuo (4)

with t̄oi ∈ H
1
2 (Γto) and b̄i ∈ L2(Ωo), where P is the first Piola-Kirschhoff stress tensor.

2.2 The Weak Formulation: Reference Configuration

Defining in this moment the following sets for each t ∈ S

Kinu(Ωo) =
{
uoi : Ωo → R | uoi ∈ H1(Ωo) , uoi (xo, t) = ūoi (xo, t) em xo ∈ Γuo

}
;

V aru(Ωo) =
{
v̂i : Ωo → R | v̂i ∈ H1(Ωo), v̂i (xo) = 0 em xo ∈ Γuo

}
, (5)

denoting, for each t ∈ S,

z (uo; v̂) =

∫
Ωo

P : ∇v̂dΩo −
∫

Ωo

ρo
(
b̄− üo

)
· v̂dΩo −

∫
Γto

to · v̂dAo (6)

the problem may be written in following way

Problem 2. Determine uo (xo, t) ∈ Kinu(Ωo), for each t ∈ S, such that

z (uo; v̂) = 0,∀ v̂ ∈ V aru(Ωo). (7)

3. YIELDING AND HARDENING LAWS (THE ELASTOPLASTIC CONSTITUTIVE MODEL)

The complete characterization of a general elastoplastic model request the definition of evolutionary laws of internal
variables, i. e., variables associated to dissipative phenomena (εp and αk - associated with the kinematic hardening
mechanism).

The departure point is the determination of the plastic multiplier λ̇, that follows from consistence condition (F = 0
and λ̇ > 0). Let remembering the definition of αk in terms of free energy potential and evolutionary law, one has

λ̇ =
∂F
∂σ : Dε̇{

∂F
∂σ : DN− ρ ∂F∂αk .

[
∂2Ψp

∂β2
k

]
H
} (8)

More details about constitutive Lemaitre’s elastoplastic-damage simplified model with isotropic hardening see Lubliner
(1990), Lemaitre (1996), Lemaitre and Chaboche (1990) and Owen (1980). It observes the following procedure

Elastoplastic Constitutive Model
1. Strain Tensor Additive Decomposition

ε = εe + εp.
2. Free Energy Potential Definition

Ψ
(
εe, r, αD, D

)
= Ψe (εe, D) + Ψp

(
r, αD

)
where αD is the deviator part of backstrain tensor, r is the accumulated plastic strain,
D is the isotropic damage variable.
3. Constitutive equation for σ and thermodynamics forces βk

σ = ρ∂Ψe

∂εe and βk = ρ∂Ψp

∂αk
.

4. Elastic-damage Coupling σ = (1−D)Dεe.
5. Yield Function/Dissipation Potential(Associative Approach)
Fp = ‖σ̃D − χD‖ − (R+ σy) where σ̃Deq =

{
3
2 σ̃

D : σ̃D
} 1

2 ,
σ̃D = 1

(1−D) {σ − σHI} and σH = 1
3 tr(σ).

6. Hardening and Evolutionary Plastic Laws
ε̇p = λ̇

∂Fp
∂σ , ṙ = −λ̇∂Fp∂R and Ḋ = λ̇∂FD∂Y

where
F = Fp + FD with Fp = ‖σ̃D − χD‖ − (R+ σy) and FD = Y 2

2S(1−D)H(p− pd).
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From these potentials it follows that
ε̇p = 3

2
λ̇

(1−D)
σD

σDeq
, χ̇ = γ(χ∞ε̇

p − χλ̇), Ṙ = b(R∞ −R)λ̇ and Ḋ = Y
S ṗ H(p− pd).

Then

ṗ = λ̇
(1−D) and Y =

(σ̃D)
2

2E

{
2
3 (1 + ν) + 3 (1− 2ν)

(
σH
σDeq

)2
}
.

7. Consistence Condition under Plastic Yielding
(
λ̇ 6= 0

)
F (σ, αk) ≤ 0, λ̇ ≥ 0, F (σ, αk) λ̇ = 0

and λ̇ Ḟ (σ, αk) = 0.

4. OPERATOR-SPLITTING ALGORITHM

The general algorithm for elastoplasticity-damage with isotropic/kinematic hardening can be described in following
way:

• Trial Elastic Problem

Given the strain history ε(t), t ∈ [tn, tn+1], determine εe trialn+1 andαtrialn+1 , withαtrialn+1 ≡ (εp trialn+1 , Rtrialn+1 , χ
trial
n+1 , D

trial
n+1 ),

so that

ε̇e trial = ε̇ and α̇trial = 0 (9)

in which α̇trial = (ε̇p trial, Ṙtrial, χtrial, Ḋtrial) = 0 .

The initial conditions for tn+1 are the conditions of elastoplastic state determined on tn, i. e.

εe trial (tn) = εen and αtrial (tn) = αtrialn (10)

The trial elastic problem solution on tn+1, denoted for εe trialn+1 and αtrialn+1 defining the elastic trial state.

• Plastic Damage Correction Problem

The problem is formulated in following way: Determine α = (εp, R, χ,D) and εe that satisfy the following equa-
tions:

ε̇p = 3
2

λ̇
(1−D)

σD

σDeq
, χ̇ = γ(χ∞ε̇

p − χλ̇) , Ṙ = b(R∞ −R)λ̇

and Ḋ = Y
S

λ̇
(1−D)H(p− pd)

(11)

with

λ̇ ≥ 0, F ≤ 0 and λ̇F = 0. (12)

For F = 0 the consistence condition used to λ̇ computation is:

λ̇ Ḟ = 0. (13)

In the plastic damage correction problem the initial conditions are:

εe (tn) = εe trialn+1 and α (tn) = αtrialn+1 . (14)

The solution obtained for the problem on tn+1, denoted by{
σn+1, ε

e
n+1, ε

p
n+1Rn+1, Dn+1

}
, (15)

is the final solution of this initial value problem.

5. INCREMENTAL FORMULATION

The incremental formulation between tn and tn+1 instants consider that all state variables are known on Ωn and the
equilibrium equations are imposed in Ωn+1. In this way, on tn+1, the weak formulation of this problem can be formulated
as:

uo (xo, tn) = xn − xo ∴ un = uo (xo, tn) ; (16)
uo (xo, tn+1) = xn+1 − xo ∴ un+1 = uo (xo, tn+1) . (17)
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Problem 3. Determine un+1 ∈ Kinuo such that

z (un+1; v̂) = 0, ∀ v̂ ∈ V aruo , (18)

where

z (un+1; v̂) =

∫
Ωo

P (un+1) : ∇v̂dΩo −
∫

Ωo

ρo
(
b̄− ün

)
· v̂dΩo −

∫
Γto

t · v̂dAo. (19)

To solve the above non linear problem in terms of un+1 is used the Newton method.

5.1 The Newton Method

Let

u0
n+1 = un, k = 0 (20)

where k denotes the iteration step in Newton method process started on k = 0 and supposing that the initial condition is
given by the last increment step converged solution, i. e., un, then on k-th iteration one has

uk+1
n+1 = ukn+1 + ∆ukn+1. (21)

To determine ∆ukn+1 is imposed the condition

z
(
uk+1
n+1; v̂

)
= 0, ∀ v̂ ∈ V aruo . (22)

i. e.,

z
(
uk+1
n+1; v̂

)
= z

(
ukn+1 + ∆ukn+1; v̂

)
= 0 ∀ v̂ ∈ V aruo . (23)

Let z (·, ·) sufficiently regular and expanding z
(
ukn+1 + ∆ukn+1; v̂

)
in a Taylor series on ukn+1, one has for a first order

approximation,

z
(
ukn+1 + ∆ukn+1; v̂

)
' z

(
ukn+1; v̂

)
+Dz

(
ukn+1; v̂

) [
∆ukn+1

]
. (24)

From above comments one has

Dz
(
ukn+1; v̂

) [
∆ukn+1

]
= −z

(
ukn+1; v̂

)
. (25)

5.1.1 Computation of Dz
(
ukn+1; v̂

) [
∆ukn+1

]
From definition, it follows

Dz
(
ukn+1; v̂

) [
∆ukn+1

]
=

∫
Ωo

d

dε

[
P
(
ukn+1 + ε∆ukn+1

)]
ε=0

: ∇v̂ dΩo, (26)

where Ωo is fixed in space and it is supposing that ton+1
and b̄n+1 are non depended of u. After some algebraic calcula-

tions, one is concluded that

Dz
(
ukn+1; v̂

) [
∆ukn+1

]
=

∫
Ωo

[
A
(
ukn+1

)]
∇
(
∆ukn+1

)
: ∇v̂ dΩo, (27)

where A (fourth order tensor) is the global tangent modulus, that is given bellow[
A
(
ukn+1

)]
ijkl

=
∂Pij
∂Fkl

∣∣∣∣
ukn+1

. (28)

Remark 1. Observing the problem from an Eulerian point of view, it is defined a couple of sets for each t ∈ S
Kinu(Ω) =

{
ui : Ω→ R | ui ∈ H1(Ω) , u (x, t) = ū (x, t) where x ∈ Γu

}
; (29)

V aru(Ω) =
{
v̂i : Ω→ R | v̂i ∈ H1(Ωt), v̂i (x) = 0 where x ∈ Γu

}
, (30)

the weak formulation of the problem can be written in the following way:

Problem 4. Determine u (x, t) ∈ Kinu(Ω), for each t ∈ S, such that∫
Ω

σ : ∇v̂dΩ =

∫
Ω

ρ (b− ü) · v̂dΩ +

∫
Γt

t · v̂dA, ∀ v̂ ∈ V aru(Ω). (31)

In this case the tangent operator can be described as:[
A
(
ukn+1

)]
ijkl

=
∂σij
∂εkl

∣∣∣∣
ukn+1

. (32)
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6. THE TIKHONOV REGULARIZATION METHOD

After the Galerkin method discretization the problem described above numerically belongs

min
f∈Rn

‖Af − g‖2, A ∈ Rn×n g ∈ Rn, (33)

where the matrix A (it refer to matrix representation for discretized tangent operator
[
A
(
ukn+1

)]
ijkl

) has high condition
number (ill-conditioned and singular values decreasing to zero without a gap on spectrum) on limit points neighbour
(∂σij�∂εkl ≈ null fourth order tensor) due to the shape of the equilibrium path response. The g consists to vectorial
numerical representation of−z

(
ukn+1; v̂

)
. Unfortunately for the standard least square (LS) the solution can be presented

as fls = A†g (where A† denotes the pseudoinverse of A) has serious numerical spurious error. In this the regularization
method is a natural way to is a mod of aiding for a less susceptible to numeric error stable computation of solution. The
classical Tikhonov method (see Tikhonov (1963) and Hansen (1998)) consists in a solution of the problem

min
f∈Rn

` (f) = ‖Af − g‖2 + λ̃‖f‖2 (34)

where λ̃ > 0 is the regularization parameter. Solve (34) is equivalent to research the solution of the regularized normal
equation

(ATA + λ̃In)f = ATg, (35)

whose solution is fλ̃ = (ATA + λ̃In)−1ATg, and In is the identity matrix n× n. Now the problem is how to determine
λ̃ parameter such that fλ̃ be the nearest solution of the solution without numeric errors. A lot of techniques for the
regularization parameter choice were developed and they are presented in the specialized literature. These techniques
can be organized in two classes: techniques that involves the pre-known (or estimative) of the norm error e behaviour, as
discrepancy principle (DP) evidenced in Morozov Morozov (1984), and techniques that do not explore this information.
In this second class it can be cited the L-curved method (see Hansen and O’Leary (1993)), generalized cross-validation
(GCV) (see Golub et al. (1979)), weighted-GCV (W-GCV) (see Chung et al. (2008)), and a fixed point method (FP-
method) (see Viloche Bazán (2008)). For an overview of parameter-choice techniques for Tikhonov regularization method
see Hansen (1998) and recently Belge et al. (2002); Hämarik and Raus (2006); Hämarik et al. (2007); Johnston and
Gulrajani (2002); Krawczy-Stando and Rudnicki (2007); Kilmer and O’Leary (2001); Rust and O’Leary (2008); Zibetti
et al. (2008).

Note that the Thikhonov problem (34) and considering SVD of A, A = Ŝ1Ŝ2Ŝ
T
3 , where Ŝ2 ∈ Rn×n is a singular

value diagonal matrix, and Ŝ1, Ŝ3 ∈ Rn×n are unitary matrixes, with Ŝ3 non sigular matrix.

(ATA + λ̃In)fλ̃ = ATg ∴ fλ̃ = Ŝ3(Ŝ2
2 + λ̃In)−1Ŝ2Ŝ

T
1 g, (36)

or fλ̃ =
∑n
i=1

Ŝ2
2i

Ŝ2
2i

+λ̃2

ŜT1i
g

Ŝ2i

Ŝ3i with Ŝ2
2i representing the i-th singular value, Ŝ1i is the i-th colum vector of Ŝ1 and Ŝ3i is

the i-th colum vector of Ŝ3.
Observing the problem (34) it is expected that the solution of this optimization problem converges to the solution of

the equation Af = g as λ̃ tends to zero. Some of the main properties of Tikhonov regularization method are collected in
the following theorem

Theorem 1. Let A : Rn → Rn be bounded. For every λ̃ > 0 there exists a unique minimum fλ̃ of (34). Furthermore, fλ̃
satisfies the normal equation

λ̃
〈
fλ̃, ω

〉
+
〈
Afλ̃ − g,Aω

〉
= 0,∀ω ∈ Rn, (37)

or, using the adjoint A∗ = AT : Rn → Rn of A,

(ATA + λ̃In)fλ̃ = ATg. (38)

If, in addition, A is one-to-one and f ∈ Rn is the (unique) solution of the equation Af = g then fλ̃ → f as λ̃ tends to

zero. Finally, if f ∈ AT (Rn) or f ∈ ATA(Rn), then ∃c > 0 with ‖fλ̃ − f‖ = c
√
λ̃ or ‖fλ̃ − f‖ = cλ̃, respectively.
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6.1 The L-curve Technique

Let fλ̃ for be the family of solutions of the method of Tikhonov and set

ϑ1λ̃ := ‖Af λ̃ − g‖2 and ϑ2λ̃ := ‖fλ̃‖
2 (39)

, it can be verified that fλ̃ is a solution of the method of residuals (e1 :=
√
ϑ1λ̃) and quasisolutions (e2 :=

√
ϑ2λ̃).

Defining the bounded set

C :=
{

(c1, c2) ∈ R2|∃f ∈ Rn with ‖Af − g‖ ≤ c1 and ‖f‖ ≤ c2
}
, (40)

it can be shown that the function λ̃ 7→ e1λ̃ is increasing, λ̃ 7→ e2λ̃ is decreasing and C is a convex set with boundary given
from the curve λ̃ 7→

(
e1λ̃, e2λ̃

)
. Although if it cannot determine the rate e1

e2
, it must be have to specify a method/technique

to determine λ̃ in an optimal sense with using ϑ1λ̃ and ϑ2λ̃. In this way the L−curve criterion consists in determine λ̃
which maximizes the curvature in the typical L-shaped plot of the curve ` : λ̃ ∈ (0,∞) 7→ (ln (e1) , ln (e2)) ∈ R2. The
main motivation comes from the observation that in almost vertical portion of the graph for very small changes of λ̃ values
corresponds to rapidly varying to regularized solutions norm with very little change in ϑ1λ̃, while on horizontal part of
the graphic for larger values of λ̃ corresponds to regularized solutions norm where the plot is flat or slowly decreasing
for more detail see Hansen and O’Leary (1993). From this arguments the L-curve corner is located in a natural transition
point that links these two regions, for more details and substantial results see Hansen (1998).

Now consider the L−curve
(
ϑ1λ̃, ϑ2λ̃

)
for Tikhonov regularization, taking r⊥ as the least squares residual (i. e. the

component of g orthogonal to Ŝ11
, . . . , Ŝ1n ), one has

ϑ1λ̃ =

n∑
i=1

λ̃4
(
ŜT1ig

)2

(
Ŝ2

2i
+ λ̃2

)2 + ‖r⊥‖2 ∴
dϑ1λ̃

dλ̃
= 4λ̃3

n∑
i=1

Ŝ2
2i

(
ŜT1ig

)2

(
Ŝ2

2i
+ λ̃2

)3 ; (41)

ϑ2λ̃ =

n∑
i=1

Ŝ2
2i

(
ŜT1ig

)2

(
Ŝ2

2i
+ λ̃2

)2 ∴
dϑ2λ̃

dλ̃
= −4λ̃

n∑
i=1

Ŝ2
2i

(
ŜT1ig

)2

(
Ŝ2

2i
+ λ̃2

)3 , (42)

therefore dϑ2λ̃

dϑ1λ̃
= −λ̃−2, the avaliation of second derivatives shows that the curve is convex and steeper as λ̃ approaches

to the smallest sigular value. The L−curve consists of a vertical part where e2 is near of the maximum value and adjacent
part with smaller slope and the more horizontal part corresponds to solutions dominated by regularization errors where
the regularization parameter is too large. In this sense the problem is to seek the L−curve point where the maximum
curvature is reached.

Noting that if the L−curve is sufficiently smooth (twice continously differetiable with λ̃-parameter), then it can be
computed the curvature κ

(
λ̃
)

as

κ
(
λ̃
)

=
e
′

1e
′′

2 − e
′′

1 e
′

2((
e
′
1

)2
+
(
e
′
2

)2) 3
2

, (43)

where ′ denotes a derivative with respect to λ̃ regularization parameter and any one dimetional optimization method can
be used to solve λ̃ for the maximum curvature problem. It must be to point out that the numerical effort involved in min-
imization is smaller than that SVD computation. Although in many cases it is limited a finite set of points on L−curve,
then the curvature κ

(
λ̃
)

cannot be computed. In a numerical sense the L−curve consists of a number of discrete points

correponding to differents regularization parameter values λ̃ at which it has evaluated e1 and e2. Thus it must be defined
a sufficiently smooth curve associated to discret points in such way that the overall shape of L−curve is maintained. This
procedure consists in determine an aproximating smooth curve and the reasonable approach for this is a cubic spline pair
fitting for e1 and e2. Such a curve has some interesting properties as twice differentiable, numerically differentiable in
stable way and local shape preserving features. In this sense one has a two-step algorithm to the cubic spline fitting due
to the non local smooth desired property.

L-curve Fitting
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1. Perform a local low-degree polynomial fitting to a few neighbouring point in which each point is replaced by a new
smoothed point;

2. Use the new smoothed points as control points for the cubic spline curve with N + 4 knots, where N is the number
L−curve points.

Then assuming that one knows a few points on each side of the corener, a sketch of the algorithm it follows below

Regularization Solutions Associated to L-curve Approach

1. Start with a few points (ln (e1i) , ln (e2i)) on each side of the corner;

2. Compute an approximating three-dimensional cubic spline curve S by L-curve Fitting algorithm for the points(
ln (e1i) , ln (e2i) , λ̃i

)
where λ̃i is the regularization parameter that corresponds to (ln (e1i) , ln (e2i));

3. Let S2 denote the first two coordinates of S, such that S2 approximates the L−curve;

4. Compute the point on S2 with maximum curvature, and find the corresponding regularization parameter λ̃0 from
the third coordinate of S;

5. Solve the regularization problem for λ̃ = λ̃0 and add the new point (ln (e10) , ln (e20)) to the L−curve;

6. Repeat from step 2 until convergence.

Note that in step 2, it is necessary to introduce λ̃i as the third coordinate of S because one need to associate a
regularization parameter with each point on S (a two-dimensional spline curve with λ̃i as knots does not provide this
feature). Initial points for step 1 can be generated by choosing a number of regularization parameters ranging from very
"large" values to very "small" values. It’s important to point iut that the computational implementation of Tikhonov
L−curve regularization tecnhique is based on criteria described in Hansen (1994) and Hansen and O’Leary (1993).

7. NUMERICAL EXAMPLE

The objective of this example is to attest the efficiency of the regularization technique for the time evolutionary
numerical analysis in elastoplasticity problems. The evolutionary numerical approach analysis is given by a comparative
response between a regularized (Tikhonov L−curve parameter choice) numerical solution and a non-regularized numerical
solution. The numerical example presented here consist of a 1-D low cycle fatigue requests. The body has 100mm initial
length, the elasticity modulus E = 2 × 105 MPa, Poisson ratio ν = 0.3, yield stress σy = 260 MPa, kinematic
hardening constants χ∞ = 200 MPa (kinematic hardening amplitude) and γ = 2.0 (controls the kinematic hardening
increase rate), isotropic hardening constants R∞ = 300 MPa (isotropic hardening amplitude) and b = 1 (controls the
isotropic hardening increase rate), and damage constants Pd = 0.0005 and Dc = 0.2 (critical value of damage). This last
value depends upon the material and the loading conditions and represents the final decohesion of atoms is characterized
by a critical value of the effective stress acting on the resisting area. It is important to cite that Dc gives the critical value
of the damage at a mesocrack initiation occuring for the unidimensional stress, usually Dc ∈ [0.2, 0.5]. A sketch of the
problem cases may be seen in the figure below (see Fig.1).

Figure 1. Problem Case Domain Sketch

The load, in this example, is given by ū (x, t) = 0.8t where t is in load cycles. For this application it was construct
a fictitious exact solution (fes) and under 10−4 tolerance they were computed a regularized numerical solution (rns)
and a non-regularized numerical solution (nrns) for analysis over t ∈ [0, 10]. A important fact that must be noted is
any numerical solution cannot be realize the entire analysis over t ∈ [0, 10]. However without the use of Tikhonov
regularization technique the "nrns" was capable to continue with the analysis to t = 7.547 cycles. The "rns-analysis",
that use the Tikhonov regularization technique, can be cover the range of t ∈ [0, 9.291] cycles with a excellent agreement
with the "fes" as it can be seen in the figure (Fig. 2) below.

The nrns-analysis failed due to ill-condition problems, at point t = 7.547 cycles the condition number associated to
the linearised system on Newton method iteration is 1.4× 108.
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Figure 2. Plastic Strain vs. Time

Figure 3. Total Strain vs. Time / Cauchy Stress vs. Time

For this case the number of iteration extrapolated a lot the allowed limit (500 iterations) with residual norm value
oscillating in one belittles strip around 10−3, growing up the allowed limit of iteration the same pattern is the reached
until 661110 iterations. At the figure (3) it can be seen a good agreement between "fes" and "rns". Note that the rns-
response was capable to reproduce the softening behaviour beginning. At figure (4) it can see the hardening behaviour
during analyzed time. Note that for this instance there is a good agreements again among the results reached by "fes" and
"rns" strategy.

Figure 4. Isotropic Hardening vs. Time / Kinematic Hardening vs. Time

Now it is presented the responses about damage variable and storage plastic strain (see Fig. 5). Noting that in the
storage plastic strain behaviour one has "fes-rns" perfect agreement, although for the damage variable evolutionary
profile it is detected a little bit discrepancy between "fes" and "rns" that research maximum at t = 7.546 cycles with
2.5% as relative error. It is important to stand out although that in this case there is a tendency to both graphs ("fes" and
"rns") coincides. The Tikhonov regularization process is setting to act when the condition number is equal or greater than
1.4 × 108. Other settings are tested but the same unexpected pattern on rns-response was observed and non significant
changes are noted.

The Tikhonov regularization method allowed that the numerical analysis continues until to reach t = 9.291 cycles.
Note that at this point the the condition number value from the linearised system on Newton method iteration is 1.1×108.
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Figure 5. Damage vs. Time / Storage Plastic Strain vs. Time

The numerical analysis can run through the critical and move more torward the limit of the adopted model (see Figs. 5
and 6). The regularization parameter computed for the last Newton’s iteration is λ̃ ≈ 0.0271.

Figure 6. Cauchy Stress vs. Total Strain

8. CONCLUSION

In this work, it has discussed/analyzed the computational implementation of elastoplsticity problem. As mentioned
above to treat the critical points on equilibrium-path it was proposed a Thikhonov L-cruve regularization approach over
Newton method. In this sense it has prsented some theoretical results from Thikonov regularization method and your
application over numerical dynamic elastoplastic problem as an efficient form of transposing the numerical problems
associated to ill-conditioning happened in neighbourhoods of critical points.

It is important to comment that the Thikonov L-curve regularization method approach in elastoplastcity numerical
analysis showed robustness, efficiency and potential as it can be seen in the comparative numerical examples here pre-
sented. The used tolerance convergence criterion (10−4) was obtained after tests with larger and smaller tolerance values,
in that none differences in the pattern of the responses was noticed. In this numerical example it was verified the con-
sistency, performance and computational accuracy of the approach proposed. In fact, there was an excellent agreement
between the regularized numerical response and fictitious exact solution, adding numerical stability and possibiliting
advances in the time of analysis over permanent deformation computational modelling. Although, it is clear that new
numerical experiments in terms of applications to explore as problems involving time rate dependences (viscoplasticity)
over permanent/plastic deformations.

Additionally it is important to point out that besides new applications, other choosing parameters techniques (see
Zibetti et al. (2008) and Viloche Bazán (2008)) must be investigated in terms of computational efforts, accuracy and
performance in relation to L-curve approach. In particular, some experience is needed with large problems from distinct
application requiring the use of general-form Tikhonov regularization. These are the subject of a research that should be
continued.
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