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Abstract. The analysis and design of complex engineering systems usually involves several uncertainties that leads to
the need of develop methodologies capable of assessing the unavoidable uncertainties contained in the numerical results.
For example, one major issue to be deeper understood is how uncertainties in the input data impacts the reliability of
the results obtained through computer simulations. In thatsense, the stochastic modeling seems to offer an appropriate
framework to handle external forces and uncertainties in the data, like for instance, damping and boundary conditions.
Specifically in the present work, the focus relies on predictsome statistics of the horizontal motion in a floating moored
buoy model represented by a single-degree-of-freedom system. The presence of non-linear restoring forces in the system
subjected to random hydrodynamics loads, corresponding tothe Morison formula leads to a highly non-linear system,
where the velocity and acceleration of the flow are determined using the Pierson-Moskovitz power spectrum. We propose
in this work apply an adaptive sparse grid stochastic collocation method to approximate its solution in the stochastic space
by polynomial interpolation built through only repeated calls to an existing deterministic solver as in sampling methods
like the Monte Carlo. The aim of the adaptive approach is try to improve of the conventional collocation method allowing
the identification of discontinuities in the stochastic space, refining the collocation points in that region. Particular
emphasis is placed on investigating the uncertainty propagation and the non-linear response of the system under random
loads performing a stability analysis of the system. Finally, comparisons are done between the adaptive and conventional
collocation methods even as Monte Carlo, taken as reference, to demonstrate the accuracy and efficiency of the method.
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1. INTRODUCTION

The complexity involved in engineering systems has been, frequently, tackled with the use of sophisticated computa-
tional models. That, from the decision makers standpoint, requires the use of robust and reliable numerical simulators.
Often, the reliability of those simulations is disrupted bythe inexorable presence of uncertainty in the model data, such
as inexact knowledge of system forcing, initial and boundary conditions, physical properties of the medium, as well as
parameters in constitutive equations. These situations underscore the need for efficient uncertainty quantification (UQ)
methods for the establishment of confidence intervals in computed predictions, the assessment of the suitability of model
formulations, and/or the support of decision-making analysis.

The traditional statistical tool for uncertainty quantification within the realm of engineering is the Monte Carlo method,
(Elishakoff, 2003). This method requires, first, the generation of an ensemble of random realizations associated to the
uncertain data, and then it employs deterministic solvers repetitively to obtain the ensemble of results. The ensemble
results should be processed to estimate the mean and standard deviation of the final results. The implementation the
Monte Carlo is straightforward, but its convergence rate isvery slow (proportional to the inverse of the square root of the
realization number) and often infeasible due the large CPU time needed to run the model in question. Other technique that
has been applied recently is the so called Stochastic Galerkin Method (SG), which employs polynomial chaos expansions
to represent the solution and inputs to stochastic differential equations, (Babuskaet al., 2004). The galerkin projection
minimizes the error of the truncated expansion and the resulting set of coupled equations is solved to obtain the expansion
coefficients. SG methods are highly suited to dealing with ordinary and partial differential equations, even in the caseof
nonlinear dependence on the random data. The main drawback with SG relies on its need of solving a system of coupled
equations that requires efficient and robust solvers and, most importantly, the modification of existing deterministiccode.
This last issue entails difficulties on using commercial or already in use codes. A non-intrusive method, referred to as
Stochastic Collocation (SC), (Dongbin and Hesthaven, 2005), arises towards addressing this point. SC methods are built
on the combination of interpolation methods and deterministic solvers, likely Monte Carlo. A deterministic problem is
solved in each point of an abstract random space. Similarly to SG methods, SC methods achieve fast convergence when
the solution possesses sufficient smoothness in random space (Dongbinet al., 2002).

Thus when there are steeps gradients or finite discontinuities in the stochastic space, these methods converge very
slowly or even fail to converge. In this work, we present an adaptive sparse grid collocation strategy with the aim of
obtaining greater accuracy in nonlinear systems analysis.Specifically in the present work, the focus relies on hydro-
ship dynamics in the context of floating offshore structures. Particular emphasis is placed on investigating uncertainty
propagation in the nonlinear response of fluid-structure interaction, (Dongbinet al., 2002). It is important to remind that
waves and currents, major agents in the dynamics of the floating structures, are usually modeled as random processes.
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Therefore, stochastic modeling seems to offer an appropriate framework to tackle the external forces and uncertainties
in the data, like, for instance, damping and boundary conditions. Here, the fluid-structure interaction is modeled in a
simple way focusing the assessment of an SC method as an effective tool for uncertainty quantification. The interaction
is introduced by means of the Morison’s formula, which represents a challenge, despite the simplicity of the model itself,
as far as the input is a nonlinear function of the random variables, (Witteveen and Bijl, 2008). Those variables represent
the phase angle which inherent to the time series description of the wave induced motion.

2. THEORY

To quantify the uncertainty in a system of differential equations we adopt a probabilistic approach and define a com-
plete probability space(Ω,F ,P). WhereΩ is the event space,F ⊂ 2Ω is theσ-algebra of subsets inΩ andP : F → [0, 1]
is the probability measure. Utilizing this framework, the uncertainty in a model is introduced by representing the model
input data as random field.

2.1 Governing Equations

Consider the general differential equation defined on ad-dimensional bounded domainD ⊂ R
d, (d = 1, 2, 3) with

boundary∂D. The problem consists on finding a stochastic function,u(x, ω) : Ω × D −→ R, such that forP-almost
everywhereω ∈ Ω, the following equation holds:

L(x, ω; u) = f(x, ω) x ∈ D (1)

B(x, ω; u) = g(x, ω) x ∈ ∂D (2)

with x = (x1, . . . , xd) ∈ R
d, d ≥ 1, space coordinates inRd, L a linear or non linear differential operator andu(ω) =

(u1(ω), . . . ui(ω)) ∈ R
i, i ≥ 1, are unknown solutions. Sometimes, to solve the equations (1) and (2) it is necessary

reduce the infinite dimensional probability space(Ω,F ,P) to a finite dimensional one. This can be accomplished by
characterizing the probability space by a finite number of random variables. Thus, employing any truncated spectral
expansion it is possible characterize the random inputs by aset ofN random variablesY = (Y1(ω), . . . , YN (ω)) and
rewrite the random inputs as,

L(x, ω; u) = L(x, Y1(ω), . . . , YN (ω); u), f(x, ω) = f(x, Y1(ω), . . . , YN (ω)), (3)

Where, following the Dob-Dynkin lemma, (Oskendal, 1998), the solution of (1) and (2) can be represented by the same
set of random variables{Yi(ω)}

N
i=1, reducing the infinite dimensional probability space to aN -dimensional space, i.e.,

u(x, ω) = u(, x, Y 1(ω), . . . , Y N(ω)) (4)

Now assuming that{Y i}Ni=1 are independent random variables with probability densityfunctionsρi : Γi → R
+, and their

imagesΓi ≡ Y i(Ω) bounded intervals inR for i = 1, . . . , N , the joint probability density ofY ≡ (Y 1, . . . , Y N) hold,

ρ(y) =

N
∏

i=1

ρi(Y
i) ∀y ∈ Γ, (5)

and the space support,

Γ ≡
N
∏

i=1

Γi ⊂ R
N . (6)

This allow us to rewrite (1) and (2) as a(N + d) dimensional differential equation as following,

L(x,Y; u) = f(x,Y), (x,Y) ∈ Γ×D (7)

B(x,Y; u) = g(x,Y), (x,Y) ∈ Γ× ∂D (8)

with N dimensionality of the random spaceΓ andd the dimensionality of the physical spaceD.
Thus, the original infinite dimensional problem become in a deterministic problem in the physical domainD and can

be solved by a common discretization technique as finite elements for example.

3. STOCHASTIC COLLOCATION METHOD

The idea of this method is approximate the multidimensionalstochastic space building a interpolation function on
a set of collocation points{Yi}

M
i=1 in the stochastic spaceΓ ⊂ R

M . The method, similarly to Monte Carlo methods,
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requires only the solution of a set of decoupled equations, allowing the model to be treated as a black box and solved
it with existing deterministic solvers. The multidimensional interpolation can be built through either full-tensor product
of 1D interpolation rule or by the so called sparse grid interpolation based on the Smolyak algorithm. The Smolyak
algorithm provides a way to construct interpolations functions based on minimal number of points in multidimensional
space (Bungartz and Griebel, 2004). This method is easily extended from the univariate interpolation to the multivariate
case by using tensor products.

Hence, considering a smooth functionsf : [−1, 1]N → R, for the1D case(N = 1), f can be approximated by the
following:

U i(f)(y) =

mi
∑

j=1

f(Yi
j)a

i
j , (9)

with the set of support nodes

X i = Yi
j |Y

i
j ∈ [0, 1]forj = 1, . . . ,mi (10)

where,i ∈ N, ai(Y
i
j) ∈ C[0, 1] are the interpolation nodal basis functions andmi is the number of elements of the set

X i. Hence, in the multivariate case, the tensor product formula is:

(U i1 ⊗ . . .⊗ U iN )(f) =

m1
∑

j1=1

· · ·

mN
∑

jN=1

f(Y i1
j1

. . . Y iN
jN

).(ai1j1 ⊗ · · · ⊗ aiNjN ) (11)

which serve as building blocks for the Smolyak algorithm. So, The Smolyak algorithm build the interpolantAq,N (f)
using products of1D functions as given in (Xiang and Zabaras, 2009).

Aq,N (f) =
∑

q−N+1≤|i|≤q

(−1)q−|i|

(

N − 1

q − |i|

)

(U i1 ⊗ . . .⊗ U iN ) (12)

with q ≥ N , AN−1,N = 0 and where the multi-indexi = (i1, . . . , iN ) ∈ N
N and|i| = i1 + · · · + iN . Hereik, k =

1, . . . , N , is the level of interpolation along thek− th direction. The Smolyak algorithm builds the interpolationfunction
by adding a combination of1D functions of orderik with the constraint that the sum total(|i| = i1 + . . .+ iN ) across all
dimensions is betweenq −N + 1 and q. Therefore, the Smolyak interpolationAq,N is given by;

Aq,N (f) =
∑

|i|≤q

(4i1 ⊗ . . .⊗4iN ) = Aq−1,N (f) +
∑

|i|=q

(4i1 ⊗ . . .⊗4iN ) (13)

To compute the interpolantAq,N (f) is necessary to compute the function at the nodes covered by the sparse grid
Hq,N :

Hq,N (f) =
⋃

q−N+1≤|i|≤q

(X i1 × · · · ×X iN ) (14)

The construction of the algorithm allows to utilizing all the previous results generated to improve the interpolation.
By choosing the appropriate points for interpolating the1D function, it is possible ensure that the sets of points are nested
X i ⊂ X i+1. Where to extend the interpolation from leveli − 1 to i, one only has to evaluate the function at grid points
that are unique toX i. Hence, to go from an orderq − 1 to q in N dimensions, one only needs to evaluate the function at
the differential nodes:

4Hq,N (f) =
⋃

|i|=q

(X i1 ⊗ · · · ⊗X iN ) (15)

Finally after a choice of collocation points and the nodal basis functions, any functionu ∈ Γ can be approximated by;

u(x,Y) =
∑

|i|≤q

∑

j∈Bi

wi
j(x)a

i
j(Y) (16)
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This equation is a simple weighted sum of the value of the basis functions for all collocations points in the sparse grid,
being an approximation to the solution of the equations (7) and (8). From this equation, it is possible calculate easily the
useful statistics of the solution for example, the mean of the random solution can be evaluated as follow:

E[u(x)] =
∑

|i|≤q

∑

j∈Bi

wi
j(x).

∫

Γ

aij(Y)dY (17)

where denoting
∫

Γ
aij(Y)dY = Iij we can write

E[u(x)] =
∑

|i|≤q

∑

j∈Bi

wi
j(x).I

i
j (18)

the mean is an arithmetic sum of the product of the hierarchical surpluses and the integral weight at each interpolation
point. To obtain the variance of the random solution we can becalculate first:

u2(x,Y) =
∑

|i|≤q

∑

j∈Bi

vij(x)a
i
j(Y) (19)

and then

Var[u(x)] = E[u2(x)] − (E[u(x)])2 =
∑

|i|≤q

∑

j∈Bi

vij(x).I
i
j − (

∑

|i|≤q

∑

j∈Bi

wi
j(x)I

i
j)

2 (20)

The method allows us to obtain an approximation of the solution dependent random variables and also easily extract
the mean and variance analytically as well its probability density function (PDF) by simple sampling of this function,
leaving only the interpolation error.

4. ADAPTIVE SPARSE GRID COLLOCATION METHOD

If the the smoothness condition in the stochastic space is not fulfilled it is possible to use adaptive strategies to improve
de interpolation function in the stochastic space. The ideahere is to use hierarchical surpluseswi

j(x) as an error indicator
to detect the smoothness of the solution and refine the grid around this region and using less points in the region of
smooth variation. This method proposed by (Xiang and Zabaras, 2009), automatically detect the discontinuity region in
the stochastic space refining the collocation points. Considering the interpolation level of a grid pointY as the depth
of the treeD(Y ). After denote the father of a grid point asF (Y ), where the father of the root 0.5 is itself. Thus, the
conventional sparse grid in the N-dimensional random spaceEquation 14 can be reconsidered as:

Hq,N (f) = {Y = {Y1 . . . YN}|

N
∑

i=1

D(Yi) ≤ q} (21)

Where we call their sons of a grid pointY = (Y1 . . . YN ) by:

Sons(Y) = S = (S1, S2, . . . , SN )|(F (S1), S2, . . . , SN) = Y (22)

or

(S1, F (S2), . . . , SN) = Y, . . . , or(S1, S2, . . . , F (SN )) = Y (23)

It is noted here that in general for each grid point there are two sons in each dimension, therefore, for a grid point in a
N-dimensional stochastic space, there are 2N sons. Therefore, by adding the neighbor points, we actually add the support
nodes from the next interpolation level, so that the magnitude of the hierarchical surplus satisfies|wi

j ≥ ε|. If the criterion
is satisfied, one only add the2N neighbor points of the current point to the sparse grid. It isnoted that the definition of
level of the Smolyak interpolation por the ASGC method is thesame as that of the conventional sparse grid even if not all
point are included. A more detailed explanation of the method and algorithm can be found in, (?).
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5. APPLICATION

Following, we will illustrate the methods developed in the preceding sections considering the stochastic response of
a single-degree-of-freedom structure exited by a random Morison’s force with a restoring force expressed by non linear
term. This equation can be considered as an idealizing modela floating moored dock system. The numerical results shown
in this section were obtained using fully parallels algorithms for high performance computers implemented in C++ and
MPI. This code was developed by Professor Zabaras’s research group at Cornell University who share with the authors as
a result of a research partnership. It remained for our staffto adapt it to address the next example. Due to the relative small
size of the problem, the analisys were performed using a single desktop with a quad core processor overLinux system
withMPICH library.

6. FLOATING DOCK WITH MOORING LINES

The following physical system represents a prototype modelfor those structures called catenary anchor leg mooring
(CALM), frequently used in offshore engineering (Culla andCarcaterra, 2007), the values used for the model are the
same as used in the reference. This model introduces the nextapproximations, the buoy is considered a point of mass
mb, the pair of cables is approximated by two nonlinear cubic springs, the hydrodynamic force is determined by the
Morison equation and the energy dissipation is introduced by a viscous damping (of characteristic constantc̃. With these
assumptions, the equation of the dock motion is:

mbẅ + 2cẇ + FT (wc) = q(t) (24)

wherewc is the center of mass displacement,FT (wc) the nonlinear restoring force, and theq(t) the nonlinear random
load.

ca mass coefficient 0.2
cd drag coefficient 0.9
D buoy diameter 10m
h ocean depth 50m
L cable length 150m
W weight per unit length 14kg
ρw water density 1025Kg/m3

mb buoy mass 12000Kg
U19.5 wind velocity 25m/s
c̃ viscous damping 1e5kg/sm2

Figure 1: Catenary anchor mooring configuration and physical parameters of the simulations

6.0.1 Nonlinear random hydrodynamic load q(t)

The modified Morison equation provides the wave loadq(t) per unit length on a circular cylinder in terms of the fluid
structure relative velocity(ξ̇ − ẇ).

q(t) = CI ξ̈ −maẅ + CD|ξ̇ − ẇ|(ξ̇ − ẇ) (25)

whereξ(x, z, t) is the horizontal fluid particle displacement, assumed approximately the same for each point of the
wetted surface. To characterize the random nature ofξ(x, z, t) we use the Airy theory of linear waves to approximate the
elevation field as,

η(t) =

N
∑

i=1

cos(ωit− ϕi)
√

2Sηη(ωi)∆ωi (26)

whereϕi is a uniformly distributed random numberU(−π, π) andwi are the discrete sampling frequencies,∆ωi =
ωi − ωi−1, N is the number of partitions of the power spectra andSηη is the Pierson-Moskowitz spectra that defines the
distribution of energy with frequency within the ocean. Developed in 1964 the PM spectrum is an empirical relation and
one of the simplest descriptions for the ocean energy distribution. It assumes that if the wind blows steadily for a long
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time over a large area, then the waves would eventually reacha point of equilibrium with the wind. This is known as a
fully developed sea.

Sηη(ω) =
A

ω5
e(B/ω4) =

αg2

ω2
n

e−β(g/Uωn)
4

(27)

When the sampling frequencies,ωi are chosen at equal intervals suchωi = iω1 the time history will have a period
T = 2π/ω1. To avoid this problem, was used the Borgman’s method that where the frequencies are chosen so that the
area under the spectrum curve, for each interval, is equal, so σ2 = σ2

η/N and the time history can be written as,

η(t) =
N
∑

i=1

√

2

N
σcos(ωit− kiϕi) (28)

with ki = ωi/g wave number, due to the total varianceσ2 =
∫∞

0 Sηη(ω)dω = A
4B , the above equation for wave

elevation becomes,

η(t) =

N
∑

i=1

√

A

2NB
cos(ωit− ϕi) (29)

where

ω =
( B

ln(N/n) + (B/w4
N )

).25

(30)

Finally we arrive to an expression the absolute position forthe wave elevation

η(y, t) =
N
∑

i=1

√

A

2NB
cos(ωit− kiy − ϕi) (31)

and the same way for the absolute velocity of the fluid,

ξ(x, y, t) =

N
∑

i=1

ω
( cosh(kix)

senh(kid)

)

√

A

2NB
cos(ωit− kiy − φi) (32)

where it is easy to immediately calculate the force morrison.

6.0.2 Nonlinear restoring forces model

The nonlinear force displacement relationship for a singlecable with one end attached to the sea bottom and the other
to the buoying system is determined in this section. With this aim, first we present the nonlinear equations of a uniform
inextensible cable suspended among two fixed points. Lets be the curvilinear abscissa,x andz Cartesian coordinates of
the cable points,T is the tension along the cable andW its weight per unit length. The static equations of the cablereads,







∂
∂s

(

T ∂x
∂s

)

= W

∂
∂s

(

T ∂z
∂s

)

= 0
(33)

integrating the second equation 33,

T
∂z

∂s
= F (34)

and applying the inextensibility condition
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(∂x

∂s

)2

+
(∂z

∂s

)2

= 1 (35)

we found the analytical solution of the catenary as,

x(z) =
F

W
cosh

(Wz

F
+

W

F
c1
)

+c2 (36)

where thec1 e c2 are determined with the boundary conditions
{

∂x
∂s |0 = 0

x|0 = 0
(37)

then

x(z) =
F

W

[

cosh
(Wz

F

)

−1
]

z(x) =
F

W
sinh−1

[

√

(Wx

F

)2

+2
(Wx

F

)]

(38)

provides the force displacement relationship at each cablepoint.

s(z) =

∫ z

0

√

1 +
(∂x

∂z

)2

dz → ls(z) =
F

W
sinh

(Wz

F

)

(39)

with this expression it is possible to estimate orFmax that is the maximum expected force for the worst operating
condition orLmin is the minimum length required that warrants a zero slope of the cable line at the anchor point on the
sea bottom.

ls(x) = x

√

2F

Wx
+ 1 (40)

lsmin
(x) = x

√

2Fmax

Wh
+ 1 (41)

The above implies the absence of vertical forces, satisfying an important safety requirement, during the normal op-
eration it is necessary that deF < Fmax. Finally, this expression provides the constitutive nonlinear force distance
relationship for the cable.

dc = h

√

2
Fmax

Wh
+ 1− h

√

2
F

Wh
+ 1 +

F

W
cosh−1

(

1 +
Wh

F

)

(42)

wheredizqc = wc0 + wc dderc = wc0 − wc, ewc0 is the horizontal distance between the anchor and the fairlead of
the mooring line for both the cables in the static reference configuration. Therefore, the mooring actions on the dock can
be approximated by a simpler cubic restoring force.

Figure 2: SDOF equivalent model

In offshore structures, often, pairs of cables are anchoredto the seabed acting in opposite directions, as shown in
Figure 2. In this configuration the total restoring force of the pair of cables is given by

FT (wc) = F (dizqc )− F (dderc ) = F+ − F−, (43)
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A Taylor series expansion of FT up to the third-order provides

FT (wc) = FT

∣

∣

∣

0
+

∂FT

∂wc

∣

∣

∣

0
wc +

1

2

∂2FT

∂w2
c

∣

∣

∣

0
w2

c +
1

6

∂3FT

∂w3
c

∣

∣

∣

0
w3

c (44)

where the derivatives are calculated atwc = 0. This equation involves the derivatives ofFT (wc), while the force
displacement relationship is available.

∂wc

∂F

∂F

∂wc
= 1 (45)

The terms of order zero and two are void and, under the hypothesis of small displacements, a cubic dependence of the
horizontal force on the displacement of the cable end is determined

FT (wc) = γ1wc + γ2w
3
c (46)

where

γ1 =
2

∂wc

∂F

∣

∣

∣

F0

γ3 = −
3
(

∂2wc

∂F 2 /
∂wc

∂F

)2

− ∂3wc

∂F 3 /
∂wc

∂F

3
(

∂wc

∂F

)3

∣

∣

∣

F0

(47)

∂F

∂wc
=

1
∂wc

∂F

,
∂2F

∂w2
c

= −
∂2wc

∂F 2

(∂wc

∂F )3
,

∂3F

∂w3
c

= −
3(∂

2wc

∂F 2 )
2 − (∂

3wc

∂F 3 )(
∂wc

∂F )

(∂wc

∂F )5
(48)

Therefore, writing the equation 24 an explicit form for the forcesFT (wc) andq(t) we obtain,

(mb +ma)ẅ + 2cẇγ1w + [CD|ξ̇ − ẇ|(ξ̇ − ẇ) + γ3w
3] = CI ξ̈ (49)

where(ξ̇ − ẇ), CI andCD are the inertia and the drag coefficient, respectively,ma the added mass andγ1,γ3
coefficients to be calculated. Using,

m = ma +mb, a1 =
2c

m
, a2 =

γ1
m

, a3 =
CD

m
, a4 =

γ3
m

, a5 =
CI

m

These coefficients depend on the dimension of the dock, the water density and some nondimensional quantity, namely:

CI = (1 + ca)
ρwπD

2

4
, CD =

1

2
cdρwD, ma = ca

ρwπD
2

4

where ca is the non-dimensional added mass coefficient (caffi1), ρw is the seawater density,D is the dock diameter
and cd is the non-dimensional drag coefficient(0.6 ≤ cd ≤ 1.2). Finally can we rewrite our equations system as,

ϋ + a1υ̇ + (a2 + 3a4ξ
2)υ + [a3|υ̇|υ̇ − 3a4ξ

2 + a4υ
3] = f(ξ) (50)

with the new force term,

f(ξ) = (1− a5)ξ̈ + a1ξ̇ + a4ξ
3 + a2ξ (51)

The effect of the cable drag force is not explicitly included, its inclusion does not alter substantially the mathematical
nature of the problem considered.
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6.0.3 Numerical results 2D

Figure 3: Mean of total outputs with 2 stochastic dimensions
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Figure 4: Variance of total outputs with 2 stochastic dimensions
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Figure 5: Convergence of Monte-carlo method
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Figure 6: Convergence of ASGC method

Level No Points ASGC No Points CSGC
1 4 4
2 8 8
3 16 16
4 36 36
5 80 80
6 176 176
7 382 384
8 776 1792
9 1234 3840
10 1796 8192
11 2036 17408
12 2338 .
13 2532 .
14 2668 .
15 3560 .
16 4449 .

Figure 7: Adaptive sparse grid for maximum level and table with number of points with ASGC and SGC methods
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6.0.4 Numerical results 6D

Figure 8: Mean of total outputs with 6 stochastic dimensions
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Figure 9: Variances of total outputs with 6 stochastic dimensions
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Figure 10: Convergence of Monte-carlo method
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Figure 11: Convergence of ASGC method
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Level No Points ASGC No Points CSGC
1 12 12
2 72 72
3 304 304
4 1066 1068
5 3380 3408
6 9827 10256
7 26240 29568

Figure 12: Adaptive sparse grid for maximum level and table with number of points with ASGC and SGC methods
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To analise the convergence of the method, the relative errorwas estimated by calculating the L2 norm between con-
secutive means using a reference Monte Carlo solution with 40000 points and likewise with the variance. Figures 3and
4 shown the mean and variance for 2 dimensional stochastic space for ASGC method and Monte Carlo method, Figures
5and 6 shown the evolution of the error. In the Figure 5 one canobserve that the relative error is high because the exist
gap between the average calculated between methods but likethe criterion of convergence used was the surplus of vari-
ances the solutions obtained are very satisfactory. Figure7 show the effect od the adaptative strategy on the sparse grid,
identifying automatically non smooth regions in the stochastic space. It is also possible to see in the table a improve in
computational cost comparing, the conventional sparse grid collocation method (CSGC) with the adaptative sparse grid
collocation method (ASGC) using less collocation point than (CSGC) to perform the analisys. The same considerations
can be done about the analisys of the model with six dimensional stochastic space, where only less levels of interpolation
were used to avoid the grow of number of collocation points, reaching a good accuracy in the result as is show in Figures
8,9 and 10,11.

7. CONCLUSIONS

Like the Monte Carlo method, the Adaptive Sparse Grid Stochastic Collocation (ASGC) method leads to the solution
of uncoupled deterministic problems and, as such, it is simple to implement and parallelize. These non-intrusive methods,
allow convert any deterministic code into a code that solvesthe corresponding stochastic problem. Compared with the
Monte Carlo Simulation method, the (ASGC) shown a significative reduction in the number of experiments required to
achieve the same level of accuracy. On the other hand, the results obtained, comparing the Conventional Sparse Grid
Collocation method and an adaptive strategy, show that it ispossible refine the grid locally identifying automaticallynon
smooth regions in the stochastic space achieving the same accuracy and reducing significatively the cost by the use of less
collocations points in smooth regions of the stochastic space. Due to that the majority of engineering problems varying
rapidly in only some dimensions, remaining much smoother inother dimensions and in general it have more stochastic
dimensions. Future work of this research will include the study high-dimensional methods mixed with Adaptative Sparse
Grid Stochastic Collocation methods, in high performance computer environment, aiming to obtain tools to solve real
problems of interest in Engineering.
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