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Abstract. The analysis and design of complex engineering systemdlyusualves several uncertainties that leads to
the need of develop methodologies capable of assessingdveidable uncertainties contained in the numerical resul
For example, one major issue to be deeper understood is heertainties in the input data impacts the reliability of
the results obtained through computer simulations. In #&atse, the stochastic modeling seems to offer an apprepriat
framework to handle external forces and uncertainties edhata, like for instance, damping and boundary conditions.
Specifically in the present work, the focus relies on presliche statistics of the horizontal motion in a floating moored
buoy model represented by a single-degree-of-freedomraysthe presence of non-linear restoring forces in the syste
subjected to random hydrodynamics loads, correspondirtgdvorison formula leads to a highly non-linear system,
where the velocity and acceleration of the flow are deterthirsng the Pierson-Moskovitz power spectrum. We propose
in this work apply an adaptive sparse grid stochastic calkian method to approximate its solution in the stochagtace

by polynomial interpolation built through only repeatedisdo an existing deterministic solver as in sampling mego
like the Monte Carlo. The aim of the adaptive approach isaryriprove of the conventional collocation method allowing
the identification of discontinuities in the stochastic aparefining the collocation points in that region. Partiaul
emphasis is placed on investigating the uncertainty pragiag and the non-linear response of the system under random
loads performing a stability analysis of the system. Fynalbmparisons are done between the adaptive and convantion
collocation methods even as Monte Carlo, taken as refereaa@@emonstrate the accuracy and efficiency of the method.
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1. INTRODUCTION

The complexity involved in engineering systems has beegufently, tackled with the use of sophisticated computa-
tional models. That, from the decision makers standpogguires the use of robust and reliable numerical simulators
Often, the reliability of those simulations is disruptedthg inexorable presence of uncertainty in the model daty su
as inexact knowledge of system forcing, initial and bougdanditions, physical properties of the medium, as well as
parameters in constitutive equations. These situatiodsnsgore the need for efficient uncertainty quantificatid®)
methods for the establishment of confidence intervals inprded predictions, the assessment of the suitability ofehod
formulations, and/or the support of decision-making asialy

The traditional statistical tool for uncertainty quanfiion within the realm of engineering is the Monte Carlo noeth
(Elishakoff, 2003). This method requires, first, the getienaof an ensemble of random realizations associated to the
uncertain data, and then it employs deterministic solvepetitively to obtain the ensemble of results. The ensemble
results should be processed to estimate the mean and stashelaation of the final results. The implementation the
Monte Carlo is straightforward, but its convergence rateeiy slow (proportional to the inverse of the square roohef t
realization number) and often infeasible due the large GPd heeded to run the model in question. Other technique that
has been applied recently is the so called Stochastic Galgiéthod (SG), which employs polynomial chaos expansions
to represent the solution and inputs to stochastic diffeakequations, (Babusket al, 2004). The galerkin projection
minimizes the error of the truncated expansion and thetiegidet of coupled equations is solved to obtain the expansi
coefficients. SG methods are highly suited to dealing withir@ary and partial differential equations, even in the aafse
nonlinear dependence on the random data. The main drawbdckE® relies on its need of solving a system of coupled
equations that requires efficient and robust solvers andt importantly, the modification of existing deterministmde.

This last issue entails difficulties on using commercial loeady in use codes. A non-intrusive method, referred to as
Stochastic Collocation (SC), (Dongbin and Hesthaven, RGiises towards addressing this point. SC methods are buil
on the combination of interpolation methods and deterrtim#lvers, likely Monte Carlo. A deterministic problem is
solved in each point of an abstract random space. Similar§G methods, SC methods achieve fast convergence when
the solution possesses sufficient smoothness in randora §pangbinet al., 2002).

Thus when there are steeps gradients or finite discontsuiii the stochastic space, these methods converge very
slowly or even fail to converge. In this work, we present aapiye sparse grid collocation strategy with the aim of
obtaining greater accuracy in nonlinear systems analy\8jgcifically in the present work, the focus relies on hydro-
ship dynamics in the context of floating offshore structurarticular emphasis is placed on investigating uncdstain
propagation in the nonlinear response of fluid-structuteraction, (Dongbiret al., 2002). It is important to remind that
waves and currents, major agents in the dynamics of theripatructures, are usually modeled as random processes.
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Therefore, stochastic modeling seems to offer an apprepfiamework to tackle the external forces and uncertantie
in the data, like, for instance, damping and boundary cavdit Here, the fluid-structure interaction is modeled in a
simple way focusing the assessment of an SC method as ativeffeml for uncertainty quantification. The interaction
is introduced by means of the Morison’s formula, which repres a challenge, despite the simplicity of the modeffjtsel
as far as the input is a nonlinear function of the random e (Witteveen and Bijl, 2008). Those variables represen
the phase angle which inherent to the time series desaripfithe wave induced motion.

2. THEORY

To quantify the uncertainty in a system of differential etipras we adopt a probabilistic approach and define a com-
plete probability spacg?, 7, P). WhereQ is the event space; C 2% is thes-algebra of subsets id andP : F — [0, 1]
is the probability measure. Utilizing this framework, thecertainty in a model is introduced by representing the rhode
input data as random field.

2.1 Governing Equations

Consider the general differential equation defined ahdamensional bounded domaid ¢ R?, (d = 1,2, 3) with
boundaryoD. The problem consists on finding a stochastic functigi, w) : Q x D — R, such that forP-almost
everywherev € (2, the following equation holds:

L(x,wiu) = f(xw) XD (1)
B(X,w;u) = g(X,w) x € 0D 2
with X = (21,...,24) € R?, d > 1, space coordinates iR?, £ a linear or non linear differential operator anfly) =

(u1(w),...u;(w)) € RY i > 1, are unknown solutions. Sometimes, to solve the equatibnar(d (2) it is necessary
reduce the infinite dimensional probability spaég F, P) to a finite dimensional one. This can be accomplished by
characterizing the probability space by a finite number ofloan variables. Thus, employing any truncated spectral
expansion it is possible characterize the random inputs st @f N random variabley = (Yi(w),...,Yy(w)) and
rewrite the random inputs as,

L(X,w;Uu) =L(X Y (w),...,Yyw)u), [fXw)=[f(XY(w),...,Yy(w)), 3)

Where, following the Dob-Dynkin lemma, (Oskendal, 1998 solution of (1) and (2) can be represented by the same
set of random variable&y; (w)} Y |, reducing the infinite dimensional probability space & alimensional space, i.e.,

u(x,w) =u(,x, Y'w),...,YN(w)) (4)

Now assuming thafy*} , are independent random variables with probability derfaitgtionsp; : I'* — RT, and their
images™ = Y?(Q) bounded intervals iR fori = 1, ..., N, the joint probability density of = (Y'!,...,Y") hold,

N
py) =[] r(Y") WyeT, (5)
1=1
and the space support,
N
r=[[rcrv. (6)
i=1
This allow us to rewrite (1) and (2) as(& + d) dimensional differential equation as following,

LX,Y;u) = f(XY), (xX,Y)eI'xD (7)
Bx,Y;u) = g(x,Y), (x,Y)eI'x oD (8)

with N dimensionality of the random spafeandd the dimensionality of the physical spabe
Thus, the original infinite dimensional problem become iretedministic problem in the physical domd&hand can
be solved by a common discretization technique as finite ehésrfor example.

3. STOCHASTIC COLLOCATION METHOD

The idea of this method is approximate the multidimensiat@thastic space building a interpolation function on
a set of collocation point§Y,;}, in the stochastic spade ¢ R*. The method, similarly to Monte Carlo methods,
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requires only the solution of a set of decoupled equatiolimyi;mg the model to be treated as a black box and solved
it with existing deterministic solvers. The multidimensa interpolation can be built through either full-tensooguct
of 1D interpolation rule or by the so called sparse grid iptdation based on the Smolyak algorithm. The Smolyak
algorithm provides a way to construct interpolations fiots based on minimal number of points in multidimensional
space (Bungartz and Griebel, 2004). This method is easignebed from the univariate interpolation to the multivegia
case by using tensor products.

Hence, considering a smooth functiofis [-1,1]Y — R, for the1D case(N = 1), f can be approximated by the
following:

U(f)y) =>_ F(Yas, ©)
j=1
with the set of support nodes
X' =YYl €0, 1] forj=1,....m; (10)

where,i € N, ai(Y;) € C[0,1] are the interpolation nodal basis functions angis the number of elements of the set
X*. Hence, in the multivariate case, the tensor product foarizul

U @...ouU™)(f)= - D f YN © - @a)) (11)
ji=1 jn=1

which serve as building blocks for the Smolyak algorithm., $loe Smolyak algorithm build the interpolast, ~ (f)
using products of D functions as given in (Xiang and Zabaras, 2009).

/N =1 . .
Agn(f) = Z (_1)qll< B M)(U“ ®...0UY) (12)
q—N+1<]i|<q ¢
with ¢ > N, Ay_1,ny = 0 and where the multi-indek = (i1,...,iy) € NV and|i| = iy + -+ + in. Hereig, k =
1,..., N, isthe level of interpolation along the— ¢h direction. The Smolyak algorithm builds the interpolatfanction

by adding a combination dfD functions of ordei;, with the constraint that the sum to{@l| = iy +...+iy) across all
dimensions is between— N + 1 and g. Therefore, the Smolyak interpolatidp x is given by;

An(f) =Y (A" @ . @A) = A n(f) + D (A" @... @A) (13)

li|<q li|l=q

To compute the interpoland, x(f) is necessary to compute the function at the nodes coverelebgpiarse grid
Hon:

Hon(f)= | (X" x-xX') (14)

q—N+1<]i|<q

The construction of the algorithm allows to utilizing alketiprevious results generated to improve the interpolation.
By choosing the appropriate points for interpolating ttiefunction, it is possible ensure that the sets of points aséde
X% c X! Where to extend the interpolation from levet 1 to i, one only has to evaluate the function at grid points
that are unique t&*. Hence, to go from an ordgr— 1 to ¢ in N dimensions, one only needs to evaluate the function at
the differential nodes:

Man(f) = J X 00 X™) (15)

lil=q

Finally after a choice of collocation points and the nodais&unctions, any function € I' can be approximated by;

u(,Y) = > > wi(z)aj(Y) (16)

lil<qjeBi
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This equation is a simple weighted sum of the value of thestfasictions for all collocations points in the sparse grid,
being an approximation to the solution of the equations (d) @). From this equation, it is possible calculate easigy t
useful statistics of the solution for example, the mean efrtndom solution can be evaluated as follow:

Eu@)] =3 3 wi(). / ai (Y)dY (17)
li|<qi€Bi r

where denoting’. a’(Y)dY = I} we can write
Elu(x)] = Z Z w;(z)I; (18)
li|[<qjEB;

the mean is an arithmetic sum of the product of the hieraatisigrpluses and the integral weight at each interpolation
point. To obtain the variance of the random solution we cacabeulate first:

u?(x,Y) = Z Z v;.(a:)a;(Y) (19)
li|<qj€B;
and then
Varfu(x)] = E[u®(2)] - Blu(@)])® = > Y vi(@).D; - (Y > wi(2)I)’ (20)
li|[<qj€Bi li|<gjeBi

The method allows us to obtain an approximation of the smtutiependent random variables and also easily extract
the mean and variance analytically as well its probabilgynglty function (PDF) by simple sampling of this function,
leaving only the interpolation error.

4. ADAPTIVE SPARSE GRID COLLOCATION METHOD

If the the smoothness condition in the stochastic space itided it is possible to use adaptive strategies to inyero
de interpolation function in the stochastic space. The id®a is to use hierarchical surplusegs{x) as an error indicator
to detect the smoothness of the solution and refine the goidnar this region and using less points in the region of
smooth variation. This method proposed by (Xiang and Zah&@09), automatically detect the discontinuity region in
the stochastic space refining the collocation points. @amngig the interpolation level of a grid poifit as the depth
of the treeD(Y). After denote the father of a grid point @&Y"), where the father of the root 0.5 is itself. Thus, the
conventional sparse grid in the N-dimensional random sgagcetion 14 can be reconsidered as:

N
Hon(f) ={Y ={N ...YN}|ZD<E> <q} (21)

Where we call their sons of a grid poi¥it= (Y7 ... Yx) by:

SOTLS(Y) =S= (51,52, .. .,SN)|(F(51),SQ, . .,SN) =Y (22)
or
(Sl,F(SQ),...,SN) :Y,...,OT’(Sl,SQ,...,F(SN)) =Y (23)

It is noted here that in general for each grid point therewwoesons in each dimension, therefore, for a grid pointin a
N-dimensional stochastic space, there are 2N sons. Theréfpadding the neighbor points, we actually add the suppor
nodes from the next interpolation level, so that the magteitnf the hierarchical surplus satisflag’ > ¢|. If the criterion
is satisfied, one only add tiEV neighbor points of the current point to the sparse grid. ftated that the definition of
level of the Smolyak interpolation por the ASGC method isgame as that of the conventional sparse grid even if not all
point are included. A more detailed explanation of the métuad algorithm can be found ir)(
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5. APPLICATION

Following, we will illustrate the methods developed in thregeding sections considering the stochastic response of
a single-degree-of-freedom structure exited by a randomiddo’s force with a restoring force expressed by non linear
term. This equation can be considered as an idealizing nadtteting moored dock system. The numerical results shown
in this section were obtained using fully parallels algaris for high performance computers implemented in C++ and
MPI. This code was developed by Professor Zabaras'’s researah gt Cornell University who share with the authors as
aresult of a research partnership. It remained for our &iatlapt it to address the next example. Due to the relatiad sm
size of the problem, the analisys were performed using desiigsktop with a quad core processor olviux system
withMPICH library.

6. FLOATING DOCK WITH MOORING LINES

The following physical system represents a prototype mfmtehose structures called catenary anchor leg mooring
(CALM), frequently used in offshore engineering (Culla aDdrcaterra, 2007), the values used for the model are the
same as used in the reference. This model introduces theapprbximations, the buoy is considered a point of mass
my, the pair of cables is approximated by two nonlinear cubiings, the hydrodynamic force is determined by the
Morison equation and the energy dissipation is introduged iscous damping (of characteristic constantvith these
assumptions, the equation of the dock motion is:

myt + 2c + Fr(w.) = q(t) (24)

wherew, is the center of mass displacemefit,(w.. ) the nonlinear restoring force, and theg) the nonlinear random
load.

Buey

— Ca mass coefficient 0.2
cq drag coefficient 0.9
D buoy diameter 10m
h ocean depth 50m
L cable length 150m
w weight per unit length 14 kg
Pw water density 1025K g/m?
my buoy mass 12000K g
sea bottom U195 wind VelOCity 25 m/s
} W : : W | é viscous damping 1e5kg/sm?

co co

Figure 1: Catenary anchor mooring configuration and phypeameters of the simulations

6.0.1 Nonlinear random hydrodynamicload ¢(t)

The modified Morison equation provides the wave lg&d per unit length on a circular cylinder in terms of the fluid
structure relative velocityg — w).

q(t) = Cr€ — ma + Cplé — w|(€ — w) (25)

whereé(x, z,t) is the horizontal fluid particle displacement, assumed @gprately the same for each point of the
wetted surface. To characterize the random natuégofz, t) we use the Airy theory of linear waves to approximate the
elevation field as,

N
n(t) = Z cos(wit — i)/ 28, (wi) Aw; (26)
i=1

wherey; is a uniformly distributed random numb&r(—, ) andw; are the discrete sampling frequencidsy; =
w; — w;—1, N is the number of partitions of the power spectra &gl is the Pierson-Moskowitz spectra that defines the
distribution of energy with frequency within the ocean. B®ped in 1964 the PM spectrum is an empirical relation and
one of the simplest descriptions for the ocean energy digtdn. It assumes that if the wind blows steadily for a long
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time over a large area, then the waves would eventually ragubint of equilibrium with the wind. This is known as a
fully developed sea.

2
Sy (W) = Are(B/w“) — Q9 —B(g/Uwn)* (27)

2
w?® ws

When the sampling frequencies, are chosen at equal intervals such= iw; the time history will have a period
T = 2w /w;. To avoid this problem, was used the Borgman’s method tharevthe frequencies are chosen so that the
area under the spectrum curve, for each interval, is equaf s- a?,/N and the time history can be written as,

Y2
n(t) = Z Nocos(wit — kip;) (28)
i=1

with k; = w;/g wave number, due to the total varianeé = [* S, (w)dw = &, the above equation for wave

elevation becomes,

YA
n(t) = Z SNE cos(wit — ;) (29)
i=1

where

B

25
(ln(N/n) + (B/wjlv)) (30)

Finally we arrive to an expression the absolute positionttierwave elevation

N
A
n(y,t) = E \/ 2NBCOS(W¢75 — kiy — i) (31)
=1

and the same way for the absolute velocity of the fluid,

N
i A
elo.nt) = Yoo (S ) ggeostent — ki - 60 (32

where it is easy to immediately calculate the force morrison
6.0.2 Nonlinear restoring forces model

The nonlinear force displacement relationship for a sicglae with one end attached to the sea bottom and the other
to the buoying system is determined in this section. Witk #im, first we present the nonlinear equations of a uniform
inextensible cable suspended among two fixed pointss betthe curvilinear abscissa,andz Cartesian coordinates of
the cable points[" is the tension along the cable ardits weight per unit length. The static equations of the cadwels,

o) T

(T5) =w

o) 0z (33)
s\ Ta) =0

integrating the second equation 33,

0z
TS5 =F (34)

and applying the inextensibility condition
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(5) +(5) =1 )

we found the analytical solution of the catenary as,

F 2
x(z) = Wcosh(vlz + gcl)—FcZ (36)
where ther; e ¢, are determined with the boundary conditions
ox
aslo =0 37
{IL‘lO =0 ( )
then
_ F Wz o F . -1 W’I‘ 2 Wr
x(z) = W {cosh( fa )—1} z(x) = Wsmh [\/(?) +2( 7 )} (38)

provides the force displacement relationship at each qadite.

s(z) = /02 \/1+ (%)de —ls(2) = %smh(%) (39)

with this expression it is possible to estimatefanaz that is the maximum expected force for the worst operating
condition orLmin is the minimum length required that warrants a zero slopé®table line at the anchor point on the
sea bottom.

(7)) =21/ o + 1 4
ls(x) == W + (40)
2Fmaw
ls . =z 1 41
min (x) a/ Wh + ( )

The above implies the absence of vertical forces, satigfgimimportant safety requirement, during the normal op-
eration it is necessary that de < Fmax. Finally, this expression provides the constitutive noadir force distance
relationship for the cable.

FT’L(I..’L‘ F F —1 Wh/

whered?? = we 4+ we  d%" = wey — we, € we iS the horizontal distance between the anchor and the daiitdé
the mooring line for both the cables in the static referermd#iguration. Therefore, the mooring actions on the dock can
be approximated by a simpler cubic restoring force.

Figure 2: SDOF equivalent model

In offshore structures, often, pairs of cables are anchtirde seabed acting in opposite directions, as shown in
Figure 2. In this configuration the total restoring forcelwd pair of cables is given by

Fr(we) = F(d7) — F(di*") = Fy — F_, (43)
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OFr
Fr (wc FT‘ + =

10?°FPr| o 10%Fp|
— - 44
Owe lo 2 Qw? G ow? We (44)
where the derivatives are calculateduat = 0. This equation involves the derivatives Bt (wc), while the force
displacement relationship is available
ow. OF
_ = 4
OF Ow, (45)
The terms of order zero and two are void and, under the hypistbésmall displacements, a cubic dependence of the
horizontal force on the displacement of the cable end israeted
Fr(we) = y1we + 2w, (46)
where
92 A we ) Owe o (r)swL dw,
2 ( a1t | oF ) Kaals
"= Dw., V3= — 3 (47)
oF 1o 3(%1%) Fo
OF _ 1 OF_ G OF_ 3(5) — ()G )
A TN ST (G
Therefore, writing the equation 24 an explicit form for tledesFr(w.) andq(t) we obtain
(M + ma ) + 2ciyw + [Cp|§ — w|(§ — ) + Y507
coefficients to be calculated. Using,

=Cr€

2c
m Mq +Mp, a1 = —

(49)
where (¢ — w), Cr andCp are the inertia and the drag coefficient, respectively, the added mass and ,ys
71
= ) az = —
m

w D2
C ca) 2T

=3 wD7
4 ) CD 2Cdp

meg =

2
pwTD
C

Cr
= as = —
m
These coefficients depend on the dimension of the dock, ther @ansity and some nondimensional quantity, namely
I = (]- + a 4
where ca is the non-dimensional added mass coefficient{}affj is the seawater densityy is the dock diameter
and cd is the non-dimensional drag coefficight < ¢; < 1.2). Finally can we rewrite our equations system as

O+ a1 + (ag + 3a4€?)v + [as|O|0 — 3as&” + aqv?]
with the new force term

= f(&)
F(&) = (1 —as)é + ar€ + as€® + as€

nature of the problem considered

(50)

(51)

The effect of the cable drag force is not explicitly inclugis inclusion does not alter substantially the matheraétic
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6.0.3 Numerical results 2D
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Figure 3: Mean of total outputs with 2 stochastic dimensionBigure 4: Variance of total outputs with 2 stochastic diniens

1 ‘ ‘ 1 ‘ ‘
—6— mean —O&— mean
0.9 —&— variance |{ 0.9} —&— variance |
0.8 1 0.8} .
0.7 1 07+ .
0.6 1 0.6} .
—_ q —
2 o0s 1 2 osf 1
im| L
0.44 1 04t .
0.3 1 0.3f .
0.2 1 0.2} .
0.1 1 01t .
0 1 < = - n ) 0 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4 0 2 4 6 8 10 12 14 16
Number of points x 10° Nivel
Figure 5: Convergence of Monte-carlo method Figure 6: Convergence of ASGC method
Adaptative sparse grid
1 - TR g = ” - Level | No Points ASGC| No Points CSGC
‘ 1 4 4
2 8 8
3 16 16
4 36 36
5 80 80
6 176 176
7 382 384
8 776 1792
9 1234 3840
10 1796 8192
11 2036 17408
E I 12 2338
i 13 2532
F 14 2668
i r ST 15 3560
%01 D02 03 04 05 08 07 08 05 1 16 4449

Figure 7: Adaptive sparse grid for maximum level and tablgwiumber of points with ASGC and SGC methods
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6.0.4 Numerical results 6D
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Figure 8: Mean of total outputs with 6 stochastic dimensiorisgure 9: Variances of total outputs with 6 stochastic digiens
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Figure 10: Convergence of Monte-carlo method Figure 11: Convergence of ASGC method
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Figure 12: Adaptive sparse grid for maximum level and takite wumber of points with ASGC and SGC methods
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To analise the convergence of the method, the relative eimerestimated by calculating the L2 norm between con-
secutive means using a reference Monte Carlo solution vii@i©@ points and likewise with the variance. Figures 3and
4 shown the mean and variance for 2 dimensional stochasteedpr ASGC method and Monte Carlo method, Figures
5and 6 shown the evolution of the error. In the Figure 5 oneateerve that the relative error is high because the exist
gap between the average calculated between methods bthdileiterion of convergence used was the surplus of vari-
ances the solutions obtained are very satisfactory. Figsteow the effect od the adaptative strategy on the sparde gri
identifying automatically non smooth regions in the statltaspace. It is also possible to see in the table a improve in
computational cost comparing, the conventional sparseapiiocation method (CSGC) with the adaptative sparse grid
collocation method (ASGC) using less collocation pointtl@SGC) to perform the analisys. The same considerations
can be done about the analisys of the model with six dimeabgiochastic space, where only less levels of interpaiatio
were used to avoid the grow of number of collocation poirgaching a good accuracy in the result as is show in Figures
8,9 and 10,11.

7. CONCLUSIONS

Like the Monte Carlo method, the Adaptive Sparse Grid Stetth&ollocation (ASGC) method leads to the solution
of uncoupled deterministic problems and, as such, it is Enmimplement and parallelize. These non-intrusive masho
allow convert any deterministic code into a code that sotliescorresponding stochastic problem. Compared with the
Monte Carlo Simulation method, the (ASGC) shown a signiifieateduction in the number of experiments required to
achieve the same level of accuracy. On the other hand, thdisedbtained, comparing the Conventional Sparse Grid
Collocation method and an adaptive strategy, show thapibssible refine the grid locally identifying automaticatign
smooth regions in the stochastic space achieving the sacunessy and reducing significatively the cost by the use &f les
collocations points in smooth regions of the stochasticsp®ue to that the majority of engineering problems varying
rapidly in only some dimensions, remaining much smootheitlirer dimensions and in general it have more stochastic
dimensions. Future work of this research will include thedgthigh-dimensional methods mixed with Adaptative Sparse
Grid Stochastic Collocation methods, in high performanm@puter environment, aiming to obtain tools to solve real
problems of interest in Engineering.
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