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Abstract: This article deals with a suitable strategy for influence matrix assemblage of plane frames and space frames 

that includes fundamental solutions based on Euler-Bernoulli (bending effects)  and  Saint Venant (torsion effects) 

models.  Both forced and free vibration of frame structures are performed by BEM where a specific value of frequency 

must be set for the forced excitation,  while only  natural frequencies are determined for the modal analysis using a 

frequency sweep technique. Moreover, numerical results are presented for cases of  plane and space frame structures.  
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1. INTRODUCTION 
 

Structural analysis is based on behavior idealization of structural problems using mathematical models. Then, 

governing equations of these models are usually written as differential equations and/or as integral representations. 

Analytical and/or numerical techniques are the strategies generally used to find solutions for these equations.  

Despite analytical solutions represent exactly the physical fields that hold governing equations, they are usually 

available only for special and simpler problems. Hence, an alternative way to deal with more general structural 

problems is to use numerical methods, for instance,  Finite Difference Method (FDM), Finite Element Method (FEM),  

Boundary Element Method (BEM), etc.   

There are many reports on numerical analysis of frame structures and the majority of them are associated with finite 

element analysis. This is a well-known fact because of numerous beginning until recent researches on FEM 

methodologies that have been developed for structural problems, for instance, Hughes, 1987; Zienkiewicz, 1989; Petyt, 

1990; Clough, 1990; Reddy, 1993; Mackerle, 2000; Hutton, 2004. Since the initial investigations on methods of 

MEC, the main focus on solid mechanics has approached  the plate, two-dimensional and three-dimensional problems.  

A reasonable amount of textbooks and papers can be found, for instance: Becker, 1992; Dominguez, 1993; Aliabadi, 

2002; Katsikadelis, 2002.  The boundary element analysis of frame structures has shown a different scenario. A few 

reports can be found and the majority of them is related to bar or beam problem.   Banerjee and Butterfield (1981), 

Providakis and Beskos (1986) presented respectively BEM solutions for static and harmonic dynamic analysis of single 

beam using the Euler-Bernoulli model (shear deformation effect for bending problems is neglected). Antes (2003), 

Antes and Shanz (2001) have established respectively integral equations and fundamental solutions for static and 

dynamic analysis of single beams from the Timonshenko Model (shear deformation effect and rotatory inertia are taken 

into account for flexural vibration analysis). 

Antes et al. (2004) have presented a symmetric BEM solution for harmonic dynamic analysis of plane frame 

superposing the beam flexural effect (Timoshenko model) and bar axial stretching effect. To the best author’s 

knowledge, no boundary element dynamic analysis has been done to space frames before. 

The aim of this study is to propose a suitable strategy to obtain the algebraic equation system for plane structures 

and space frame structures under harmonic dynamic excitations.  The main focus of the proposed strategy is to create a 

convenient sequence of transformations (for integral equations of each member) where the local systems of reference 

are transformed into a unified global system of reference.   

 

2. INTEGRAL AND ALGEBRAIC EQUATIONS OF THE MEMBER  
 

In this section, we discuss integral and algebraic equations for a typical member of plane frames and space frames. 



2.1. Plane frame 
 

In order to establish a mathematical representation of plane frame it is necessary a prior study of each structural 

member behavior. The problem can be split into axial stretching and bending effects, so that their mathematical models 

require some assumptions (Petyt, 1990), for instance: each structural member is a prismatic bar and made of a 

homogeneous, isotropic, linear-elastic material; displacements, slopes and strains are represent under small field 

concept; the kinematics of the member occurs under the planarity conservation of cross-sections; the flexural vibration 

occurs along the directions of principal moment of inertia.  

The bending problem requires an additional assumption for the relative angle between the neutral line and the 

normal line to the cross-section plane. The Euler-Bernoulli model assumes this angle to remain orthogonal in deformed 

shape, resulting in the suppression of shear deformation effects to the bending problem.  

 The governing equation for axial excitation problem under a quiescent initial condition in the Laplace domain is: 
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Where s  Laplace domain parameter, E  is Young modulus; A, the cross-section area; ρ , material density; ),t,x(u  

axial displacement, and )t,x(qx is distributed axial load along the bar. 

 Equation (1) can also be rewritten as an equivalent integral equation as Antes et al. (2004): 
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where fundamental solutions and symbols are given by Antes et al. (2004). 

 After collocation process at boundary bar points with the help of Eq. (2) and assuming a harmonic loading 

(i.e., ω= is ), the algebraic equation for axial vibration (written local reference system, see Fig. 1) can be given by: 
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Where the nodal displacements are ( )axuu i −==
 

and ( )axuu j == ; nodal forces, ( )axNNi −==  and 

( )axNN j == ; the nodal force vector is )EA2/()]Lcos(1[Lqff 2

aaxujui ββ−=−= ; ρ−=β /Es 2

a
 L , length 

bar. 

 

 
Figure 1 – local reference system of axial problem: a) displacements; b) forces 

 

 The Laplace domain governing equation for Euler-Bernoulli  beam model under quiescent initial condition is: 
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Where 
zI  is the moment of inertia about z-axis; ),( sxv , the transverse displacement in y-direction; ),( sxq y , 

transverse distributed loading. 

 

  Equation (6) can be transformed into an equivalent equation for transverse displacement as:  
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Where dxsxdvsxz /),(),( =ϕ and nodal slopes and transverse displacements (at the ends of beam) are 

respectively ( )axvvi −== , ( )axvv j == , ( )axzzi −=ϕ=ϕ  and ( )axzzj =ϕ=ϕ ; the nodal efforts ( shear 

force and bending moment) are ( )axQQ yyi −== , ( )axQQ yyj == , ( )axMM zzi −==  and ( )axMM zzj == .  

The fundamental solutions in Eq. (5) are given buy Providakis and Beskos (1986). All flexural quantities in a local 

system of reference are shown in Fig. 2. 

 

 
Figure 2 – Local systems of reference: a) displacements; b) forces  

 

 Another equation is necessary to solve the flexural vibration problem, so that an integral equation for slopes can be 

written by differentiation of Eq. (5) at source point. Then, it gives:  

 

( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( )[ ] ( ) ( )dxsxvsxqsxsxM

sxvsxQsxsxMsxvsxQs

a

a

my

a

azmz

a

amy

a

azmz

a

a
myz

∫
−

−

−
=

−





−
−







−+−−

−−−+

,,,,

,,,,),(,,

**

***

ξξϕ

ξϕξξξϕ
        (6) 

Where the fundamental solutions for Eq. (6) are given by Providakis and Beskos (1986). 

 After collocating the source-point at the ends of the bar )a;a( =ξ−=ξ and the calculation of the values given 

in Eq. (5) and Eq. (6), algebraic representation of the bending problem, referred to the local system of coordinates, is:  
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Where:
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 Both algebraic systems, Eq. (3) and Eq. (7), use two distinct local systems of displacements and forces (see Figs 1 

and 2). If both local systems for displacement and force are being simultaneously used to influence matrix assemblage 

of the structure this can require extra calculations to perform different transformation to elemental displacement and 

force influence matrices.  

 Hence, in this paper it is proposed an assemblage strategy to obtain BEM influence matrices of frame structures in 

an elegant and successful way. The first step of the proposed solution is to do the unification of the variable local 

systems of reference, that is, the force local system must be transformed into equivalent displacement local system of 

reference. By keeping this sense in mind, Eq. (3) and Eq. (7) can be rewritten as follows: 
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If axial and flexural algebraic equations, Eq. (8) and Eq. (9), are put conveniently together in order to assemble 

plane frame problem, its influence matrices, referred to the unified local system of reference (see Fig. 3), can be given as:  
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Figure 3 – Unified Local systems of reference: a) displacements; b) forces  
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2.2. Space frame  
 

For the mathematical representation of the space frame is required, beyond those considered for plane frames, 

additional descriptions of the torsion and y-direction bending problems. If the model of uniform torsion of Saint-Venant 

is assumed some hypotheses are required such as homogeneous, isotropic, linear-elastic material; transverse planes 

remain mutually parallel, small angle of twist, length and radius of bar remain unchanged. Hence, the governing 

equation is:  

 

 The Laplace domain governing equation under quiescent initial condition is: 
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Where tI  is Saint-Venant torsion constant; ),( sxxϕ is the twist angle; ),( sxt  is the distributed torque. 

 Due to the axial and torsion vibration similarities, see Eq. (1) and Eq. (12), an algebraic representation for the 

uniform torsion can be written as follows: 
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Where ρ−=β /Gs 2

t , the nodal twist angle and twisting moment are: ( )axxxi −== ϕϕ , 

( )axxxj == ϕϕ , ( )axTTi −== , ( )axTTj == , and loading vector values are: )4/(2

tji GItLff == θθ . 

 The flexural vibration about y axis is similar to the direction z case, so that only a few adjustment (sign corrections 

and zI  by yI  replacement) should be made in Eq. (7). After unification procedures (see Fig. 4), the torsion and flexural 

vibration (about y) algebraic system referred to unified local system of reference can be written as:  
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Figure 4 – Unified local systems of reference: a) displacements; b) forces 

 

 It should be noted that the rotations yϕ  have a opposite direction to the y axis, so that an additional transformation 
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If axial, torsion and two flexural algebraic equations, Eqs. (11-13),  and Eq. (15), are put conveniently together in 

order to assemble space frame problem, its influence matrices, referred to the unified local system of reference (see Fig. 

4), can be given in similar form of Eq.(10). It should be noted the following BEM influence matrices for harmonic 

dynamic for space frame analysis are presented here for first time in literature. Their values are (see Fig.5): 
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Figure 5 - Unified local reference system of space frame element 
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2.3. Elemental global system of reference 
 

 One step required to assemble the influence matrices of the frame is re-write unified local representation of bar 

contributions into global reference system. Hence, local displacements and efforts can transform into respective global 

counterparts by: 

 

{ } [ ] { }URu ⋅= , { } [ ] { }BRb ⋅=  and { } [ ] { }PRp ⋅=                      (16) 

 

 Where [R] is the transformation matrix and its explicit form is given by Gere and Weaver (1981).   

 By substitution of Eq. (16) into Eq. (10), a global algebraic representation of element can be written as follows: 
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3. ALGEBRAIC SYSTEM OF THE STRUCTURE  
 

The algebraic representation of the structure (plane frame or space frame) requires that the contributions coming 

from the bars are properly accumulated in order to describe the behavior of the structure as a whole.  

 In the sequel we discuss the second step of proposed strategy to establish BEM solution for plane and space. For 

sake of conciseness, a small frame is taken as a guiding example in order to obtain the final algebraic system of the 

structure.  

Considering two or more bars sharing the same node, the unknowns are generally associated with both displacement 

and force fields. Hence, additional relations should be built in order to become the algebraic system solvable. These 

extra set of equation can be obtained by applying displacement continuity and force equilibrium conditions at all 

sharing nodes. For instance, if the bars (1) and (2) are converging to the node 2, then the displacement continuity 

conditions can be stated as, see Fig. 6a: 
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                                                   (a)                                                 (b) 

Figure 6 – Node frame bars: a) compatibility b) equilibrium relations 

 
 The equilibrium conditions at node 2 can be given by (see Figure 6b): 

 

 { } { } { } { }045 =++ FPP                   (19) 

 

Where {F} is the vector that stores forces and moments applied directly at node 2; { }5P and { }4P  are the vectors that 

store efforts acting at right and left sides at node 2, respectively. 

 

 The elemental global algebraic system of the Bar (1) is given by: 
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 Bar (2) algebraic representation is: 
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 When Eq. (20) and Eq. (21) are inserted into Eq. (18) and Eq. (19), a system of equations for the frame can be 

written as follows: 
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4. NUMERICAL RESULTS 
 

Examples for two frame structures are used to demonstrate the proposed formulation in this paper. 

  

4.1 Pined cross-shaped plane frame 
 
 In this example the BEM solution is used to detect the five lowest natural frequencies of the cross-shaped frame 

structure shown in Fig. 7. The material Young’s modulus and mass density are GPaE 200=  and
3/8000 mkg=ρ . 

A square cross-section with side 0.175m is assumed to all members.  

 For BEM modeling only a single boundary element per member is required and horizontal and vertical time-

harmonic forces with amplitude F=10kN are applied at the node of cross intersection. In addition, BEM results require 

an incremental procedure for frequency values from 7.958 Hz to 48.0 Hz with 0.001592 Hz for frequency increment. In 

Figure 8 are shown the plotted values of vertical displacement amplitudes versus frequencies at the loaded node. The 

natural frequencies given by BEM solution can be identified at discontinuities on the result plots.  

 

 
Figure 7 - (a) pined frame b) Standard FEM discretization 
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Figure 8 - Amplitude vs frequency: a) Ux , b) Uy  displacements and c) slope ϕ
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 In Table 1 the comparison for frequencies (at discontinuities) taken from Fig. 8 and results for two different FEM 

approaches given in Abbassian et al. (1987) and Ma (2008) are shown. Abbassian’s group results were obtained using 

standard (polynomial interpolation) finite elements where each member of the frame is modeled with four elements of 

equal length (see Fig. 7b). The second FEM formulation uses special (exponential interpolation) finite elements where 

each member is discretized with one finite element
 

 

 

FEM BEM FEM 
 Mode 

Abbassian et al. (1987) Current Paper Ma (2008) 

1 11.336 11.331842 11.33626 

2 17.709 17.682129 17.68079 

3 17.709 17.682129 17.68079 

4 17.709 17.698045 17.70940 

5 45.345 45.343282 45.34504 

 

Table 1- Lower natural frequencies (Hz) of the pined cross-shaped frame 

 

4.2 Clamped space frame 
 
 In this example lower axisymmetric natural frequencies of a clamped two-storey space frame (see Figure 9a) are 

aimed to be determined by BEM. The material Young’s modulus and mass density are GPaE 9.219=  

and ³/7900 mkg=ρ . The dimensions of the cross-section members are shown in Figure 9c. Components of time-

harmonic force with amplitude F=1kN are applied at both x-, y-, and z-directions, see Figure 9a. For sake of symmetry 

only a quarter structure analyses is done. BEM discretization requires only one boundary element per member. For the 

determination of the BEM results an incremental procedure for frequency values from 4.775 Hz to 50.0 Hz with 

0.159Hz for frequency increment is used.  

 Petyt (2004) suggests the following boundary conditions for mid-nodes of the horizontal members: nodes 5 and 8, 

displacement 0=zU  and rotations 0== zx θθ ; nodes 3 and 7, displacements 0== zy UU , see Figure 9b. Figure 

10 shows the values of horizontal displacement amplitudes versus frequencies at the loaded node. The natural 

frequencies given by BEM solution can be identified at discontinuities on the result plots. 

  

 
                                   (a)                                                   (b)                                               (c) 

Figure 9 - Space frame and its discretization  

 
Table 2  shows the comparison for frequencies (at discontinuities) taken from Figure 10 and FEM results for a 

standard FEM approach using two finite element per member given in Petyt(1990), see Figure 9b. 

 

Frequency (Hz) 
Mode 

BEM (current solution) FEM (Petyt, 2004) 

1 11.777476 11.8 

2 34.059187 34.1 

 

Table 2 – Lower axisymmetric natural frequencies of clamped space frame 
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Figure 10 - Amplitude versus frequency: Horizontal displacement 

 

5.  CONCLUSIONS 
 
 In this article was presented a convenient approach to assemble the influence matrices of BEM for plane and 

space frame problems. In this model, shear deformation effect and rotary inertia are neglected (Euler-Bernoulli flexural 

theory). Both forced and free vibration problems can be determined by BEM, since a frequency sweep technique is 

applied.  To best authors’  knowledge, this is the first time that vibration analysis of space frame is modeled by BEM.   
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