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Abstract. In recent years, a number of new methods dedicated to acoustic and vibration attenuation have been 

developed and proposed to handle several problems in engineering. This is due to the demand for better performance 

and safely operation of mechanical systems. There are various types of actuators available. The present contribution is 

dedicated to the electromagnetic actuator (EMA). EMA uses electromagnetic forces to support the rotor without 

mechanical contact. Due to the size of the system model, it was necessary to reduce the model of the rotating system. 

For this aim the balanced realization technique was used to organize the modes of the system so that the main modes 

(with respect to the dynamic behavior of the system) are considered. The control design for the discrete state-space 

formulation is carried out through a feedback technique and the H∞ norm was solved by using Linear Matrix 

Inequalities (LMI).  State observers were used to estimate some states of the system since it is not practical from the 

experimental view point to measure all the states of the system. The design of the state observers was performed by 

using LMIs. Finally, simulation results demonstrate the effectiveness of the methodology conveyed. 
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1. INTRODUCTION  

 

Currently, an increase of research works in engineering dedicated to the development of active vibration control 

techniques (AVC) is observed. This effort is stimulated by the necessity of lighter structures associated to higher 

operational performance and smaller operating costs (Bueno, 2007). In the last decades, the methodologies of AVC 

have received significant contributions, due particularly to the advances in the digital processing of signals and new 

methodologies of control as can be seen in Fuller et al (1996), Hansen et al (1997), Gawronski (1998) and Juang et al 

(2001). Some of these contributions have caused deep impact in aerospace and robotic applications (Liu et al, 2000). 

In the context of rotor dynamics, Saldarriaga (2007) classifies the AVC techniques in two major categories: the 

active vibration control that consists in the application of lateral forces to oppose the forces caused by the vibration, and 

the active balancing that consists in the redistribution of the mass along the rotor with the intervention of actuators, so 

that the rotor can be balanced. Simões (2006) developed an AVC methodology for flexible rotors by using piezoelectric 

stack actuators. In this work, the optimal control is based on the Linear Quadratic Regulator approach aiming at 

attenuating the first 4 vibration modes of the system. 

In terms of rotating machines, another important AVC methodology uses Active Magnetic Bearings. The AMB is a 

feedback mechanism that supports a spinning shaft by levitating it in a magnetic field (Koroishi et al, 2009). Figure 1 

shows one quadrant of a radial AMB consisting of a position sensor, a controller, a power amplifier and an 

electromagnetic actuator. For its operation, the sensor measures the relative position of the shaft and the measured 

signal is sent to the controller where it is processed. Then, the signal is amplified and fed as electric current into the 

coils of the magnet, generating an electromagnetic field that keeps the shaft in a desired position. The strength of the 

magnetic field depends both on the air gap between the shaft and the magnet and the dynamics of the system including 

the design of the controller. 

The basic idea regarding the electromagnetic actuator (EMA) is similar to the AMB. In this context, the goal of this 

work is to develop an AVC methodology using EMA. The controller is obtained by using the H∞ norm. For model 

reduction purposes the well known pseudo-modal technique was used. State observers were designed by using LMIs 

(Linear Matrix Inequalities).   
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Figure 1. Magnetic levitation principle (Kasarda et al, 2007). 

 

 

2. FLEXIBLE ROTORS  

 

The dynamic response of the considered mechanical system can be modeled by using principles of variational 

mechanics, namely the Hamilton`s principle. For this aim, the strain energy of the shaft and the kinetic energies of the 

shaft and discs are calculated. An extension of Hamilton`s principle makes possible to include the effect of energy 

dissipation. The parameters of the bearings are considered in the model by using the principle of the virtual work. For 

computation purposes, the finite element method is used to discretize the structure so that the energies calculated are 

concentrated at the nodal points. Shape functions are used to connect the nodal points. To obtain the stiffness of the 

shaft the Timoshenko`s beam theory was used and the cross sectional area was updated as proposed by Hutchison, 

2001. The model obtained as described above is represented mathematically by the set of differential equations 

(Lalanne, 1997) given by Eq. (1). 
 

            )()()()()( tFtFtxKKtxCCtxM EMAuggb     (1) 

 

where {x(t)} is the vector of generalized displacements; [M], [K], [Cb], [Cg] e [Kg] are the well known matrices of 

inertia, stiffness, bearing viscous damping (that may include proportional damping), Coriolis (with respect to the speed 

of rotation), and the effect of the variation of the rotation speed;    is the time-varying angular speed, and {Fu(t)} and 

{FEMA(t)} are the forces due to the unbalance and to the electromagnetic actuator, respectively. 

The finite element model considers 4 d.o.f. per node, namely two displacements (along the directions x and z) and 

two rotations (around the axes x and z), respectively. The model was discretized according to 43 nodes as shown in the 

Fig. 2b. The ball bearings (B1) are located at the nodes # 4 and # 5 and the bearing containing the electromagnetic 

actuator (B2) is placed at the node #39. The first disc (D1) is placed between the nodes #12 and #15; the second disc 

(D2) is located between the nodes #29 and #31. Finally, concentrated masses were included in the model at the position 

of the bearings and at the coupling between the shaft and the motor. 

 

 
 

Figure 2. Scheme of rotor (Simões, 2006). 

 

B1 B2 
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Figure 3. Discretização do modelo de elementos finitos (Simões, 2006). 

 

The Tab. (1) shows the physical properties of the rotor. 

 

Table 1. Physical characteristics of rotor-bearing system. 

 

Characteristic Value 

Rotor 

Mass of shaft (kg) 9.690 

Mass of disc D1 (kg) 2.032 

Mass of disc D2 (kg) 10.61 

Thickness of  D1 (m) 0.029 

Thickness of  D2 (m) 0.030 

Diameter of shaft (m) 0.040 

Bearings 

kx1 (N/m) 1.16754X10
8
 

kz1 (N/m) 1.65140X10
8
 

kx2 (N/m) 1.40860X10
6
 

kz2 (N/m) 1.43410X10
6
 

Cx1, Cx2, Cz1, Cz2 (N.s/m) 280, 120, 300, 120 

 

Other properties used for the shaft are the following: Elastic or Young Modulus (E) = 210 GN/m
2
, density = 

7800Kg/m
3
 and Poison Coefficient = 0.3. 

 

2.1. Pseudo-Modal Method 

 

In practical cases, the use of a larger number of degrees of freedom (dof) results in a high computational cost 

without significant influence in the calculation of the lower modes. In this case it is recommended to reduce the size of 

the model. For this aim the well-known pseudo-modal method is applied. The reduction is achieved by changing from 

the physical coordinates {x(t)} to modal coordinates {q(t)} (Simões et al, 2006): 

 

    )()( tqtx   (2) 

 

where    is the modal basis that contains the m first modes of the non-gyrocopic conservative associated system. 

 

From Eq. (1) a modal basis is defined by the solutions of: 

 

      0)(*)(  txKtxM   (3) 

 

where [K
*
] is the stiffness matrix, obtained from [K], in which the terms introduced by the bearings vanish. 

 

The n first modes n ,,1   form the pseudo-modal matrix: 

 

   n ,,1   (4) 

 

Using the modal basis given by Eq. (4), the reduced model can be represented by: 

 

                     )(tFqKqCqM
TTTT

    (5) 
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3. ELETROMAGNETIC ACTUATOR 

 

The electromagnetic actuator introduces forces that are inversely proportional to the square of the gap. For each 

coil, the force is given by Eq. (6), Damien, 2003. 
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The parameters that define the geometry of the coils (a, b, c, d e f) are shown in the Fig. (4); µ0 e µr are the 

magnetic permeability in the vacuum and the relative permeability of the material, respectively. µr is determined 

experimentally. The gap is given by e; δ is the variation of the gap due to the vibration of the rotor at the position of the 

electromagnetic actuator. 

 

 

 

Figure 4. Ferromagnetic circuit. 

 

The parameters of the coil are described in Tab. (2). 

 

Table 2. Parameters of the coil (Morais et al, 2009). 

 

µ0 (H/m) 1.2566e-06 

µr (H/m) 700 

N (spires) 278 

a (mm) 21 

b (mm) 84 

c (mm) 63 

d (mm) 21 

f (mm) 42 

e (mm) 1.5 

 

4. LINEAR MATRIX INEQUALITIES (LMIs) 

 

LMIs have been used in the analysis of dynamical systems for more than 100 years. They date from 1890, when 

Aleksandr Mikhailovich Lyapunov presented his original work, thus introducing the well-known Lyapunov Theory 

(Boyd et al, 1994). He demonstrated that the differential equation: 

  

)()( tAxtx   (7) 

 

is stable (all the trajectories converge to zero), if and only if there is a positive-definite matrix P such that: 

 

0 PAPAT
 (8) 
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The inequality given by Eq. (8) is known as the Lyapunov inequality. 

Currently, LMIs have been the object of study by many important researchers around of the world: the control of 

continuous and discrete systems in the time domain, optimal control, and robust control (Van Antwerp et al, 2000 and 

Silva et al, 2000), model reduction (Assunção, 2000), control of nonlinear systems, theory of robust filters (Palhares, 

2000), and detection, location and quantification of faults (Abdalla et al, 2000 and Wang et al, 2007).  

 

 4.1. Decay Rate 

 

 The decay rate, known as the largest Lyapunov exponent, is defined as being the largest α , α>0, such that (Boyd et 

al, 1994): 

 

0)(lim 


txe t

t


  (9) 

 

for all trajectories given by x. For the stability to occur, a positive decay is necessary. 

 The decay rate is a parameter used in the control theory, which is one of the design constraints. For example, Silva 

et al (2004) used the decay rate as a design constraint in their works, where they presented a methodology for active 

vibration control with robustness requirements. 
 

4.2. State Observers using LMIs 

 

A state observer is defined by:  

 

                    
       txCty

tytyLtuBtxA(t)x

me

   (10) 

 

where:  

  nxnRA   is the dynamical matrix; 

  nxpRB  is the input matrix; 

  kxn

me RC  is the measure matrix; 

n is the order of the system, p the number of inputs u(t) , k the number of outputs y(t) .  

 L  is the observer matrix; 

 )(ty  is the output of the observer; 

 )(tx  is the state vector of the observer. 

 

In this case, the study of stability of the state observer is attained by using the following LMIs:  
 

0][

0][])][[]([])][[]]([[


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lmi

lmi
T

memelmi

P

PCLACLAP
 (11) 

 

where: 
T

lmilmi PP ][][  ; 

]][[][ meCLA   is the observability matrix.  

  

After manipulations it is possible to obtain:  
 

0][][][][][]][][[]][[  lmi
TT

melmi
T

melmilmi PLCPACLPAP  (12) 

 

Multiplying both sides of Eq. (11) by P
-1

, the following equation is obtained: 
 

0][][][][][]][][[]][[ 1111   TT
melmi

T
lmilmimelmi LCPAPPCLPA  (13) 

 

Defining 1][][  lmilmi PX and ]][[][][][ 1 LXLPG lmilmi   , one obtains: 
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0][
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 (14) 

 

where ][ lmiX . Note that 1][ 
lmiP exists, since 0][ lmiP ; in other words all the eigenvalues of ][ lmiP  are greater than 

zero. 

 

Considering the decay rate: 
 

0][

0][2][][]][[]][[]][[





lmi

lmi
TT

meme
T

lmilmi

X
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 (15) 

 

The gain of the state observer is given by: 

  

][][][ 1 GXL lmi
  (16) 

 

4.3. H∞ Norm 

 

Boyd et al (1994) showed how to calculate de norm H∞ by using LMIs. The norm H∞ can be solved by using the 

following optimization convex problem: 

 

                 min


G  

subject to 0











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T

TT

 (17) 

           0,0  P  

 

where   is a scalar. 

 

5. RESULTS AND DISCUSSION 

 

The control strategy is shown in Fig. (5). 

 

 
 

Figure 5. Control strategy. 

 

First, the position of the poles was studied aiming at analyzing the stability of the system. Obviously, the real part of 

the poles should be negative. The Fig. (6) shows the Pole-Zero map corresponding both to the uncontrolled and 

controlled systems. 
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Figure 6. Pole-Zero Map. 

 

As can be seen in Fig. (6) the controlled system presents a larger stability margin than the uncontrolled system, since 

the corresponding poles are most left in the real axis. 

In the following the FRF (Function Response in Frequency) of the system was analyzed by applying an impulse 

force along the two control directions x and z as shown in the Fig. 6. Each direction was analyzed separately. It is worth 

mentioning that the 6 first modes of the system were considered. These modes correspond to 3 in the each direction. It 

is observed in Fig. (7) that the two FRFs are very similar (along the x and z directions, respectively). Since the stiffness 

of the bearings are very close in the x and z directions. 
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Figure 7. Frequency response functions. 

 

The Tab. (3) shows the percentage amplitude reduction of the considered modes. 

 

Table 3. Comparison of the FRFs peaks of the controlled and uncontrolled systems.  

 

Direction x 

Mode Uncontrolled Controlled Reduction (%) 

1
 

1.3301e-5 4.1643e-6 68.69 

2 1.8376e-6 8.0917e-7 55.97 

3 1.0642e-7 6.1356e-8 42.35 

Direction z 

1 1.2844e-5 4.1511e-6 67.68 

2 1.8353e-6 8.0177e-7 56.31 

3 1.0573e-7 6.1749e-8 41.60 

 

Now the rotor behavior is analyzed in the time domain. In this case the unbalance in disk #2 was considered to be 50 

g.cm, located at the node # 29. The displacement signals were measured at this same node. It is important to say that the 

EMA actuated only when the system displacement were larger than 1e-4 m. In the first analysis a rotation speed of 3000 
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rpm (above the first two critical speeds of the system: 2677 rpm and 2722 rpm) was considered. The Fig. (8) shows the 

displacements along the x and z directions. 
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Figure 8. Displacement: rotation 3000 rpm. 

 

For the rotation of 3000 rpm an insignificant reduction in the amplitude of the displacements is observed as a result 

of the control. At this rotation the system is operating far from the critical speeds. Then the rotation speed was changed 

to 2700 rpm, in between the first two critical speeds, and the corresponding results are depicted in the Figure (9). 
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Figure 9. Displacement: rotation 2700 rpm. 
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Figure 10. Electrical current and electromagnetic force: rotation 2700 rpm. 
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Figure (9) demonstrates the efficiency of the controller as characterized by a significant reduction in the amplitudes 

of the time responses. The last analysis is a run-up test. In this case, the system is accelerating from 0 to 5000 rpm. The 

results are shown in Fig. (11). 

 
 

Figure 11. Displacement and electromagnetic actuator: rotation 2700 rpm. 

 

 
 

Figure 12. Electrical current and electromagnetic force: rotation 2700 rpm. 

 

Analyzing the results shown in the Figs. (11) and (12), the efficiency of the control in the run-up test is observed. 

Figure (10) shows the moment in which the actuator is powered (near 15s). The system was controlled when crossing 

its critical speed. The Figs. (11) and (12) demonstrates that it is sufficient to turn the actuator on only when the system 

displacement is larger than a given predefined value. 

   

6. CONCLUSION 

 

In this paper, an active vibration control strategy was proposed by using an electromagnetic actuator. LMIs have 

been used to obtain the gain of the state observer and also for the resolution of the H∞ norm. 

The results show the effectiveness of the H∞ norm control both in the time and frequency domains. It can be 

observed that the controlled system is more stable than the uncontrolled one. The system was controlled in both x and z 

directions. 
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