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Abstract. Convection schemes of high resolution are extensively nseddays to solve fluid dynamics problems, espe-
cially the incompressible class of flows involving high eslof Reynolds number with moving free surfaces. Numerical
solutions for this class of problems are difficult to find, &ese of the strong influence of nonlinear convective terms
in the transport equations. Consequently, the choice ohthraerical method that takes into account the flow direction
(upwinding) has atracted many researchers in the modern C&m@munity. In this sense and with these motivations, we
present in this work a new high resolution polynomial upwéndvection scheme, called EPUS (Eight-degree Polynomial
Upwind Scheme), for the numerical solution of systems aferwation laws and related fluid dynamics problems. The
new scheme is developed by using a polynomial of eight-eégréne context of normalized variables of Leonard, that
satisfies the CBC (Convection Boundedness Criterion) aridl (Tétal Variation Diminishing) stability criteria. An im-
portant property of the high resolution EPUS scheme is todacaurate as possible in smooth regions and with controled
numerical dissipation in regions of high gradients and distinuities. The performance of the EPUS scheme is assessed
in the numerical solution of compressible Euler and shaleater equations. As application, the scheme is then used for
solving incompressible Navier-Stokes equations; in paldr, the numerical solutions of the circular hydraulieyp and
broken-dam problems are presented. The numerical resutfirm that the EPUS scheme is an effective tool for resolving
both compressible and incompressible complex flow problems
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1. INTRODUCTION

High resolution upwind convection schemes are extensivedyl today to solve problems in fluid dynamics, especially
for the class of non-stationary incompressible flow proldé@mrolving moving free surfaces at high values of Reynolds
number. It has been difficult to obtain representative nigaksolutions for these problems due to the strong influence
of the convective terms (in general nonlinear) in the transpquations. Because of this, several attemps have been
made in this direction by researchers in CFD community. Thg@nobstacle has been developing a scheme that captures
discontinuities, achieves high accuracy (in genera), is stable, preserves monotonicity, is economic and sy éa
implement.

We presented in this work a new high resolution polynomiaiveztion scheme using the upwind strategy for the
discretization of the linear and nonlinear convection &rrithe new scheme, called EPUS (Eight-degree Polynomial
Upwind Scheme), is based on the Normalized Variable (NVinidation of Leonard (1988) and satisfies the Total Vari-
ation Diminishing (TVD) of Harten (1983) and Convection Baoiedness Criterion (CBC) of Gaskell and Lau (1988) for
stability.

A brief description of the scheme is done and then numerésllts are presented for 1D and 2D hyperbolic conser-
vation laws. As application, the EPUS scheme is used forithelation of non-stationary incompressible flow problems
involving moving free surfaces, which are modeled by Na@takes equations. The numerical results show that the new
upwinding scheme performs very well.

2. THEORETICAL BASE FOR THE DEVELOPMENT OF A HIGH RESOLUTION  UPWIND SCHEME

In the upwind strategy, the convective terms are approxdthatcording to the convection velocity. For this, it is
considered three computational nodes adjacent to the pbdiscretization, ie, the downstreafh the upstreant/ and
the remote-upstrearm. Figure 1 illustrates this strategy, where one can obsdrkthe positions o), U andR are
adopted in accordance with the sign of the convection visldgGi in the facef of a convected variablg,;. A scheme that
adopts this strategy is written in the following form (in geal nonlinear):

of = ¢f(D7 U, R). 1)

In order to simplify the functional relationship given by E€l), linking ¢p, ¢y and¢g, the original variables are
transformed in NV of Leonard (1988) as

~ b — R

%0 = ¢p — Or @
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Figure 1. Position of computational nodBs U and R according to the sign of velocity/; of a convected variablg;.

From this definition it is observed that; = 0 andé = 1. Thus, we conclude that any convection upwind scheme
using only the values af at pointsD, U and R can be represented in the functional form

b5 = ds(ov). ©)

In this context, Leonard (1988) showed that any nonlineapi@cewise linear) monotonic scheme formulated in NV,
with 0 < ¢y < 1, must satisfy the following conditions: pass through thinfza0(0,0) and P(1, 1) (to be monotonic),
pass through the poir(0.5, 0.75) (to reach second order of accuracy) and pass through the@aiiith inclination of
0.75 (to reach third order of accuracy). Leonard also recommératgor values ofy;; < 0 or ¢y > 1, the scheme must
be extended in a continuous manner using the FOU (First Qigeinding) scheme, which is defined H}y = du.

Bounded solution (stability) is reached by considering@B& of Gaskell and Lau (1988), namely:

—du < dplou) <1,  if u €[0,1]; (4)
~¢y = o (dv) = du,  if ¢u ¢ [0,1]; )
—¢£(0) = 0andgy(1) = 1. (6)

Another important stability criterion is the TVD constraof Harten (1983). This property ensures that, in general,
spurious oscillations (unphysical noises) are removenhftoe numerical solution. Formally, consider a sequence of
discrete approximationg(t) = ¢;(t),., for a scalar quantity. The Total Variation (TV) at timeof this sequence is
defined by

TV(4(t)) = Z |piv1(t) — di(t)]. )

i€Z

From this, by definition, we say that a scheme is TVD if, forddta set™, the valuesp” ! calculated by numerical
method satisfy

TV (") <TV(¢"), Vn. (8)

Itis important to emphasize, from numerical point of vieatt TVD schemes are very attractive, since they guarantee
monotonicity and convergence .

3. THE EPUS SCHEME

The EPUS scheme is developed by assuming that theﬁw‘at the cell interfacef is related togy as part of an
eight-degree polynomial function

8
br = ardl, €)
k=0

for 0 < ¢y < 1, and the FOU scheme fgi; < 0 or ¢y > 1. By considering the coefficient; as a free parameter, say
A, the other coefficients in Eq. (9) are determined by impo#iregfour conditions of Leonard (1988) presented above,
plus the condition that this polynomial function must b&Bfclass (ie, it possesses first and second derivate contilyuous
differentiable). For this, the polynomial function is liet at the point$0, 0) and(1, 1) with the same values of the first
and second derivatives of the FOU scheme. This differeititiabondition is imposed because schemeg’éfclass avoid
convergence problems when coarse meshes are employedrissedLChieng (1991)). In this sense, we propose a hew
polynomial upwinding scheme (the EPUS scheme) as beingigimalrfunction of C class in an attempt to obtain good
results (the numerical results confirmed our supposition).
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In summary, the EPUS scheme with the free parameteiits formulation, in NV, is given by

C [FAO24) 85, +16(A-23) ], + (528-25X) 0 + (19A-336) 07 + (80-TA) 6, + A + by, if du€[0,1],

Pr=y . ) (10)
du, if ¢ ¢o,1].

The corresponding flux limiter function for the EPUS schemeéérived rewritten Eq. (10) (see Waterson and Decon-
inck (2007)) as

b = du + 3501~ o), (1)

wherey; = 1(ry) is the flux limiter function andt is the ratio of consecutive gradients (a sensor). In NV,ghbissor is
given by

rpo U (12)
1—9u
By combining Egs. (10), (11) and (12), we deduce the flux Bmitinction for the EPUS scheme. The result is
(2A—32)7-§tifrof—)fx)r‘;wmi, if rp >0,
U(ry) = (13)
0, if Ty < 0,
or, for the computational implementation, as
0.5(|r |47 ) [(2A=32)r% 4 (160 — 4\)r3 4212
(o) =maxdo, LA HT(RAEG +160 — 4x)rf 4203 w
(1 +1r])

It is important to observe that the EPUS scheme is TVD for the parametek € [16, 95], and for\ in this interval
we can define the free parameter according to the problemnat Ha this work, two particular values were selected,
namelyA = 16 and95. From several numerical tests, it was observed that therlbawend of the range of parameters, ie
A = 16, is the parameter has lead to better performance of the EB{uSne in problems with smooth initial conditions.
While for the upper bound = 95, best results are achieved by the scheme EPUS in problernsdisitontinuities,
extreme points and high gradients. Figure 2 shows the EPbSrsein TVD region for the free parameters- 16 e 95,
being Fig. 2 (a) in theby L gZSf plan and Fig. 2 (b) inthe; L ¢ plan.

(a) (b)
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Figure 2. EPUS scheme (a) in normalized variables and (arfltix limiter form in TVD region.

Note that the EPUS scheme is monotonic and reaches secoaidadrdccuracy, since its flux limiter function, for
ry > 0, satisfies the condition introduced by Waterson and Dectnjp007), namely a scheme must respect the linear
variation of the solution, satisfying(1) = 1, which is also a necessary condition for achieving secoddraaccuracy on
uniform meshes. In addition, the EPUS scheme can reachdtdet accuracy, since its flux limiter function, fof > 0,
satisfies)’ (1) = i (see Zijlema (1996)), which is a necessary and sufficienditiom for obtaining third order accuracy.
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4. NUMERICAL RESULTS

In order to evaluate the EPUS scheme (verify its behaviodilfility and robustness), from now on we solve various
nonlinear conservation laws, such as 1D Euler, 2D shallotemend axisymmetric/3D Navier-Stokes equations. For
Euler and shallow water equations, we have used the welgrézed CLAWPACK (Conservation LAW PACKage)
software of LeVeque. This package uses the Godunov methibdangorrection term equipped with a flux limiter (see
LeVeque (2002)). For solving axisymmetric/3D Navier-Sislequations, we have employed the genuinely Brazilian
Freeflow code of Castelet al. (2000) equipped with EPUS scheme.

4.1 1D Euler equations

These equations are given by

¢t + F(d)s =0, (15)

where¢ = [p, pu, E] represents the conserved variable vector 8tgl) = [pu, pu® + p, (E + p)u]T is the flux function
vector, being the densityp the pressurequ the momentum and’ the total energy. To close the system, it was considered
the ideal gas equation

p=0w4XE—%W%7 (16)

wherey = 1.4 is the ratio of specific heat. The problem to be simulated leaechallenger Riemann problem proposed
by Woodward and Collela (1984), known as “Two InteractinggMWaves”, which involves multiple interactions of strong
shocks. The initial condition is given by

(1, 0, 1000)T, if 0<x<0.1,
(po, uo, po)’ =< (1,0,000)T, if 0.1<xz<0.9, (17)
(1, 0, 10007, if 09<z<1.0.

The numerical solution was obtained by CLAWPACK softwareipped with the flux limiter EPUS in a mesh size
of 1000 computational cells, & = 0.9 and final timet = 0.038. The reference solution, as suggested by LeVeque in
the CLAWPACK, was generated by the MC limiter in a mesh siz2000 computational cells, & = 0.9 and final time
t = 0.038. Figures 3 and 4 show a comparison between the referenceuanerical solutions, where it can seen that
the EPUS scheme provides solutions in good agreement wétheflerence one, although introducing small numerical
viscosity in some regions.

(@)

— Reference
-~ EPUS

Figure 3. Reference and numerical solutions for 1D Eulelaéqns using the “Two Interacting Blast Waves” for (a)
density, (b) total energy and (c) velocity.

In order to evaluate a EPUS scheme in the quantitative sereseglculate the relative error and the convergence order
for this problem using the norm-1. The results obtained agsgnted in Tab. 1, in which it is possible to observe that the
new scheme reaches the formal convergence order (up to3jrder

http://www.amath.washington.edudlaw/
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Figure 4. Continuation of Fig. 3.

Table 1. Relative error and convergence order for the EPU8mse using the “Two Interacting Blast Waves” problem.

Mesh Size  Relative Error (norm-1) Convergence Order

125 0.186900 —

250 0.098291 0.927138
500 0.041372 1.248393
1000 0.012660 1.708353

4.2 2D Shallow water equations

The 2D nonlinear hyperbolic shallow water equations aremyy

¢t + F(¢)z + G(9)y =0, (18)

with ¢ = [h, hu, hv]” the conserved variable vector, afid¢) = [hu, hu? + gh?, huv]” andG(¢) = [hu, huv, hv? +
%ghQ]T the flux function vectors in the directionse y, respectively.h = h(z,y,t) represents the height of the fluid,
[u,v]T and[hu, hv]T are, respectively, the velocity and discharge vectors,gisdhe acceleration due to gravity. The
performance of the EPUS scheme for solving this hyperbghtesn is verified by simulating the radial dam-break prob-
lem (see LeVeque (2002)). In summary, this problem consisicircular fluid portion initially at rest confined by a dam
(see Fig. 5 (a)), in the domajr-2.5, 2.5] x [—2.5,2.5]. The dam is instantly removed forming a shock wave, thaetsav
radially outwards while a rarefaction wave propagates nwésee Fig. 5 (b)). Initially, the height of fluid inside cdra
is h = 2 and outside i% = 1. According to LeVeque (2002), this problem is similar to gteicture of the 1D Riemann
problem for the dam-break. Taking into account this staténvee consider the solution of this 1D problem as a reference
solution for the 2D case. The solution is calculated by s@\the following 1D shallow water system with source term:
bt ), = -2

,
1 2
(RU); + (hU2 + §gh2) — , (19)

r r

whereU (r, t) is the radial velocity and is the height as a function ef(distance from the origin).

For the simulation of this problem, we consider, for the ntioa solution, Courant numbér= 0.9 and a mesh size
of 125 x 125 computational cells, while the reference solution wasudated using a mesh size 2600 computational
cells. The results for thé contours, in ther L y plan and final time = 1.5, are shown in Fig. 6 (a). In order to
complete the analysis, we calculated the height variatioa function of distance from the origin (ig,in line y = 0),
as shown in Fig. 6 (b), which compares the EPUS scheme witrefeeence solution, showing that the new scheme has
good performance.
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(b) t = 0.25

Figure 5. Radial dam-break problem: behavior of the heigth@fluid portion in times (a} = 0 e (b)t = 0.25 (figure
extracted from LeVeque (2002)).
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Figure 6.4 profiles for the radial dam-break problem: (a) reference(@Bhdumerical (EPUS) solutions.

4.3 Axisymmetric Navier-Stokes equations

In this section, as an application, we evaluate the EPUSnseh®y solving laminar incompressible fluid flows in-
volving a moving free surface, which are modeled by the awisetric Navier-Stokes equations. For this, we considered
a vertical free jet impinging perpendiculary onto an impeatfle rigid surface (under the action of gravitational Jield
leading to the formation of a curious phenomenon known asiker hydraulic jump (see, for example, Rdial. (2008)).
These instantaneous equations are given by

Ou 10(ruu) Oww) — 9dp 1 0 (Ou v Jr
o T or T Tos " Or | Redz \0z Or Fr2’ (20)
ov  19(rvu)  9(vv) dp 110 Ju  Ov gz
ot + r or + 0z 0z + Reror \' \9z  or + Fr?’ (21)
10(ru) ~Ov
r Or * oz 0 (22)

wheret is time,u = u(r, z,t) andv = v(r, z,t) are, respectively, the components of velocity vector insthend
z directions andy = (g,,g.)7 is the acceleration due to gravity. The dimensionless pat@rsie = UyL,/v and
Fr = Uy/\/Log represent, respectively, the Reynolds and Froud numbéits,.mbeing the coefficient of kinematic
viscosity given byv = u/p, wherey is the dynamic viscosity. Finally/, and L, are characteristic scales for velocity
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and length, respectively.

A viscous analytical solution for this problem was calcethlby Watson (1964), for the total thickness of the fluid layer
H. For this, Watson divided the fluid flow in four regions (seet$ta (1964)): (i) whem = O(a), the speed outside the
boundary layer rises rapidly fromat the stagnation point 7, and the boundary layer thicknessjis= O(va,/Uy)"/?,
with a being the impinging jet radius; (ii) for > «a, where the conditions in region (i) do not affect the flow and
the boundary layer remains almost constant (equélyie also the velocity distribution has the Blasius profile dinel
boundary layer thickness 8(va/Uy)'/?; (iii) from the point where the boundary layer absorbs theetaof fluid to the
point where the velocity profile becomes self-similar; @t)large distances from the stagnation point where the final
similarity solution is valid. According to Watson (1964het viscous analytical solution is valid only in (ii) and (iv)
regions for the Reynolds numb&e = Q/va > 1, with Q = ma?U, being the discharge of flow. It is worth adding that
his approximate solution is not applicable in the neighbods of the stagnation point. The viscous analytical sofuti
of Watson is given by:

2 2
’21—7,+(1—3\/;—762)5, r <7,

H(r) = 2 3,2 (23)
on? v(r°+1%)
33 Or 5 r Z To,
in which
52 — 77\/303 vra? (24)
T—c/3 Q7

wherec = 1.402, ry = 0.3155aRe3 and! is an arbitrary constant which was estimated by considetieginitial
development of the boundary layer to be 0.567aRe3.
For the simulation, we considered the following data:

— Mesh 1:800 x 504 computational cells;

— Mesh 11:400 x 252 computational cells;

— Mesh 111: 200 x 126 computational cells;

— Domain:0.050m x 0.0315m;

— Jet radiug; = 0.004m;

— Jet heighti; = 0.00075m;

— Length scaleZy = 2r; = 0.008m;

— Velocity scalelUy = 0.375m/s;

— Coefficient of kinematic viscosityz = 1.2 - 10~°m?/s;
— Reynolds numbetRe = 250.

Figure 7 shows the comparison between the viscous andlstiltaion of Watson and the numerical solutions obtained
with the EPUS scheme, in the meshes Mesh |, Mesh Il and MeshHis figure also depicts, for simple illustration, the
boundary layer thicknes$ by Watson. From the figure, one can conclude that the solutiained with the EPUS
scheme is in agreement with the analytical solution (in #wan where it is valid). As illustration, Fig. 8 (a) present
an experiment of the circular hydraulic jump, which is useddomparison with the 3D result obtained with the EPUS
scheme. From these figures, one can observe that the newesshems good performance for solving this problem.

A quantitative analysis is also done in this test. For thig, @mpare the radius of the circular hydraulic jump
calculated with the EPUS scheme and the theoretical appafdgrechet and Néda (1999)

2
279714\ ® 2/3 1-1/6,,—1/3
= (21/4357r Qa0 (25)

in whichd represents the height between the rigid surface and th&hetresults for the jump radius are presented in Tab.
2, from which we conclude that when the mesh is refined, theutztled jump radius using the EPUS scheme converges
to the theoretical approach.

Table 2. Comparison of the results for the jump radius olethinith the EPUS scheme and with the theoretical approach
of Brechet and Néda (1999).

Mesh Size  Theoretical Approximation Results by EPUS
Mesh | 1.325158 e-2 1.783112e-2
Mesh Il 1.325158 e-2 1.638573 e-2
Mesh I 1.325158 e-2 1.414912 e-2
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Figure 7. Comparison of the solutions for the circular hydicgjump problem.

(a) (b)

Figure 8. lllustration of circular hydraulic jump: (a) expaental and (b) numerical (EPUS) results.

We concluded this test by showing the convergence orderthitfePUS scheme. For this we used the meshes Mesh
I, Mesh Il e Mesh IIl and the mathematical relationship of @aon and Martinelli (1998). The calculated value is

R - R
10g2 Meshl MeshlIl —1.90. (26)
Rareshir — Rateshrrr

Note that the convergence order obtained with the EPUS seffenthis complex free surface flow, is consistent with
the formal order of accuracy of the scheme.

4.4 3D Navier-Stokes equations

The instantaneous 3D Navier-Stokes equations, in Einetgition, are given by

Ou;  O(ujuy) Op 1 0 [ou 1 .
= — e [ = 17 27 3 27
ot * 0z Ox; + Re 0z \ Oz; Fr2de 27)
811,1'
proli 0, (28)

wheret is the time,u = u(z, y, z) andv = v(x, y, z) are, respectively, the components of velocity vector inithg and
z directions and) = (g, g, 9-)" is the acceleration due to gravity.

We used these equations to model the broken-dam problenshvidiicaracterized by a moving free surface. This
problem consists in a fluid block in hydrostatic equilibrigonfined between impermeable rigid walls and under action
of gravity. Int = 0 the fluid starts its moviment. The broken-dam problem wagiaily studied by Martin and Moyce
(1952), which provided experimental data for the positibthe fluid frontx,,.,.. Recently, numerical, theoretical and
experimental data were also presented by Colagrossi andrina(2003).

For simulation of this problem, we used free-slip boundamydition and the following data:
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— Mesh:150 x 50 x 80 computational cells;

— Domain:0.3m x 0.1m x 0.16m,;

— Fluid block dimensiongd.05m x 0.1m x 0.05m;
— Length scaleZy = 0.1m;

— Velocity scaleUy = v/gLo = 0.99045444m/s;

— Coefficient of kinematic viscosityz = 10~5m?/s;
— Reynolds numbetRe = 99045.444.

Figure 9 shows the numerical solution obtained with the ERtt&me for the position of the fluid front,(.),
which is compared with the data of Colagrossi and LandriGo@. From this figure, one can observe that the new
scheme presented satisfatory results, showing concoedaitit the literature data. In particular, the numericalisoh
obtained with the EPUS is the closest to the experimentaltsesf Martin e Moyce.

6

EPUS
e--o  Sol. Num. SPH

o--a Sol. Num. BEM

— Sol. Num.Level Set
== Sol. Teo. Ritter

o0 Exp. Martin e Moyce

|
0 0,5 1 15 2 2,5

t/ala

Figure 9. Comparison of the solutions for the 3D broken-daoibiem.

For illustration, in Fig. 10 is presented the pressure fighdwing the evolution of the moving free surface for the 3D
broken-dam problem.

t = 0.05s t=0.1s

0.062 0.123 0.185 0.246 - 0.102 0.153 0.203 0.254 0.305

t =0.15s t=0.2s

-0.000 0.028 X K . N . 0.194

Figure 10. Pressure field for the broken-dam problem in iifietimes.
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5. CONCLUSION

In this article, we presented the EPUS scheme, a new higlutesoupwind convection scheme for approximate
nonlinear convection terms in non-stacionary fluid flowse Performance of the scheme was verified by solving various
nonlinear problems, namely Euler, shallow water and NaStekes equations. In all tests simulated, the results tivéh
EPUS scheme presented good agreement with the numerigakmee, theoretical and experimental data, proving that
this new upwind scheme can be considered a good tool fomgphath compressible and incompressible fluid flows.
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