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Abstract. On plasticity theory two methods are widely used to solve structural analysis problems: the incremental method
and direct method. Unlike incremental method, in direct method there is no need to analyze the structure behavior during
each load step in order to compute critical states and collapse mechanisms. The shakedown and limit analysis are the main
representatives of the direct methods. In this paper, from maximum plastic dissipation principle and the set of admissible
stress fields, a limit analysis formulation for porous materials is proposed.In order to model a problem in plasticity,
the choice of an appropriate yielding function is mandatory. For ductile materials, the stress deviatory dependent von
Mises criterion is largely used. However for porous materials, like soils, ceramic materials and powder metals, the
von Mises criteria does not consider the main variables that describes his mechanical behavior such as friction angle,
cohesion and the porosity. Moreover, those materials are pressure dependents and the stress invariant I1 must be taken
into account. Thus, a J2 and I1 dependent yield function is proposed and it takes into account all the described porous
materials properties. Depending on these properties, a critical porosity is calculated and the yield function may assume
an elliptical or an hyperbolic shape.The problem of interest is a plane strain and applying the normality rule, one normal
strain component is made null and the stress in that direction is derived, function of others components. This kind of
problem is applied to describe among others, indentation problems and scratch tests on porous materials. In indentation
tests, a rigid indenter is punched against the tested material. In scratching tests, an indenter made of rigid material is
dragged on the material tested surface. Controlled forces are applied and the penetration depth remains constant. Both
tests are realized on nanoscale and the main objectives of them is to get the hardness of porous materials.
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1. INTRODUCTION

In oil industry, due the necessity of extracting oil from deep waters, subsea pipes are submitted to severe mechanical
efforts. In deep waters, pipes are submitted to high external pressure and eventually to high temperatures and since the
pipe is not free, i.e., there are supports and anchors restraining movements, compressive forces are developed due to water
column pressure and pipe thermal expansion. Under these conditions, compressive stresses may reach a critical magnitude
and buckling may occur, leading to a catastrophic failure and causing structure collapse. On the other hand, buckling is
not a problem if it is controlled and induced on pipes in order to relief high stresses.

Buckling occurrence, among many variables, depends on friction between pipe-soil and this interaction must be un-
derstood. In pipe buckling two situations may occur: the pipe can get out from the trench or it can drag the amount of soil
around his vicinity. To model this problem, the pipe is described as a rigid structure dragging a soft material (soil). This
may be idealized as a scratch test problem, where a rigid indenter is dragged into a material. The indentation problem,
where a indenter is pressed against a surface is also studied. Both problems are solved using plasticity theory and limit
analysis method by an algorithm developed by Borges (1991). Limit analysis is a direct method and there is no need to
analyze the structure behavior during each load step. The results required are the collapse factor α, the stress and velocity
fields and the plastic multiplier λ.

Modeling the mechanical behavior of porous materials is a difficult task since many variables are involved. The de-
velopment of plasticity studies on porous materials have wide applications like material hardness determination using
nondestructive methods by indentation or scratch tests. Porous materials comprise soils (sand, clay), ceramics or even
metallic powder, where the metal is physically divided into many small particles, then passing through compression and
sintering processes. Indentation tests are very useful in civil engineering and geotechnics in piling problems. As another
application of indentation problems, Cariou (2006) by means of nanoindentation techniques identifies mechanical proper-
ties in cohesive-frictional porous materials. Due to heterogeneity of sedimentary rocks, the application of nanoindentation
has provided a new versatile tool to test in situ phase and structures of geomaterials that cannot be recapitulated ex situ
in bulk form. This technique requires a rigorous indentation analysis to translate indentation data into meaningful me-
chanical properties. The application of this technique is also made by Sorelli et al. (2008). Similarly to indentation tests,
scratch tests are also used as an alternative way of measuring mechanical properties as adhesion of coatings or strength of
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rocks, according to Bard and Ulm (2009). This kind of test consists in dragging a rigid indenter onto the tested material,
at constant depth and controlled forces.

In this work, based on limit analysis formulation, indentation and scratch test problems are discretized in a 2-D finite
elements method. Moreover, an appropriate yield function must be chosen to include the material porosity effects, soil
cohesion and friction angle. The influence of stress invariant I1 (mean stress) is also observed. The use of Mori-Tanaka
morphology is then applied and it includes such cited variables. In this morphology, according to a critical porosity, the
yield function may be either elliptical or hyperbolic. Under such special conditions, this function becomes asymptotically
to a Drucker-Prager or von Mises criterion. More details about this subject are in Gathier (2006). Plane deformation
hypothesis is applied and the yield function is derived concerning this hypothesis. Hereafter, this plane deformation
formulation is implemented in the computational model, developed in Fortranr. Then the scratch test and indentation
collapse factors are plotted and compared to analytical solutions.

2. Model

This section shows schematically the geometry of indentation and the scratch test problems. Some comments on
porous materials are also made as well as limit analysis method and the discretization scheme. Then, an yield function in
plane is developed and implemented in the computational model.

2.1 Geometry

Figure 1 shows schematically the geometry of indentation problem. As observed, a rigid indenter is pressed against
a material surface. This indenter may have different shapes like spherical, conical and pyramidal, with many opening
angles as found in Cariou (2006).

Figure 1. Schematic of an indentation test.

Figure 2 shows schematically the scratch test geometry. In this test, an indenter of certain opening angle θ is dragged
into the material at a constant depth d. Conveniently, in order to calculate an analytical solution, the material is partitioned
in three zones with constant stresses fields, defined by the angle β.

Figure 2. Schematic of a scratch test.

In both problems it is not taken into account the material accumulation that is generally formed on vicinity of contact
area of indenter on the indentation problem and in front of indenter for the scratch test.
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2.2 Discretization Scheme

The continuum form of the limit analysis problem is discretized into 2-D mixed finite elements, applied to solve
both indentation and scratch problems. Triangular elements are used, with quadratic interpolation for velocity and linear
interpolation for stresses fields. An adaptive mesh refinement is used and the goal of this approach is to achieve a mesh-
adaptive strategy accounting for mesh size refinement, as well as redefinition of the element stretching. More details
about adaptive approach are in Borges et al. (2001). The algorithm developed by Borges (1991) allows the choice of
mesh refinement level. The refinement level 0 mesh implies an uniform mesh. After that, the adaptive mesh is applied on
interest area of the problem, leaving a coarse mesh on unimportant areas.

2.3 Limit Analysis Model

Limit analysis method aims the determination of the loads that will cause the phenomenon of incipient plastic collapse,
in a body made of elastic ideally plastic material. This method have been widely studied by many researchers and see
Borges (1991), Zouain et al. (1993) and Pontes et al. (1997) for more information. The extremum principles for limit
analysis of continuum bodies under proportional loads are presented hereafter.

Consider a body that occupies a region B with regular boundary Γ and let V the function space of all admissible
velocity fields v complying with homogeneous boundary conditions prescribed on Γu of Γ. The strain rate tensor denoted
by D relates with v by a linear operator and the duality product between stress fields T and strain rate D belonging
respectively from spaces W

′
and W is written as:

〈T,D〉 =

∫
B
T.D dB (1)

The load system is represented by an element F from space V
′
, dual of V. The duality product is denoted as:

〈F, v〉 =

∫
B
b.v dB +

∫
Γt

τ.v dΓ (2)

where b and τ are body and surface forces respectively, Γt is a part of boundary Γ where external loads are prescribed.
From equilibrium requirements:

〈T,D〉 = 〈F, v〉 (3)

The stress field T is constrained to fulfill the plastic admissibility condition, belonging to the set P defined as:

P = {T ∈W
′
|f(T ) ≤ 0} (4)

The constitutive relations are derived from principle of maximum dissipation, associating the stress T and plastic
dissipation X(Dp) to a given strain rate Dp, as in Eq. (5):

X(Dp) = sup
T∗∈P

〈T ∗, Dp〉 (5)

Stress and plastic strain rates are related by an associative flow law and the complementary condition is also used,
as seen in Lubliner (1990). Solving a problem using the limit analysis consists in finding a load factor α such the body
undergoes to plastic collapse when subject to a reference load amplified by α. From classical extremum principles of limit
analysis, the called static, kinematic and mixed formulations are derived and more information about these principles, limit
analysis discretized forms and the algorithm that solves the optimization problem are found in Borges (1991), Zouain et al.
(1993) and Pontes et al. (1997).

2.4 Porous materials

As is well known, soils are composed by a mix of lots of different particles, creating a very heterogeneous material.
Because of its heterogeneity and presence of porous, the determination of mechanical properties of such materials becomes
a difficult task. In order to solve this, the development of a predictive model for strength of porous materials will make
extensive use of the theory of strength homogenization. Recent advances on homogenization techniques are found in
Gathier (2006).
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Porous materials with a dominating matrix-pore inclusion morphology are well represented by the Mori-Tanaka
scheme, as seen in Gathier (2006) and Cariou (2006). In Mori-Tanaka scheme some material parameters such asαd, σ0, αm
are calculated and they include the soil cohesion, porosity and friction angle effect. Once determined these parameters,
the yield function is then determined. As an important remark, the yield function using this morphology may assume two
distinct regimes, depending on density packing. Density packing is defined in Eq. (6):

η =
Vs
Vt

(6)

where Vs is the solid volume and Vt is the material total volume, including pores.
In this morphology there is a density packing critical value, defining two yield function regimes: below this critical

value the yield function assume an elliptic shape and over this value it assumes an hyperbolic shape. This critical density
packing, denoted by ηcrit, is a function of friction angle αs and calculated as in Eq. (7):

ηcrit = 1− 4α2
s

3
(7)

Under certain conditions, for example friction angle αs = 0 and packing density η = 1, the yield function becomes
the von Mises criterion. And for αs 6= 0 and η = 1, the Drucker-Prager criteria is also asymptotically obtained. The
graphic J2 (deviatory) versus σm (mean stress) in Fig. 3 shows the yield function regimes:

Figure 3. Yield function regimes: elliptical below ηcrit, hyperbolical above this value and limited by Drucker-Prager
when η = 1.

This graphic is plotted with friction angle αs = 0.4 fixed and the packing density critical value is obtained as a
function of this angle, in this case one have ηcrit = 0.786. It means that any packing density below this critical value the
yield surface has an elliptical shape and otherwise, the criterion is hyperbolical. It is also observed that when η → 1 the
cone-shaped Drucker-Prager criterion is reached. If von Mises citerion were represented, it would be an horizontal line
passing through J2 = 1, parallel to mean stress axis since Mises is independent of the mean stress, as expected.

3. The Yielding Function in Plane Deformation

Equation (8) shows an elliptical yield function used in this work:

F (Σd,Σm) =

(
Σm + σ0

αm

)2

+

(
J2

αd

)2

− 1 (8)

where αd, σ0, αm are material parameters and calculated as seen in Gathier (2006) and Cariou (2006), Σd and Σm are
deviatory and mean stresses respectively. Using projection operators, the deviatory is calculated as in Eq. (9):

Σd = P Σ (9)
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where tensor P projects the stress vector Σ on deviatory space.
Letting the vector m representing the unitary vector along hydrostatic direction, the mean stress is calculated as in

Eq. (10):

Σm =
1√
3
Σ.m (10)

The decompositions of these stresses components are schematically presented in terms of principal stresses in Fig. 4,
showing the hydrostatic axis m and the deviatory plane perpendicular to it:

Figure 4. Hydrostatic axis and deviatory plane on principal stresses.

The invariant J2 is defined in Eq. (11):

J2 =

√
1

2
Σd.Σd (11)

From plane deformation hypothesis, the deformation component εz is made null. Applying the normality rule, then
the stress component Σz is obtained in function of Σx and Σy components, as in Eq. (12):

Σz =
Σx + Σy

2
A−B (12)

where: A=α
2
m−4α2

d

2α2
d+α2

m
and B= 6α2

dσ0

2α2
d+α2

m
.

In this way, a relation between a stress vector Σ = [Σx,Σy,Σz,
√

2Σxy, ]
T and the stress vector at plane deformation

denoted by Σp, with components [Σx,Σy,
√

2Σxy]T is made through Eq (14):

Σ = PDΣp + D (13)

where D=[0, 0,−B, 0]T and PD is a 4x3 tensor, defined as follows:

PD =


1 0 0
0 1 0
A/2 A/2 0

0 0 1


In an alternative way, the yield function described in Eq. (8) is rewritten as:

F (Σ) =
1

2
CΣ.Σ + a Σ.m− rk (14)
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where C = 1
α2

d
P + 2

3α2
m

(m⊗m), a = 2σ0√
3α2

m

and rk = 1−
(
σ0

αm

)2
Rewriting this function using plane deformation formulation:

F (Σp) =
1

2
CpΣp.Σp + Pk.Σp +Rk (15)

where:

Cp = PTD C.PD (16)

Pk = PTD C.D + aPD m (17)

Rk =
1

2
C D.D + aD.m− rk (18)

Once defined the yield function on plane deformation, the Gradient and the Hessian of Eq. (15) are computed as:

∇ΣF (Σ) = Cp Σp + Pk (19)

∇2
ΣF (Σ) = Cp (20)

Both gradient and hessian are used in the limit analysis algorithm and hessian shall be invertible.
Studying the eigenvalues and the eigenvectors of Cp:

• Eigenvalues: ( 1
α2

d
, 1
α2

d
,

12α2
d+α2

m

(2α2
d+α2

m)2
)

• Eigenvectors: [0, 0, 1]T , [−1, 1, 0]T , [1, 1, 0]T

Decomposing Cp using spectral theorem, the characteristic spaces are the deviatory plane, defined by eigenvectors
[0, 0, 1]T and [−1, 1, 0]T and the hydrostatic axis, defined by eigenvector [1, 1, 0]T . Thus, every vector on deviatory plane
is an eigenvector of Cp. Moreover, the positive-definiteness of Cp is proved since the properties αd and αm are positive
(only on elliptical case) and consequently, the eigenvalues are always positive also.

4. Results

In this section results for the scratch test and indentation problems are compared to a semi-analytical lower bound solu-
tion. The scratch test semi-analytical solution seen in Bard and Ulm (2011) is used considering Mori-Tanaka morphology
and it was implemented in MathCadr. Then, these results were compared to discretized Limit Analysis.

The collapse factors α from both aproaches were compared, choosing some friction angles values and making the
packing density η to vary. Figures 5 and 6 compare the collapse factors, where the continuous line represents the ones
obtained by analytical solution, calculated by lower limit bound solution.
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Figure 5. Results for αs = 0.1. Figure 6. Results for αs = 0.5.

Both graphics correspond to density packing lower than the critical value ηcrit, ie, the yield function has the elliptical
shape. Figures 7 show the adaptive mesh used before running the limit analysis algorithm. One may observe that, using
an adaptive mesh there is a fine mesh on the vicinity of the indenter and a coarse mesh out of this interest area. After
converging the limit analysis algorithm, Fig. 8 shows the plastic multiplier distribution, after running an example with
αs = 0.1 and η = 0.9.

Figure 7. Scratch test mesh for αs = 0.1.
Figure 8. Plastic multiplier distribution for αs = 0.1

and η = 0.9.

For the indentation problem there is no an analytical solution considering the packing density influence and conse-
quently the Mori-Tanaka morphology. However, there is a analytical solution considering slip lines theory and von Mises
criterion in Lubliner (1990) and Kachanov (1971) and in this case the collapse factor is equal to (2 + π), that is approxi-
mately 5.1415. It should be noted that from Eq. (8) and by making η = 1 and αs = 0, this elliptical yield function leads
to von Mises criterion. An important issue in the indentation discretized limit analysis problem is the mesh dependent
results. Both problems, scratch and indentation, are meshed by an adaptative process as described in Borges et al. (2001).
Specifically on indentation problem, a better result is obtained as higher the adaptative mesh level is and the collapse
factor gets even more closer to the analytical solution. With a refined mesh, the collapse factor reaches 5.166. Figures 9
and 10 show respectively the adaptive mesh used and the plastic multiplier distribution. Only half representation is made
because of problem symmetric.
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Figure 9. Mesh for the indentation test.
Figure 10. Plastic multiplier distribution

from indentation test.

5. Results Discussion and Conclusions

Analysing the scratch test results, one can see that the results from discretized limit analysis using the mixed for-
mulation are consistent with the semi-analytical solution. Since semi-analytical solution is a lower bound solution, the
behavior of discretized limit analysis solution is as expected. On indentation problem, the result from limit analysis was
close to the analytical solution and differing only in 0.47%.

In this paper it was shown a strain plane model developed to scratch an indentation tests problems. Using a mixed
limit analysis method and an adaptive mesh discretization, the yield function was written in strain plane, as shown on
previous sections. According to Mori-Tanaka morphology, the yield function may be elliptical or hyperbolical, depending
on material packing density being below or above a certain critical value. The comparisons with analytical solutions are
coherent and may validate the model. The problems studied were limited to elliptical yield function, since hyperbolic case
brings on some development modeling difficulties and programming.

Since the results were well compared to analytical solutions, the next step is to develop the hyperbolical case, that
will be applied to both problems. Then, the material accumulation influence formed around the indenter on indentation
problem when it penetrates the material should be also considered in future work. On scratch test problem a 3-D stress
model will be develop. This problem is specially important in order to study the interaction between a pipe and soil,
subject to instabilities on seabed.
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