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Abstract. The dynamics of cardiovascular rhythms have been widely studied due to the key aspects of the heart in the 

physiology of living beings. Cardiac rhythms can be either periodic or chaotic, being respectively related to normal 

and pathological physiological functioning. In this regard, chaos control methods may be useful to promote the 

stabilization of unstable periodic orbits using small perturbations. In this article, the extended time-delayed feedback 

control method is applied to a natural cardiac pacemaker described by a mathematical model. Controller parameters 

are determined by calculating the maximum Lyapunov exponent of each unstable periodic desired to be stabilized. 

Results show the ability of the chaos control strategy to control the system response performing either the stabilization 

of unstable periodic orbits or the suppression of chaotic response, avoiding behaviors associated with critical cardiac 

pathologies. 
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1. INTRODUCTION 

Natural phenomena have rhythms that can be both regular and irregular over time and space. Specifically in 

biomedical systems, these rhythms can be associated with either normal or pathological physiological functioning (Gois 

and Savi, 2009; Savi, 2005). The cardiovascular rhythm dynamics have been widely studied due to the key aspects of 

the heart in the physiology of living beings. The heart is a hollow and muscular organ divided into four chambers, two 

atrium and two ventricles, as illustrated in Figure 1. The cardiac conduction system can be treated as a network of self-

excitatory elements formed by the sino-atrial node (SA), atrio-ventricular node (AV) and His-Purkinje system (HP) 

(Gois and Savi, 2009; Grudzinski and Zebrowski, 2004). The physiological functioning of the heart electrical system 

initiates at the SA node and the electrical impulse spreads in the form of wave, stimulating the atrium. The impulse 

reaches the AV node, initiating an electrical impulse that goes down to the His-Purkinje system and myocardial cells. In 

normal state, the SA node determines the frequency of the heartbeat, being called a normal heart pacemaker.  

 
 

Figure 1. Schematic picture of the heart (Gois and Savi, 2009) 

 The first study of the heartbeat described by nonlinear oscillators was carried out by Van der Pol and Van der Mark 

(1928). After this work, many studies have been developed to mathematically model the cardiac rhythms. Grudzinski 

and Zebrowski (2004) proposed a variation of the original Van der Pol oscillator in order to reproduce the action 

potential generated by a natural cardiac pacemaker. Santos et al. (2004) presented a model of the cardiac dynamics 

composed by two coupled modified Van der Pol oscillators, representing the behavior of two pacemakers. Gois and 
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Savi (2009) reproduced the heart functioning through a mathematical model composed by three modified Van der Pol 

oscillators with delayed coupling. This model is able to describe the electrocardiograms (ECGs), representing either 

normal or pathological behaviors.  

 Arrhythmias as ventricular fibrillation and ventricular tachycardia are the most severe and life-threatening being 

the cause of many deaths (Savi, 2005). Several researches are pointing to the fact that some cardiac arrhythmias are 

associated with chaotic responses. This suggests therapeutic strategies different from the classic approaches (Gois and 

Savi, 2009; Savi, 2005) and the control of chaotic heartbeat is a key issue in this subject. Garfinkel et al. (1992, 1995) 

discussed the application of chaos control techniques to prevent arrhythmic cardiac responses, explaining that this 

approach can be incorporated into pacemakers to prevent ventricular fibrillation, for example. These authors presented 

an in vitro excitable biological tissue, suggesting the potential application of the chaos control approach. Christini et al. 

(2001) show that the chaos control approach can modulate human cardiac electrophysiological dynamics. This article 

presents a proof-of-concept demonstration of the clinically feasibility of this approach in humans.  

 Chaos control is based on the richness of unstable periodic patterns that exist in chaotic behavior and can be 

understood as the use of small perturbations to stabilize unstable periodic orbits (UPOs) embedded in chaotic attractors 

(De Paula and Savi, 2009a, b). The ability to stabilize UPOs confers a great flexibility to the system and since one of 

these UPOs can provide better performance than others in a particular situation, the use of chaos control can make this 

kind of behavior to be desirable in a variety of applications. 

 Pyragas (1992) proposed a continuous-time control method, called time-delayed feedback (TDF), to stabilize UPOs 

embedded in the chaotic behavior. The control law of this method is based on the difference between the present and a 

delayed state of the system. Several methods were proposed based on this continuous method in order to overcome 

some limitations of the original technique, as described by Pyragas (2006). Pyragas (2006) also states that the extended 

time-delayed feedback (ETDF), proposed by Socolar et al. (1994), is presumably the most important modification of the 

TDF. The ETDF control method considers not only one but several delayed states of the system on its control law.   

 This contribution employs the ETDF control approach in order to avoid critical pathological responses of natural 

cardiac pacemakers. Initially, the behavior of the natural cardiac pacemaker is modeled by a modified Van der Pol 

oscillator proposed by Grudzinski and Zebrowski (2004). Using this model, periodic and chaotic responses are treated 

respectively representing normal and pathological functioning of the heart rhythm. Afterward, the close-return method 

(Auerbach et al., 1987) is employed to identify UPOs embedded in the system attractor. The controller parameters are 

then determined for each desired UPO by evaluating the negative values of the maximum Lyapunov exponent, 

calculated employing the algorithm due to Wolf et al. (1985). Finally, stabilization of some UPOs is performed. Results 

show the possibility of using this chaos control strategy in order to control and suppress some critical cardiac 

pathologies. 

 This paper is organized as follows. After this introduction, a brief discussion about the extended time-delayed 

feedback control method is presented. The calculation of UPO Lyapunov exponent is then discussed establishing a 

procedure to estimate controller parameters. The mathematical modeling of the heart pacemaker is presented by 

assuming a modified Van der Pol equation and the calculation of Lyapunov exponent is explained for this specific 

system. Numerical simulations is then presented split in three parts: uncontrolled system, where periodic and chaotic 

behaviors are presented; the control of the heart rhythms, where ETDF is employed to stabilize UPOs; chaos 

suppression where chaotic behavior is eliminated. Finally, conclusions are discussed. 

2. EXTENDED TIME-DELAYED FEEDBACK CONTROL METHOD 

 Chaos control methods may be understood as a two stage approach. The first stage is related to the identification of 

UPOs embedded in chaotic attractors and the evaluation of the controller parameters. The second stage is related to the 

stabilization of some desired UPO. Basically, chaos control methods can be classified into discrete (Ott et al., 1990; De 

Paula and Savi, 2008, 2009a) and continuous (Pyragas, 1992; De Paula and Savi, 2009b) approaches. 

 The time-delayed feedback control method (TDF) was the first continuous chaos control method proposed by 

Pyragas (1992). This approach states that chaotic systems can be stabilized by feedback perturbations proportional to 

the difference between the present and a delayed state of the system. In order to overcome some limitations of the TDF 

method, Socolar et al. (1994) proposed a control strategy that considers information from several delayed states. This 

control technique can be modeled by a set of nonlinear ordinary differential equations as follows: 

 
           
                                (1) 

 

where   and   are the state variables,        and        define the system dynamics, while        is associated with 

the control action. The perturbation action is given by: 

 
                     

            
  
   ,               (2) 
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where       ,            ,       and   are controller parameters. In general, Nτ is infinity but it can be 

properly defined depending on the dynamical system. For any value of  , the perturbation of Eq (2) is zero when the 

trajectory of the system is on an UPO since              for all   if     , where    is the periodicity of the  th 

UPO. The stabilization of some UPO depends on the proper choice of   and   and it is important to mention that the 

ETDF method is equivalent to the original TDF method when    . 

 The controlled dynamical system, Eq. (2), is described by a delay differential equation (DDE) and its solution 

imposes to establish an initial function          over the interval  –       . In this paper, this function is estimated 

by a Taylor series expansion as proposed by Cunningham (1954): 

 

           .               (3) 

 

Under this assumption, the following system is obtained: 

 
           
                       , 

          

                 
  
   

            
  
                

 
               

             
           (4) 

 

 Note that DDEs contain derivatives that depend on the solution at delayed time instants. Therefore, besides the 

special treatment that must be given for          , it is necessary to deal with time-delayed states while integrating 

the system. A fourth-order Runge-Kutta method with linear interpolation on the delayed variables is employed in this 

work for the numerical integration of the controlled dynamical system (De Paula and Savi, 2009b). Moreover, it is 

worth mentioning that, since the control law depends on delayed states of the system, the control action is initiated only 

when all these states are known. Thus, by assuming three delayed states in Eq (4),     , the perturbations performed 

by the controller starts at        , being    the initial time instant. 

 During the learning stage it is necessary to identify the UPOs embedded in the chaotic attractor, which can be done 

by employing the close-return method (Auerbach et al., 1987). Moreover, it is necessary to establish a proper choice of 

controller parameters,   and  , for each desired orbit. This choice can be done by analyzing Lyapunov exponents of the 

correspondent orbit, as presented in the next section (De Paula and Savi, 2009b). After this first stage, the control stage 

is performed, trying to stabilize desired UPOs. 

3. UPO LYAPUNOV EXPONENT 

 The idea behind the time-delayed feedback control is the construction of a continuous-time perturbation, as 

presented in Eq (2)-(3), in such a way that it does not change the desired UPO of the system, but only its characteristics. 

This is achieved by changing the controller parameters in order to force Lyapunov exponents related to an UPO to 

become all negatives, which means that the UPO becomes stable. In this regard, it is enough to determine only the 

largest Lyapunov exponent, evaluating values of   and   that change the sign of the exponents. In other words, it is 

necessary to look for a situation where the maximum exponent is negative,         , situation where the orbit 

becomes stable (De Paula and Savi, 2009b). 

 The calculation of the Lyapunov exponent from DDEs is more complicated than ODEs. This is because the terms 

associated with the control law of ETDF, Eq (3), involve the knowledge of system states delayed in time. In three 

delayed states,       , the last equation of the system presented in Eq (4) consists in the DDE as follows: 

 
           
                          .              (5) 

 

 Therefore, the calculation of        for time instants greater than   implies in the previous knowledge of the 

function      in the interval         . Equations of this type consist of infinite-dimensional system that presents an 

infinite number of Lyapunov exponents, from which only a finite number can be determined from a numerical analysis. 

However, for the stability analysis of UPOs is sufficient to determine only the maximum Lyapunov exponent (Pyragas, 

1995). 

 In this paper, the calculation of Lyapunov exponent is conducted by approximating the continuous evolution of the 

infinite-dimensional system by a finite number of elements where values change at discrete time steps (Farmer, 1982). 

In this regard, a function      in the interval          can be approximated by   samples taken at intervals    
        . Thus, instead of the two variables shown in Eq (5), now considered     variables represented by the 

vector  , where components           are related to the delayed states of     : 
 

                                                             .         (6) 
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 There are several forms to accomplish this kind of approach. In this work, based on the procedure proposed by 

Sprott (2007), the DDE is replaced by a set of ODEs. Under this assumption, the infinite-dimensional continuous 

system shown in Eq (5) is represented by     finite-dimensional ODEs, as follows: 

 
              

                                                

                    , para         

                   ,              (7) 

 

where          . This system can be solved by any standard integration method such as the fourth-order Runge-

Kutta method. Besides, Lyapunov exponents can be calculated using the algorithm proposed by Wolf et al. (1985). 

Moreover, in order to calculate the exponent of a specific UPO, the system is integrated along the orbit of interest (De 

Paula and Savi, 2009b). 

4. MATHEMATICAL MODEL 

 The mathematical modeling of the heartbeat dynamics was first established by the coupling of nonlinear oscillators 

by Van der Pol and Van der Mark (1928). Thereafter, the Van der Pol equation has been frequently used in theoretical 

models of cardiac rhythms due to the similarity between its characteristics and biological system behaviors, such as 

limit cycle, synchronization and chaos (Grudzinski and Zebrowski, 2004; Savi, 2005). Moreover, the Van der Pol 

equation adapts its intrinsic frequency to the frequency of the external driving signal, without changing its amplitude, 

which is an important feature related to cardiac pacemaker. Santos et al. (2004) discussed other criteria that justify the 

use of Van der Pol equation as a phenomenological model of the heartbeat dynamics. 

 Grudzinski and Zebrowski (2004) proposed a modification of the classic Van der Pol equation by adding two fixed 

points, a saddle and a node, and an asymmetric damping term related to the voltage. This new model allows one to 

simulate important physiological characteristics of a natural cardiac pacemaker. The proposed model is represented by 

the following equation: 

 

                    
           

  
     ,            (8) 

 

where α modifies the pulse shape, which changes the time that the heart receives the stimulus, v1 and v2 compose an 

asymmetric term that replaces the damping term existing in the classic Van der Pol equation, e controls the atrial or 

ventricular contraction period, d is a parameter that arises when the harmonic forcing of classic equation is replaced by 

a cubic term and F(t) is an external forcing. Therefore, the pacemaker is described by the following set of first order 

ordinary differential equations: 

 
        

                            
              

  
        ,          (9) 

 

where         represents the control perturbation. 

4.1. Calculation of Lyapunov Exponents 

 The calculation of the Lyapunov exponents is performed by an alternative representation of the system. By 

assuming      ,       and considering that the variables           represent the delayed states of    over the 

interval           , the set of equations that governs the system dynamics is given by: 

 
        

                                
                           

                       

                                                                 

                    , for         

                   ,            (10) 

 

where          and   is the integration time step. The set of equations given by Eq (10) can be numerically 

integrated using the fourth order Runge-Kutta method and the maximum Lyapunov exponent is calculated using the 

algorithm proposed by Wolf et al. (1985). Besides this, it is important to be pointed out that the fiducial trajectory 

associated with the original system         is replaced by a time series that represents the orbit, obtained in UPO 

identification stage (De Paula and Savi, 2009b). 

 In order to verify the capability of the ETDF control method to stabilize UPOs, the maximum Lyapunov exponent 

of the desired UPO is calculated for different values of controller parameters,   and  . Specifically, it is assumed 

different values of parameter K with the following values of parameter  :    ,       and      . In principle, the 

stabilization of the desired orbit can be achieved for parameters related to negative values of the exponent. Moreover, 
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the choice of parameter values should be done in such a way that the maximum Lyapunov exponent is close to its 

minimum value (Pyragas, 1995). 

5. NUMERICAL SIMULATIONS 

This section presents numerical simulations related to cardiac rhythms. The analysis starts with uncontrolled 

system, presenting periodic and chaotic responses, respectively representing normal and pathological functioning of the 

heart rhythms. It should be highlighted that the normal cardiac rhythm is assumed to be periodic while the chaotic 

response is associated with some pathological functioning as ventricular fibrillation. Afterward, the controlled system is 

investigated. Initially, the stabilization of UPOs that belong to the system dynamics is of concern. After that, chaos 

control method is employed to suppress chaos, avoiding chaotic behavior of the heart. 

5.1. Uncontrolled Behavior 

Numerical simulations of the cardiac pacemaker are carried out showing some aspects of the uncontrolled system 

behavior which means that          . Initially, the parameters proposed by Grudzinski and Zebrowski (2004) are 

used, representing the normal activity of the natural pacemaker. Basically, the following parameters are considered: 

   ,        ,         ,    ,    ,        . Moreover, initial conditions are defined by 
                          . Figure 2 shows the typical system response presenting the steady-state phase space 

and time history. 

       
                (a)      (b) 

Figure 2. Normal activity of the cardiac pacemaker in steady-state: (a) Phase space; (b) Time history 

 Chaotic responses of cardiac systems may be associated with pathological functioning such as ventricular 

fibrillation, which is one of the most dangerous cardiac arrhythmias (Garfinkel et al., 1992, 1995; Gois and Savi, 2009). 

In order to represent this kind of pathology, different parameters are assumed:       ,        ,      ,    , 

    and               , where       and      . Under this condition, the system has a coexistence of 

period-1 and chaotic attractors. Figure 3 shows the basin of attraction of the system for this set of parameters and 

different initial conditions. It is noticeable the coexistence of a period-1attractor (black points) and a chaotic attractor 

(pink points). 

 
Figure 3. Basin of attraction showing the coexistence of a period-1 attractor (black) and a chaotic attractor (pink) 

 Both kinds of responses can be achieved by assuming different initial conditions. The chaotic response can be seen 

in Figure 4 that shows phase space, time history and Poincaré section for                           . By 

changing the initial condition to                     , the period-1 attractor is achieved, as shown in Figure 5. 

This behavior is illustrated by steady-state phase space, Poincaré section and time history. 
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                (a)                 (b) 

    
                (c)                 (d) 

Figure 4. Chaotic activity of the cardiac pacemaker: (a) Phase space; (b) Time history; (c) Poincare section; (d) Phase 

space and Poincaré section 

    
                (a)      (b) 

Figure 5. Periodic activity of the cardiac pacemaker: (a) Phase space and Poincaré section; (b) Steady-state time history 

5.2. Controlling the Heart Rhythms 

This section presents the control of the heart rhythms using the continuous chaos control approach (ETDF). 

Basically, we are interested to avoid the chaotic pathological functioning of the heart. The most interesting situation is 

to stabilize unstable periodic orbits because of the low energy consumption related to this procedure. Nevertheless, in 

terms of clinical point of view, the chaos suppression is also a good alternative. We called chaos suppression a situation 

where the resulting controlled orbit is not an UPO that belongs to the system dynamics, but a generic orbit. Under this 

condition, the controller has great effort being related to high values of the control perturbations. This procedure evades 

the central idea of chaos control but is useful to avoid chaotic behavior that can be critical for life. 

 The first stage of the control procedure is the identification of UPOs embedded in the chaotic attractor. Here, it is 

done by employing the close-return method (Auerbach et al. 1987). After this identification, the maximum Lyapunov 

exponent needs to be calculated by considering different values of the controller parameters for each desired UPO, 

defining regions related to negative exponents. The identification of the controller parameters finishes the first stage and 

then we go to the second stage, where control perturbation is applied to the system in order to achieve UPO 

stabilization. 

 Let us start by analyzing a period-2 UPO embedded in the chaotic attractor. Figure 6 shows the desired orbit and its 

maximum Lyapunov exponent calculated for different values of controller parameters, R and K. Regions associated 

with negative values of the maximum Lyapunov exponent indicate that the system stabilization can be achieved for any 

value of  , including R = 0, using appropriate values of K. Figure 7 shows the steady-state response (phase space and 

time history) and control perturbation imposed by the controller using     and      , considering          , 

corresponding to the periodicity 2, and                           . It is noticeable that the controller is able to 
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stabilize the UPO and, hence, remove the system from an undesirable chaotic behavior through small perturbations. It is 

also important to observe the low values of the control perturbation, which is the essential characteristic of chaos 

control. 

    
                (a)       (b) 

Figure 6. Identified period-2 UPO and its maximum Lyapunov exponent 

    
               (a)                 (b) 

Figure 7. Stabilization of period-2 UPO: (a) Phase space; (b) Control perturbation 

 Next, it is analyzed a period-4 UPO. Figure 8 shows the identified UPO and its maximum Lyapunov exponents 

considering          , corresponding to the periodicity 4. These results show that the stabilization of the orbit can 

be achieved for a range of values of K, when    ,       and      . The stabilization of the period-4 UPO is 

performed by assuming     and      . Under this condition, the system trajectory can be stabilized on the UPO 

but, actually, this stabilization depends on initial conditions.  

    
               (a)                   (b) 

Figure 8. Identified period-4 UPO and its maximum Lyapunov exponents 

 Based on this analysis, observe that, according to initial conditions, the system can achieve a period-1 attractor, 

period-4 UPO or may exhibit chaotic behavior. Initially, it is used as an initial condition               
                 . Under this condition, the period-4 UPO is stabilized as shown in Figure 9 that presents the 

steady-state behavior (phase space and time history) together with the control perturbations. It should be highlighted 

that small perturbations are used to perform the system stabilization. 
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               (a)                   (b) 

Figure 9. Stabilization of period-4 UPO using     and      : (a) Phase space; (b) Control perturbation. 

 By assuming different initial conditions,                          , the stabilization of the period-1 

attractor is achieved. Figure 10 shows the steady-state period-1 response (phase space and time history) and the 

perturbation applied to the system. Note that, using these initial conditions, the system converges to the periodic 

attractor shown in Figure 5 which does not consist in an UPO of the system. Actually, the control perturbations promote 

the transfer between two coexisting trajectories: from the chaotic and to the period-1 attractor. 

    
                   (a)                 (b) 

Figure 10. Stabilization of a period-1 orbit using     and      : (a) Phase space; (b) Control perturbation. 

 By assuming another initial conditions,                           , a different response is achieved. 

Under this condition, the controller does not succeed to promote system stabilization and chaotic behavior persists. 

Figure 11 shows the system response and the control perturbation imposed to the system.  

    
                  (a)                (b) 

Figure 11. Chaotic behavior: (a) Phase space; (b) Control perturbation. 

 However, we observe that it is also possible to stabilize the period-4 UPO of modifying the controller 

parameters, keeping the same initial conditions that originally belong to the chaotic attractor,               
            . Thus, using the controller parameters,     and      , it appears that the period-4 UPO is 

stabilized, as shown in Figure 12.  
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               (a)                 (b) 

Figure 12. Stabilization of period-4 UPO using     and      : (a) Phase space; (b) Control perturbation 

 The ETDF approach usually is not able to stabilize orbits with high periodicity. In order to verify its efficacy to 

control heart rhythms, a period-10 UPO is investigated. Under these conditions, there are no negative exponents, 

pointing that the controller is not able to perform system stabilization. Although the stabilization of some UPOs is not 

possible to be achieved, there is an alternative approach that can be employed to suppress chaos. This procedure evades 

the central idea of chaos control using small perturbations to stabilize UPOs that belong to the system dynamics. 

However, it can be useful to avoid chaotic behavior that can be critical for life. Basically, the chaos suppression is 

promoted by increasing the control perturbations, which is achieved by increasing the controller parameters. De Paula 

and Savi (2009b) showed that this increase can suppress chaos, stabilizing an orbit that, essentially, is not an UPO 

embedded in chaotic attractor. This procedure is associated with a great controller effort being related to high values of 

the control perturbations. Since the clinical point of view is interested to avoid chaotic behavior of the heart dynamics, 

we employ the chaos suppression approach to eliminate chaos in situations where chaos control does not achieve system 

stabilization. In this regard, let us consider the period-10 UPO by assuming controller parameters      ,       and 

          , it is possible to stabilize a period-2 orbit, shown in Figure 13. It is important to mention that, in 

principle, this orbit is not an UPO of the uncontrolled system and this fact becomes clear by observing the high values 

of the control perturbation.   

    
               (a)      (b) 

Figure 13. Chaos suppression using      ,      : (a) Stabilized period-2 orbit. (b) Control perturbation 

6. CONCLUSIONS 

 Chaos control of heart rhythms is of concern by analyzing the dynamical response of a natural cardiac pacemaker. 

Periodic and chaotic behaviors are investigated respectively representing normal and pathological cardiac behaviors. 

The extended time-delayed feedback method is employed to control chaotic signals. The central idea of this control 

strategy is to stabilize unstable periodic orbits (UPOs) embedded in the chaotic attractor through small time-continuous 

perturbations. Results show that the method is effective for the stabilization of UPOs with low periodicity. However, 

the multi-stability related to some set of parameters makes the system control dependent to initial conditions. Therefore, 

according to the initial conditions, the system can be stabilized in different behaviors. The controller also presents some 

problems to achieve stabilization of UPOs with high periodicity. An alternative to deal with situations where the 

stabilization of UPOs cannot be achieved is the chaos suppression. Basically, the idea is to promote the increase of the 

control perturbations defined by the controller parameters. It should be pointed out that, in principle, this suppression is 

not related to the stabilization of natural orbits that belong to the system dynamics and, therefore, it is associated with 

great controller effort. However, it is a useful procedure for the clinical point of view, avoiding undesirable behaviors. 

This kind of control is important because chaotic responses are associated with heart diseases responsible to several 

deathes. Based on the presented results, it is possible to conclude that the ETDF is effective to avoid chaotic, 

pathological behaviors, eliminating undesirable responses of the heart that is dangerous to life. 

 

-3 -2 -1 0 1 2
-4

-2

0

2

4

x
1
 (mV)

x
2
 (

m
V

/s
)

0 100 200 300 400 500 600 700
-1.5

-1

-0.5

0

0.5

1

1.5

Time(s)

C
 (

m
V

/s
)

-2 -1 0 1 2
-3

-2

-1

0

1

2

3

x
1
 (mV)

x
2
 (

m
V

/s
)

0 200 400 600 800 1000
-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)

C
 (

m
V

/s
)



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 

7. ACKNOWLEDGEMENTS 

The authors acknowledge the support of the Natural Sciences and Engineering Research Council of Canada 

(NSERC), and the Brazilian Research Agencies CNPq, FAPERJ and the National Institute of Science and Technology 

on Smart Structures for Engineering (INCT-EIE). The support of the Air Force Office of Scientific Research (AFOSR) 

is also acknowledged.  

8. REFERENCES 

Auerbach, D., Cvitanovic, P., Eckmann, J. -P., Gunaratne, G. & Procaccia, I., 1987, “Exploring Chaotic Motion 

Through Periodic Orbits”, Physical Review Letters, v.58, n.23, pp.2387-2389.  

Christini, D.J., Stein, K.M., Markowitz, S.M., Mittal, S., Slotwiner, D.J., Scheiner, M.A., Iwai, S. & Lerman, B.B., 

2001, “Nonlinear-Dynamical Arrhythmia Control in Humans”, Proceedings of the National Academy of Sciences of 

the United States of America, v.98, n.10, pp.5827–5832. 

Cunningham, W.J., 1954, “A Nonlinear Differential-Difference Equation of Growth”, Mathematics, v.40, pp.708-713. 

De Paula, A.S. & Savi, M.A., 2008, “A Multiparameter Chaos Control Method Applied to Maps”, Brazilian Journal of 

Physics, v.38, n.4, pp.537-543. 

De Paula, A.S. & Savi, M.A., 2009a, “A Multiparameter Chaos Control Method Based on OGY Approach”, Chaos, 

Solitons & Fractals, v.40, n.3, pp.1376-1390. 

De Paula, A.S. & Savi, M.A., 2009b, “Controlling Chaos in a Nonlinear Pendulum Using an Extended Time-Delayed 

Feedback Method”, Chaos, Solitons & Fractals, v.42, pp.2981-2988. 

Farmer, J.D., 1982, “Chaotic Attractors of a Infinite-Dimensional Dynamical System”, Physica D, pp. 366-393. 

Garfinkel, A., Spano, M.L., Ditto, W.L. & Weiss, J.N., 1992 “Controlling Cardiac Chaos”, Science, v.257, pp.1230-

1235. 

Garfinkel, A., Weiss, J. N., Ditto, W.L. & Spano, M.L., 1995, “Chaos Control of Cardiac Arrhythmias”, Trends in 

Cardiovascular Medicine, v.5, n.2, pp.76-80. 

Godoy, M.F., 2003, “Teoria do Caos Aplicada à Medicina”, Dissertação de Mestrado, Faculdade de Medicina de São 

José do Rio Preto, Brasil. 

Gois, S.R.F.S.M. & Savi, M.A., 2009, “An Analysis of Heart Rhythm Dynamics Using a Three-Coupled Oscillator 

Model”, Chaos, Solitons & Fractals, v.41, pp.2553-2565. 

Grudzinski, K. & Zebrowski, J.J., 2004, “Modeling Cardiac Pacemakers with Relaxation Oscillators”, Physica A, v.336, 

pp.153-162. 

Pyragas, K., 1992, “Continuous Control of Chaos by Self-Controlling Feedback”, Physics Letters A, v.170, pp.421-428. 

Pyragas, K., 1995, “Control of Chaos Via Extended Delay Feedback”, Physics Letters A, v.206, pp.323-330. 

Pyragas. K., 2006, “Delayed Feedback Control of Chaos”, Philosophical Transactions of the Royal Society, v.364, 

pp.2309-2334. 

Santos, A.M, Lopes, S.R. & Viana, R.L., 2004, “Rhythm Synchronization and Chaotic Modulation of Coupled Van der 

Pol Oscillators in a Model for the Heartbeat”, Physica A, v.338, pp.335-355. 

Savi, M.A., 2005, “Chaos and Order in Biomedical Rhythms”, Journal of the Brazilian Society of Mechanical Sciences 

and Engineering, v.XXVII, n.2, pp.157-169. 

Socolar, J.E.S., Sukow, D.W. & Gauthier, D.J., 1994, “Stabilizing Unstable Periodic Orbits in Fast Dynamical 

Systems”, Physical Review E, v.50, n.4, pp.3245-3248. 

Sprott, J.C., 2007, “A Simple Chaotic Delay Differential Equation”, Physics Letters A, v. 366, pp.397-402 

Wolf, A., Swift, J.B., Swinney, H.L. & Vastano, J.A., 1985, “Determining Lyapunov Exponents from a Time Series”, 

Physica D, v.16, pp.285-317. 

9. RESPONSIBILITY NOTICE 

The authors are the only responsible for the printed material included in this paper. 


