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Abstract. Some shock-capturing methods can generate spurious solutions when applied to seemingly simple problems
such as the calculation of the flowfield containing a detached shock wave ahead of a blunt body in supersonic flow.
This numerical problem is known as the carbuncle phenomenon. There is still no universally accepted explanation for
the occurrence of the carbuncle phenomenon. The present paper is, therefore, interested in studying the origin of the
carbuncle phenomenon. The flowfields of interest to the present work are modeled by the two-dimensional Euler equations.
The equations are discretized using a cell-centered-based finite volume procedure, and several well-known numerical flux
formulas are used in the spatial discretization of the governing equations. Most test cases addressed in the paper consider
the supersonic steady flow around a blunt body. The work advances the possibility that the carbuncle phenomenon could
be viewed as some form of a Richtmyer-Meshkov instability. Hence, the authors propose that the origin of the carbuncles is
associated with the vorticity generated by the misalignment of pressure gradients across the shock with density gradients
artificially created within the non-physical numerical shock structure. Several results that support such possibility are
discussed in the paper.
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1. INTRODUCTION

It has been known for many years that some shock-capturing methods can generate spurious solutions when applied to
seemingly simple problems such as the calculation of the flowfield containing a detached shock wave ahead of a blunt body
in supersonic flow. The so-called carbuncle phenomenon, first reported by Peery and Imlay (1988), was initially associated
with the use of Roe’s approximate Riemann solver (Roe, 1981) in the spatial discretization of the convective terms in the
Euler equations. However, it was later found to affect several other methods. In its most typical form, the carbuncle
phenomenon consists of a protrusion ahead of the shock, which contains a region of circulating and possibly stagnated
flow (Roe et al., 2005; Ramalho and Azevedo, 2010). The overall flowfield appears to satisfy the Euler equations, at least
in a weak sense and in its discretized form, since solutions including the carbuncle typically satisfy usual convergence
tests. The phenomenon has been observed by several authors, and a fairly extensive literature on its possible causes and
cures has been developed (Quirk, 1992; Pandolfi and D’Ambrosio, 2001; Dumbser et al., 2004; Robinet et al., 2000;
Chauvat et al., 2005; Roe et al., 2005; Kitamura et al., 2007; Henderson and Menart, 2007).

It has been found that the carbuncle appears to occur only with shock-capturing schemes that are designed to preserve
contact discontinuities (Pandolfi and D’Ambrosio, 2001). One explanation is that such schemes provide insufficient
dissipation in the shock region, particularly in the direction parallel to the shock (Quirk, 1992; Pandolfi and D’Ambrosio,
2001; Xu, 1999), thereby suffering from instabilities that may result in the formation of the carbuncle. Dumbser et al.
(2004) analyzed the linear stability of several discretization schemes and concluded that those which are more carbuncle-
prone are also likely to be inherently unstable under certain conditions. Quirk (1992) observed that, although adding
dissipation in the direction parallel to the shock was a common method to suppress the carbuncle in contact discontinuity-
preserving schemes, there were no physical or numerical grounds for resorting to such a “cure”. It was simply a convenient
means to get rid of the problem.

A different type of explanation was attempted by Robinet et al. (2000), who suggested that the origin of the carbuncle
could lie in the physical instability of the surface of discontinuity itself, i.e., the shock wave. According to earlier research
on the problem of shock wave stability, as described, for example, in Landau and Lifshitz (1959), the plane shock wave
formed in a polytropic gas is always stable. Robinet et al. (2000), nevertheless, reported to have found a mode which could
give rise to instability and that had been overlooked by previous researchers. Moreover, the characteristics of this mode
seemed to agree with observations that had been made in connection with the carbuncle phenomenon. This discovery,
however, was later contested by Coulombel et al. (2002), who reaffirmed that a plane shock wave in a polytropic gas could
not, in fact, be physically unstable, and showed that the derivation of Robinet et al. (2000) was incorrect in some respects.

As pointed out by Roe et al. (2005) and Kitamura et al. (2007), we still lack a satisfactory explanation for the occur-
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rence of the carbuncle phenomenon. The observation by Xu (1999) that numerical shock instabilities do not occur when
unstructured meshes are used in the computation, because the shock would not be systematically aligned with the grid, is
not borne out, for instance, by results obtained in the present paper. Kitamura et al. (2007) found that the carbuncle may
affect schemes which incorporate “entropy corrections” or which provide dissipation of a multidimensional character. As
mentioned above, Quirk (1992) noted that there are no physical reasons for the addition of extra doses of dissipation in
critical directions in schemes that otherwise correctly preserve contact discontinuities. It seems certain, however, that the
carbuncle only occurs in shock-capturing methods, since it has never been observed when a shock-fitting method is used.

On the basis of these observations, previous work by some of the present authors (Ramalho and Azevedo, 2010) pro-
posed that the carbuncle phenomenon may result from a physical instability, namely the Richtmyer-Meshkov instability,
whose occurrence is made possible by the fact that the captured shock is not a perfect discontinuity, but rather contains in-
termediate non-physical states. Such an explanation was motivated by the occurrence of real physical “carbuncles” under
certain conditions in experiments with supersonic flows. It should be emphasized that the proposed rationale differs from
the suggestion of Robinet et al. (2000), referred to above, in that the physical instability involved in the present hypothesis
is not that of the sharp and discontinuous shock wave itself, but, as will be explained later, that of the interaction between
a shock wave and density inhomogeneities. Further work by the present authors (Ramalho et al., 2011) also demonstrated
that, if there is no numerical shock structure, for instance, when a shock-fitting method is used, then there is no carbuncle
regardless of the spatial discretization scheme used.

2. GOVERNING EQUATIONS AND NUMERICAL PROCEDURE

The flow is modeled by the two-dimensional Euler equations, which can be written in integral form as

∂

∂t

∫
V

QdV +

∫
S

(E i + F j) · n dS = 0 , (1)

where V denotes a control volume, S represents its boundary and n is the outward normal to the S boundary. The vector
of conserved quantities, Q, and the convective flux vectors, E and F , are given by

Q = [ρ, ρu, ρv, e]
T ,

E =
[
ρu, ρu2 + p, ρuv, (e+ p)u

]T
, (2)

F =
[
ρv, ρuv, ρv2 + p, (e+ p) v

]T
.

In these definitions, ρ denotes the density, p is the pressure, u and v represent the Cartesian velocity components, and e is
the total energy per unit volume.

The equations are discretized using a cell-centered based finite volume procedure, where the discrete vector of con-
served variables, Qi, is defined as an average over the i-th control volume as

Qi =
1

Vi

∫
Vi

QdV . (3)

With this definition, Eq. (1) can be rewritten for the i-th control volume as

d

dt
(Vi Qi) +

∫
Si

(E dy − F dx) = 0 . (4)

In the spatial discretization, the surface integral in Eq. (4) is approximated by

C (Qi) =
n∑

k=1

[E (Qik) ∆yik − F (Qik) ∆xik] , (5)

where k spans the n control volumes which are neighbors of the i-th volume, Eik = E (Qik) and Fik = F (Qik) are the
numerical convective fluxes between the i and k volumes, and the ∆xik and ∆yik terms are calculated as

∆xik = xk2 − xk1 and ∆yik = yk2 − yk1 , (6)

where the points (xk1 ,yk1) and (xk2 ,yk2) are the vertices which define the interface between the i and k cells.
The spatial discretization thus consists in (i) determining the geometry of the control volumes or cells (in other words,

choosing a mesh); and (ii) determining the intercell (or numerical) fluxes, Eik and Fik, by means of an appropriate
scheme. In the present paper, unstructured triangular and quadrilateral meshes are employed, and the intercell numerical
fluxes are calculated using different numerical flux functions. In particular, the results included in the paper have used
Liou’s first-order AUSM+ scheme (Liou, 1996), Jameson’s centered scheme (Jameson et al., 1981), van Leer’s flux-vector
splitting first-order method (van Leer, 1996), Roe’s original scheme (Roe, 1981) and a weighted essentially nonoscillatory
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(WENO) scheme (Wolf and Azevedo, 2006, 2007) constructed using Roe’s approximate Riemann solver. The approach
adopted in the present work to extend the formulation of the first four methods to unstructured meshes follows Azevedo
and Korzenowski (1998) and Figueira da Silva et al. (2000), and it consists in defining a local one-dimensional system
normal to the interface considered. Once the convective operator, C (Qi), is calculated, Eq. (4) can be advanced in time.
In the present simulations, a fully explicit, 5-stage, Runge-Kutta method is used as the time-stepping scheme (Azevedo
and Korzenowski, 1998; Figueira da Silva et al., 2000).

3. THE BASIC TEST CASE

The basic test case considered in the present work and that, actually, motivated the present research is the calculation
of the two-dimensional, supersonic, inviscid flow of a polytropic gas (γ = 1.4) around a cylinder at zero angle of attack.
Several different meshes have been used in the present investigation and a detailed account of these mesh topologies
and refinement levels are discussed together with each study here described. In particular, the geometry of the problem
together with an unstructured triangular mesh are shown in Fig. 1. The previously described finite volume code is used
in all computations (Figueira da Silva et al., 2000; Wolf and Azevedo, 2006, 2007). As already discussed, the code
has implemented several different spatial discretization schemes, and the effects of each particular spatial discretization
scheme are discussed in the forthcoming sections.

(a) (b)

Figure 1. Basic test case: a) Computational domain, mesh and cylinder; b) Detail of a typical triangular mesh.

Uniform freestream flow conditions are initially prescribed throughout the entire domain. As to boundary conditions,
freestream properties are imposed along the far field boundary, i.e., the left part of the computational domain in Fig.
1(a), and slip conditions are enforced on the cylinder surface. Zero-order extrapolation of all properties is employed on
downstream boundaries, i.e., the right limits of the domain in Fig. 1(a). Figure 2(a) shows Mach number contours for
a freestream Mach number (M∞) of 12.2. This particular calculation was performed using a 1st-order accurate spatial
discretization based on Liou’s AUSM+ method (Liou, 1996). The carbuncle is clearly visible above the symmetry line,
between the shock and the cylinder. It must be noted that the mesh itself is not symmetric. Figure 2(b) displays a detailed
view of the carbuncle and shows velocity vectors forming a vortex-like pattern around a region of nearly stagnated flow.
Figure 2(c) shows the evolution of the L2 norm of the density residue and confirms that it decreases by more than ten
orders of magnitude, thereby attesting to the numerical convergence of the solution. It must be emphasized that the
computations that led to the results in Fig. 2 were run in steady state mode, i.e., these calculations were run assuming a
constant CFL number throughout the flowfield.

4. BAROCLINIC VORTICITY GENERATION

It was noted by Roe (2001) and by Roe et al. (2005) that numerically generated carbuncles resemble flows that may be
physically realized by the introduction of plates or spikes in front of a blunt body immersed in supersonic flow. However,
flow structures that resemble carbuncles can also be created by the interaction between axial vortices and shock waves.
For instance, Kalkhoran et al. (1991, 1998) and Cattafesta and Settles (1992) set up experiments in which tip axial vortices
generated by a wedge impinged on detached shock waves formed in front of blunt bodies in supersonic flow. It is observed
that, as a result of this interaction, the shock wave bulged forward in the upstream direction or acquired a conical shape,
behind which a highly unsteady flow pattern develops. Similarly, Thomer et al. (2001) conducted numerical simulations
of the interaction of a plane shock with an axial vortex. Illustrations of the flows that result from such interactions can be
seen in the original cited references or in Ramalho and Azevedo (2010). For all of these cases, the flow patterns that are
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Figure 2. Computation with a carbuncle, M∞ = 12.2. Numerical scheme is AUSM+.

developed, although related to physical phenomena, could well be recognized as the carbuncles which are common in the
CFD literature.

In the context of the investigation of shock waves formed within plasmas, Kremeyer et al. (2002) sought to demonstrate
that the phenomenon of “shock splitting” observed in some experiments should not be attributed to electromagnetic
effects, but rather to the purely gas dynamic effect of the shock, which can curve and bow as it passes through transverse
density (or temperature) profiles. In this connection, those authors observed that vorticity is generated at the shock by
means of the so-called baroclinic mechanism. This corresponds to a source term in the vorticity evolution equation which
has the following form:(

∂ω

∂t

)
B

= grad (ρ) × grad (p) / ρ2 . (7)

Such observation has prompted the present authors to reproduce this phenomenon of shock bowing in the simulation of
the basic test case described in Section 3.. It should also be noted that the transverse density gradients used to deform the
shock in the simulations of Kremeyer et al. (2002) are also present in the interactions of the shock with axial vortices
investigated in Kalkhoran et al. (1991), Kalkhoran et al. (1998), Cattafesta and Settles (1992) and Thomer et al. (2001).
The density profiles of the axial vortices simulated by Thomer et al. (2001), in particular, have a form similar to the one
used in the present work.

5. THE RICHTMYER-MESHKOV INSTABILITY

In 1960, Richtmyer (1960) presented the linear stability analysis of a plane surface subject to a small sinusoidal
perturbation accelerated by a shock. He found that such a configuration would be unstable and his prediction was later
confirmed in experiments reported by Meshkov (1970). This phenomenon, which more generally involves the interaction
of shock waves with density inhomogeneities (Samtaney et al., 1998), came to be known as the “Richtmyer-Meshkov
instability.” The deposition of circulation is the dominant fluid dynamical process in the early stages of the development
of the Richtmyer-Meshkov instability (Samtaney et al., 1998). As a moving shock traverses an interface, a misalignment
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of pressure and density gradients leads to rapid vorticity deposition on the interface by means of the baroclinic mechanism
indicated in Eq. (7). This may occur not only with an interface which is made non-planar because of a perturbation, but
also in the case of a planar interface initially at an angle with the shock.

The problem investigated in Samtaney et al. (1998) is the physical Richtmyer-Meshkov instability that arises as the
shock crosses the oblique interface. However, the same environment that is set up just prior to the physical occurrence
of the Richtmyer-Meshkov instability can be realized on a smaller scale as a result of the spatial discretization of the
flowfield, with the assumption of uniform, averaged flow properties within each cell, and the application of a shock-
capturing method, which produces intermediate states within the numerical shock. If the cells and their interfaces could
be regarded as physical regions of gas at different states separated by physical interfaces, then the portions of the numerical
grid, where pressure and density gradients are of such magnitude and direction as to produce strong vorticity deposition
via the baroclinic mechanism, could be susceptible to instability in roughly the same way as the physical configuration
discussed in Samtaney et al. (1998) is susceptible to the Richtmyer-Meshkov instability.

This observation motivated the definition of a parameter based on Eq. (7) which seeks to measure the intensity of
baroclinic vorticity generation within, and immediately upstream of, the numerical shock (Ramalho and Azevedo, 2010).
As the flow solver advances the computation in time, the maximum value of this parameter throughout the flow field is
calculated according to the following algorithm:

1. At each iteration, find the cells in which the density is larger than the freestream density, using some practical
threshold value, e.g., ρ ≥ 1.01 ρ∞, and which have at least one neighbor cell whose density is approximately equal
to or smaller than that of the undisturbed flowfield, e.g., ρ ≤ 1.01 ρ∞. These cells, which will be named “0-cells,”
should correspond to “intermediate” states created by the shock-capturing method. Store the pressure and density
of these cells as p0 and ρ0, respectively;

2. For each 0-cell found in (1), identify the neighbor cell for which the pressure is largest among the neighbors. Call
this neighbor a “1-cell”. Store its pressure as p1;

3. For each 0-cell found in (1), identify the neighbor whose density is approximately equal to that of the undisturbed
flow field. Call this neighbor a “b-cell”. Store its density as ρb;

4. For each 0-cell found in (1), find the angle between the normal direction to the interface between the 0-cell and the
1-cell and the normal direction to the interface between the 0-cell and the b-cell. Call this angle θ;

5. For each 0-cell found in (1), calculate the quantity

k = |p1 − p0| ∗ |ρb − ρ0| ∗ |sin θ| / ρ20 ; (8)

6. Identify the 0-cell where k is a maximum at the given iteration. Store the value of k and the position of this 0-cell.
Advance the solution to the next time step and return to (1).

This algorithm was successfully applied to some numerical tests in Ramalho and Azevedo (2010) and some additional
tests are reported in the forthcoming sections. As one can see from the cited reference and the discussion in the present
paper, the location of the points where the k parameter attains its largest values, as well as the magnitude of the parameter,
seem to correlate with the occurrence, or the absence, of carbuncles in the computational tests.

6. RESULTS AND DISCUSSION

The first aspect addressed concerns the generation of carbuncles by imposing a transverse density gradient upstream
of the shock and, hence, numerically generating carbuncles that resemble the ones obtained in the experimental results
discussed in Section 4.. Hence, the idea is that the superposition of a narrow region containing a transverse density gradient
upstream of the shock, obtained in the two-dimensional calculation described in Section 3., should make the shock bulge
forward as the calculation is further advanced in time, at least during some transient period. Moreover, the numerical
experiment considered both the spatial discretization with the AUSM+ scheme (Liou, 1996) and with a centered scheme
(Jameson et al., 1981). The latter is a central difference-type scheme in which artificial dissipation is explicitly provided,
and such a scheme is not particularly suited for the calculation of hypersonic flows but, on the other hand, it is not prone
to the appearance of carbuncles.

Velocity vector plots are shown in Fig. 3 for the converged solutions obtained with the AUSM+ scheme and with the
centered scheme, for simulations performed as described in Section 3.. These particular calculations were preformed in
steady state mode, that is, the time march of the equations considers a constant CFL number. Moreover, both calculations
formally converge, i.e., the residues go to machine zero. For instance, the velocity vectors shown in Fig. 3(a) correspond
to the same simulation whose results are shown in Fig. 2. As one can clearly see in Fig. 2(c), there is formal residue
convergence. Furthermore, as expected, the solution with the AUSM+ scheme exhibits a carbuncle whereas the one
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Figure 3. Converged shock solutions (velocity vectors) for blunt body with M∞ = 12.2.
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Figure 4. Upstream density profile associated with axial vortices. This profile is used in the simulations that led to the
results shown in Fig. 5.

with the centered scheme does not. The next step was to superimpose on these converged solutions, upstream of the
obtained shocks, a density gradient and, then, to restart the calculation for a few more iterations. The density gradient
profile used is shown in Fig. 4. Figure 5, then, presents detailed views of the velocity vectors in the region near the shock
protrusion generated by the interaction of the shock with the transverse density gradient after 100 iterations of the restarted
calculation. The very strong carbuncle-like behavior is clearly evident in both plots in Fig. 5. Moreover, one can also
see that the original recirculation region is still present in the results obtained with the AUSM+ scheme (see Fig. 5(a)).
However, if one allows the calculation to progress, this original “carbuncle” will eventually disappear, at least for the
present test case. Furthermore, it is important to emphasize that a deformed shock was obtained not only with the use of
the AUSM+ method, but also with a central difference-type scheme in which artificial dissipation is explicitly provided.

On the basis of these results and other test cases discussed in Ramalho and Azevedo (2010), it appears to be possible
that carbuncles may be “physically” created via the baroclinic mechanism of vorticity generation, where strong pressure
gradients induced by the shock interact with some transverse density gradients. In the experiments discussed in Section
4.and in the above results, the transverse density gradient is externally provided, either artificially or by means of axial
vortices impinging on the shock. The aspect that the authors are interested in understanding is precisely the source of
such “spurious” baroclinic interaction in the calculation of the flow by a shock-capturing method. Since carbuncles have
never been found when a shock-fitting procedure is used, it seems that a possible source of the instability associated
with the carbuncle could be found by investigating whether the intermediate non-physical states generated by shock-
capturing schemes have the potential of inducing baroclinic vorticity generation, particularly in the transient stages of the
calculation.

Another set of tests conducted in the present work addressed the effects of the spatial discretization schemes. Hence,
besides the AUSM+ and centered schemes, other spatial discretization schemes have been used as previously discussed.
For instance, the same basic test case was also run using a 2nd-order WENO scheme (Wolf and Azevedo, 2006, 2007),
constructed using the Roe scheme for its numerical flux function, and with the same unstructured triangular mesh shown
in Fig. 1. The results are shown in Fig. 6, which presents both Mach number and dimensionless density contours super-
imposed on flow streamlines, for the relevant region upstream of the blunt body. The carbuncle is again clearly visible in
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Figure 5. Velocity vectors at iteration 100, starting with upstream transverse density gradient superimposed to previous
converged shock solutions, M∞ = 12.2.

these figures, as well as the slight protusion of the shock due to the presence of the recirculation region just downstream
of it. The results in Fig. 6 also represent a fully converged steady state solution. For the several calculations performed,
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Figure 6. Inviscid calculation of the blunt body flow for M∞ = 12.2 with a 2nd-order WENO scheme. Streamlines
superimposed to property contours.

simulations with the centered scheme (Jameson et al., 1981) and simulations with the 1st-order van Leer scheme (van
Leer, 1996) did not yield carbuncles, regardless of the mesh used. On the other hand, all calculations that used AUSM+

(Liou, 1996) or the Roe scheme (Roe, 1981) as their basic numerical flux function have yielded results with carbuncles. In
that regard, as already shown, the WENO scheme (Wolf and Azevedo, 2006), built using the Roe approximate Riemann
solver, has also resulted in carbuncles. The use of constant CFL or constant time step in the numerical integration does
not change the characteristics of the result, as far as the appearance of carbuncles in the flow is concerned.

All of the computations described so far have assumed a constant CFL number and, therefore, one was clearly seeking
a steady state solution. It was observed, however, that some calculations, specially with finer grids and using higher order
methods, do not yield steady results. In particular, in the present case, computations have been performed with 2nd- and
3rd-order WENO schemes (Wolf and Azevedo, 2006) and, for some cases, typically with finer grids, the results were
unsteady. Hence, computations have also been performed for a constant time step throughout the flowfield, such that the
resulting computational transient could have some physical meaning, despite the impulsive start initial condition. It has
been observed that, after the detached shock wave establishes itself, and regardless of whether the solution converges
to a steady state or not, carbuncles are clearly generated at the shock. They grow in size and are, eventually, shed and



Proceedings of COBEM 2011
Copyright c⃝ 2011 by ABCM

21st International Congress of Mechanical Engineering
October 24-28, 2011, Natal, RN, Brazil

x

y

-0.3 -0.2 -0.1 0 0.1
-0.1

0

0.1

0.2

0.3 rho

6.5
6
5.5
5
4.5
4
3.5
3
2.5
2
1.5

(a) t = 0.0128

x

y

-0.3 -0.2 -0.1 0 0.1
-0.1

0

0.1

0.2

0.3 rho

6.5
6
5.5
5
4.5
4
3.5
3
2.5
2
1.5

(b) t = 0.0684

x

y

-0.3 -0.2 -0.1 0 0.1
-0.1

0

0.1

0.2

0.3 rho

6.5
6
5.5
5
4.5
4
3.5
3
2.5
2
1.5

(c) t = 0.0836

x

y

-0.3 -0.2 -0.1 0 0.1
-0.1

0

0.1

0.2

0.3 rho

6.5
6
5.5
5
4.5
4
3.5
3
2.5
2
1.5

(d) t = 0.1200

Figure 7. Inviscid calculation of the blunt body flow for M∞ = 12.2 with a 2nd-order WENO scheme. Instantaneous
particle paths are superimposed to density contours and time is reported in dimensionless units after the impulsive start of

the computation.

convected by the flow. For most calculations, however, this process converges to a steady state solution with a carbuncle
immediately downstream of the shock, independently of the simulation being run with a constant CFL or a constant time
step. Further visualization of this convergence process can be seen in Fig. 7, which shows calculations with the same
2nd-order WENO scheme previously discussed. The difference is that, in this case, the simulation is run with a constant
time step. The figure shows four snapshots of the flow solution for the same basic test case, visualized in terms of density
contours superimposed to instantaneous particle paths. Actually, in this case, the particle paths will become streamlines,
because the solution does converge to steady state. However, the authors are not calling them streamlines yet in the figure,
because these are still snapshots of an unsteady calculation, which is evolving to a converged solution. One can clearly see
that the instantaneous flow visualization shown in Fig. 7(c) seems actually more similar to the final converged solution,
shown in Fig. 6, than the result in Fig. 7(d). However, as already mentioned, carbuncles are created at the shock, grow
in size and are convected by the flow, except that, in this particular simulation, the solution converges to a steady flow
configuration.

The final aspect addressed in the present work concerns the test of the parameter, defined in Section 5., that attempts to
measure the intensity of baroclinic vorticity generation in the numerical shock. Ramalho and Azevedo (2010) have run
several tests with this, so-called, k parameter, including tests for a supersonic blunt body flow, as the test case used in
the present paper, and tests for a planar shock wave propagating down in a duct. Further investigation of the use of the k
parameter to correlate the occurrence of maximum values of spurious vorticity generation in the numerical shock structure
and the initial appearance of carbuncles is also reported in Ramalho et al. (2011). The results ran in the context of the
present work further support the conclusion that there is a strong correlation between the spurious vorticity generation
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in the shock wave via the baroclinic mechanism, as measured by the k parameter, and the occurrence of carbuncles in
the numerical solution. Furthermore, the simulations have shown that some methods have a tendency of generating very
large values of k, whereas others yield very low levels of k for the same problem and, even, the same computational grid.
The former methods have carbuncles, whereas the latter do not. In the interest of brevity, the main observations from the
simulations which attempt to verify how the k parameter could be related to carbuncle appearance can be summarized as
follows.

1. If one plots the maximum value of the k parameter over the flowfield as the iterations proceed, it becomes clear
that the maximum value of the k parameter over the flowfield attains a series of peaks as the calculation evolves
from the initial freestream flow imposed over the entire domain to a shock wave that detaches itself away from the
surface of the cylinder.

2. The geometric location of the cells where k attains such peak values, as the computation evolves over time, cor-
relates with the trace of the spatial positions in the flowfield where carbuncles are being formed as the solution
converges.

3. The overall highest value of the k parameter throughout the simulation correlates with both the location where a
negative velocity component in the freestream direction first appears, for the blunt body flow simulation, and the
instant of time, along the simulation, in which such a situation occurs. It must be observed that the first occurrence
of a negative velocity component in the freestream direction, for the present test case, gives an indication of the first
stage in the development of a vortex characteristic for the carbuncles.

4. Spatial discretization schemes, which are prone to yield solutions with carbuncles, typically have fairly large values
of maximum k at the shock wave throughout the calculation process. On the other hand, schemes which are known
not to produce carbuncles have much lower values of maximum k throughout the history of the simulation.

7. A SHOCK-FITTING PROCEDURE

Although the evidence provided by all the tests previously discussed seemed quite compelling, another form of looking
at the problem was envisioned in order to further demonstrate the present proposal. Since the origin of the problem seems
to be associated to the nonphysical states which necessarily appear within the numerical shock structure, previous work
(Ramalho et al., 2011) has considered an additional test for such hypothesis. A shock-fitting procedure (Salas, 2010) for
steady flow was developed for the unstructured conservative finite volume code described in Section 2.. The objective was
to verify whether carbuncles develop in the flowfield if the same code is run in a shock-fitting mode. If no carbuncles
appear, this would support the proposal emphasized in the present work. Further details on shock-fitting methods and, in
particular, on the concept of the “floating” shock-fitting method for unstructured meshes can be seen in Salas (2010) and
Paciorri and Bonfiglioli (2010). A detailed account of the procedure implemented by the present authors is described in
Ramalho et al. (2011). The results in this last reference clearly indicate that no carbuncles appear when the code is run in
shock-fitting mode, regardless of the spatial discretization scheme used. Therefore, the authors believe that such results
lend further support to the proposal of the present paper.

8. CONCLUDING REMARKS

The paper presents an investigation of a possible explanation for the generation of “carbuncles” in high speed flow
solutions calculated by some shock-capturing schemes. The main argument put forward in the paper is that, by intro-
ducing nonphysical states in the solution, shock-capturing schemes could create the conditions for the development of an
instability that is physically and inherently related to the interaction of shock waves with density inhomogeneities, the
so-called Richtmyer-Meshkov instability. Several simulations of 2-D inviscid flows over a blunt body have been obtained
and these calculations considered a wide variety of numerical spatial discretization schemes. Some of these computations
were run in steady state mode, i.e., using a constant CFL number throughout the flowfield, whereas others considered
a constant time step. All simulations indicated that carbuncles are formed at the detached shock wave. Moreover, all
simulations corroborate the present proposal, that is, that the origin of the carbuncle phenomenon seems to be associated
with density and pressure gradient misalignments due to the nonphysical states which appear within the numerical shock
structure. Furthermore, previous calculations, in which a shock-fitting procedure has been coupled to the present code,
demonstrate that no carbuncles appear when the code is run in shock-fitting mode. Hence, in summary, it seems that
there is some very compelling evidence that carbuncles originate due to a Richtmyer-Meshkov-type instability, owing to
the interaction between shock waves and density inhomogeneities, which are created within the nonphysical structure of
numerical shock waves in shock-capturing schemes.
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