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Abstract. In the realm of simulation studies for heat transfer in duct-flow applications, this paper proposes a comparison
between hybrid solution strategies for solving steady heat transfer problems within channels. The Generalized Integral
Transform Technique (GITT) is employed as the main solution methodology; however, different solution approaches are
investigated in order to determine advantages and drawbacks of each alternative. The employed solution strategies
are focused on the solution of the transformed system rather than on the integral transformation of the problme. The
presented results can serve as a guidance for choosing an optimum solution methodology for thermally developing heat
transfer using GITT implementations.
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NOMENCLATURE

A,B, C,D,M coefficients matrices
H duct spacing
I truncation order
I identity matrix
k thermal conductivity
L lentgh scale for thermal entry region
N norm
Nu Nusselt number
p auxiliary vector in shooting scheme
Pe Péclet number
q̇′′ heat flux
T temperature
u axial velocity component
x, y axial and transversal coordinates
Y eigenfunctions

Greek Symbols
α thermal diffusivity
γ eigenvalue in algebraic problem
η, ξ dimensionless coordinates
µ eigenvalue in differential problem
ω generalized boundary condition parameter
θ dimensionless temperature
Subscripts
( )in inlet
( )m mean stream
( )min minimum
( )max maximum
( )w duct wall
Superscripts
( )∗ filtered quantity
( )+ modified quantity
(¯) transformed quantity

1. INTRODUCTION

The Generalized Integral Transform Technique (GITT) (Cotta, 1993) has been demonstrated to be a powerful tool for
solving a variety of convection-diffusion problems. The technique is based on using orthogonal eigenfunctions expan-
sions for expressing the unknown dependent variables; however, different from the Classical Integral Transform Tech-
nique (Mikhailov and Özişik, 1984), the transformation of the original problem needs not lead to a decoupled system,
making the method applicable to a large number of problems. The resulting transformed system is usually composed of
a set of ODEs, which can be readily solved by well-established numerical routines that enable user-prescribed accuracy
control. This, together with the analytical nature of this technique allows for better global error control while compared to
traditional domain discretization methods. The main drawback usually associated with the GITT is that a notable amount
of analytical work can be required; nevertheless this problem can be circumvented by the usage of symbolical compu-
tation (Cotta and Mikhailov, 1997, 2006). Some of the most recent applications of the Generalized Integral Transform
Technique include, convective heat transfer in flows within wavy walls (Castellões et al., 2010), hyperbolic heat con-
duction problems (Monteiro et al., 2009), conjugated conduction-convection problems (Naveira et al., 2009), transient
diffusion in heterogeneous media (Naveira-Cotta et al., 2009), heat and mass transfer in adsorption (Hirata et al., 2009),
atmospheric pollutant dispersion (Almeida et al., 2008) and dispersion in rivers and channels (de Barros and Cotta, 2007),
heat transfer in MHD flow (Lima et al., 2007), applications to irregular geometries (Sphaier and Cotta, 2002), solution
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of the Navier-Stokes equations (de Lima et al., 2007) and the boundary layer equations (Paz et al., 2007), wind-induced
vibrations on overhead conductors (Matt, 2009), among others. A very recent study (Sphaier et al., 2011) was aimed
at developing a unified solution algorithm for solving a general transient problem, facilitating the implementation of the
GITT and allowing a greater number of user to readily employ the technique. The purpose of this paper is to compare
the performance of different solution strategies using the GITT. The problem of steady thermally developing flow within
parallel plates, with and without axial diffusion, is selected for the comparison analysis. The performance of the differ-
ently employed strategies is compared by analyzing the convergence rate with the gradually increasing truncation order.
In addition, a comparison of CPU times is presented for demonstrating the amount of computational resources consumed
by each strategy.

2. CONVECTION-DIFFUSION PROBLEM

In order to illustrate the proposed methodology, a general problem of flow within parallel plates is considered, which
written in dimensionless form is given by:

1

2
u∗

∂θ

∂ξ
= Pe−2H

∂2θ

∂ξ2
+

∂2θ

∂η2
, in 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1, (1a)(

∂θ

∂η

)
η=0

= 0, (1− ω) θ(ξ, 1) + ω

(
∂θ

∂η

)
η=1

= 1, θ(0, η) = 0,

(
∂θ

∂ξ

)
ξ→∞

= 2ω, (1b)

where ω is a parameter that indicates the type of boundary condition at the solid wall. For constant wall temperature one
finds that ω = 0,whereas for constant wall heat flux ω = 1. The velocity is given by the Hagen-Poiseuille profile:

u∗ =
3

2

(
1− η2

)
, with η = 2 y/H, (2)

and the employed dimensionless parameters and variables are defined as:

PeH =
uavH

α
, η =

y

H/2
, ξ =

x

L
, L =

H

2
PeH , θ =

T − Tmin

Tmax − Tmin
, (3a)

For constant wall heat flux, Tmax and Tmin are defined as

Tmax = Tin +
(H/2)

k
q̇′′w, Tmin = Tin, (3b)

whereas for constant wall temperature (isothermal wall), these are defined as:

Tmax = Tw, Tmin = Tin, (3c)

Once the dimensionless temperature is calculated, the Nusselt number is computed from:

Nu = Nu(ξ) =
4

θw − θm

(
∂θ

∂η

)
η=1

, with θw = θ(ξ, 0), θm =

∫ 1

0

u∗ θ dη. (4)

3. Integral transformation

Since the η-direction is non-homogeneous a filter is proposed, based on the following solution separation:

θ(ξ, η) = θF (η) + θ∗(ξ, η) (5)

The selected filter problem that removes the non-homogeneous terms in the transversal direction is given by:

d2θF
dη2

= ω, θ′F (0) = 0, (1− ω) θF (1) + ω θ′F (1) = 1, (6a)

which yields (generalized solution valid for ω = 1 or ω = 0):

θF (η) =
1

2
ω η2 + (1− ω) (7)

With the previously proposed filter, the following filtered problem is obtained:

1
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u∗

∂θ∗

∂ξ
= Pe−2H
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∂ξ2
+
∂2θ∗

∂η2
+ ω, in 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1, (8a)(
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θ∗(0, η) = −θF (η),

(
∂θ∗

∂ξ

)
ξ→∞

= 2ω, (8c)
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The solution of the filtered problem is obtained by applying the Generalized Integral Transform Technique (Cotta,
1993), based on the following integral-transform pair:

Transform =⇒ θ̄∗n(ξ) =

∫ 1

0

θ∗(ξ, η)Yn(η) dη, (9a)

Inversion =⇒ θ∗(ξ, η) =

∞∑
n=1

θ̄∗n(ξ)Yn(η)

N(µn)
, (9b)

whereN(µn) is the norm of an eigenfunction Y associated with an eigenvalue µn. A commonly adopted solution strategy
consists of employing a simple eigenvalue problem based on Helmholtz equation:

Y ′′n (η) + µ2
nYn(η) = 0 for 0 ≤ η ≤ 1, Y ′n(0) = 0, (1− ω)Yn(1) + ω Y ′n(1) = 0. (10)

For ω = 0 (constant wall temperature) the previous problem leads to the following solutions:

Yn(η) = cos(µn η), with µn =

(
n− 1

2

)
π, for n = 1, 2, 3, . . . (11a)

and the norms of the eigenfunctions are given by:

N(µn) =

∫ 1

0

Y 2
n (η) dη =

1

2
. (11b)

Alternatively, for ω = 1 the eigenvalue problem leads to the following solutions:

Yn(η) = cos(µn η), with µn = nπ, for n = 0, 1, 2, 3, . . . (12a)

and the norms are given by:

N(µn) =

∫ 1

0

Y 2
n (η) dη =

{
1, for n = 0,
1/2, for n > 0,

(12b)

The integral transformation of the filtered problem is performed by operating the filtered equations with the integral
transform operator, leading to:

Pe−2H θ̄∗
′′
n(ξ) − 1

2

∞∑
m=0

An,m θ̄∗
′
m(ξ) − µ2

nθ̄
∗
n(ξ) = −ω̄n, (13a)

θ̄∗n(0) = b̄n = −
∫ 1

0

θF (η)Yn(η) dη, lim
ξ→∞

θ̄∗
′
n(ξ) = 2 ω̄n, (13b)

for n = 0, 1, . . . ,∞, in which the An,m and ω̄n coefficients are given by

An,m =
1

N(µm)

∫ 1

0

u∗(η)Yn(η)Ym(η) dη, ω̄n = ω

∫ 1

0

Yn(η) dη. (14)

This system is a general form, valid for both constant wall heat flux and isothermal wall; nevertheless, for the isothermal
wall situation Y0(η) = 0 and there is no need to calculate θ̄∗0(ξ), such that the system (13a)-(13b) (and corresponding
summations) is modified to start from i = 1 instead of i = 0. Once the solution of the transformed system (13a)-(13b)
is accomplished, the dimensionless temperature profile can be directly obtained using the inversion formula (9b), and the
Nusselt number is readily computed from equation (4).

4. SOLUTIONS STRATEGIES FOR TRANSFORMED SYSTEMS

This section presents different solution approaches for the transformed systems obtained in the previous sections.

4.1 Numerical integration of transformed system

The first step towards solving the infinite system of equations given by the integral transformation is to reduce it to
a finite representation by truncation to a limited number of terms (denoted the truncation order), I . After truncation, the
infinite representation given by equations (13a)-(13b) can be written in vectorial form:

θ̄∗
′′
(ξ) − B θ̄∗′(ξ) − D θ̄∗(ξ) = −Pe2H ω̄, θ̄∗(0) = b̄, θ̄∗

′
(ξmax) = 2 ω̄, (15)
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in which the coefficients of b are given by eq. (13b) and matricesB andD are given by:

Bn,m =
1

2
Pe2H An,m, Dn,m = Pe2H µ

2
n δn,m, (16)

where δn,m is the Kronecker delta. In addition to truncating the infinite representation given by equation (13a), the
boundary condition at ξ →∞, was also replaced by a finite value ξmax. Numerically, this value must be sufficiently large
such that the solution for ξ ≤ ξmax is independent of ξmax.

A traditionally employed approach for solving the presented transformed system is via direct numerical integration
using a commercially or publicly available ODE system solver. Naturally, an ODE solver capable of solving boundary
value problems is required due to the nature of the given boundary conditions. For this work, the general-purpose ODE
solver NDSolve, offered by the Mathematica system was employed.

The complexity of the problem is significantly reduced once the effects of axial diffusion are unimportant, which is
generally considered for large Péclet numbers. When this consideration comes into play, a simplified first-order form of
system (13a)-(13b) is obtained:

1

2

∞∑
m=0

An,m θ̄∗
′
m(ξ) + µ2

nθ̄
∗
n(ξ) = ω̄n, θ̄∗n(0) = b̄n. (17)

for n = 0, 1, 2 . . . . After truncation to a finite order I , equations (17) can be written in the following vector form:

Aθ̄∗
′
(ξ) + D+ θ̄∗(ξ) = 2 ω̄, θ̄∗(0) = b̄, (18)

in whichA is given by the integral coefficients in equation (14) andD+ is given by:

D+
n,m = 2µ2

n δn,m. (19)

A traditional way of solving system (18) is, again, by directly employing an ODE solver, as NDSolve. Nevertheless,
the coupling in the derivatives term, will require an implicit solving routine, which may be more involved from a numerical
standpoint. As an attempt to circumvent this obstacle, an alternative form of this system is proposed by employing the
inversion of matrixA:

θ̄∗
′
(ξ) = M θ̄∗(ξ) + g, where g = 2A−1 ω̄, M = −A−1D+. (20)

The numerical solution of (20) will generally require less computational resources than solving (18). On the other hand,
one needs to numerically invert matrix A for arriving at equation (20), which could also be time-consuming. In order to
determine the best alternative, both numerical solutions will be analyzed and properly compared.

4.2 Analytical solutions for no axial diffusion

After discussing purely numerical solutions for transformed systems, this and the following section present analytical
and semi-analytical approaches for solving the coupled system of equations. Due to the linear character of the problem
solutions involving analytical integration of the ODE system can be achieved. The solution of the simplified case without
axial diffusion is first presented, because of its simpler form.

4.2.1 Isothermal wall

For constant wall temperature, g = ω̄ = 0 and hence equation (20) leads to a homogeneous form, which, together
with the inlet condition in eq. (18), admits the simple closed-form analytical solution:

θ̄∗(ξ) = C b̄, with C = exp (M ξ) , (21)

where C is a matrix exponential (Greenberg, 1998). Although a closed-form analytical solution is obtained, this solution
approach requires the numerical inversion of matrix A and a numerical evaluation of a matrix exponential, which might
be more time-consuming than the direct numerical solution of the ODE system.

4.2.2 Constant wall heat flux

For the constant wall heat-flux solution, at first, one could attempt a modified solution by including a particular solution
to equation (21), in the form

θ̄∗(ξ) = C (b̄− x) + x, com x = M−1 g; (22)
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however, this formula cannot be applied because theM matrix is not invertible, since it has the following structure

M =


0 M0,1 . . . M0,I

0 M1,1 . . . M1,I

...
...

. . .
...

0 MI,1 . . . MI,I

 (23)

due to the zero eigenvalue present in the matrix D+. Another way of viewing this problem is that the constant vector x
cannot be used as a particular solution to equation (20) because λ = 0 already produces a constant vector as a solution.

In oder to obtain a correct solution for the constant wall heat flux case, the following change of variable is proposed:

θ̄∗(ξ) = Qz(ξ). (24)

Substituting equation (24) in equations (20) and rearranging yields:

z′(ξ) = (Q−1MQ) z(ξ) + h, z(0) = a, where h = Q−1 g, a = Q−1 b̄. (25)

Once the matrixQ is constructed by using the eigenvectors ofM as columns, the following decoupled system is obtained:

z′i(ξ) = γi zi(ξ) + hi, (26)

where γis are the eigenvalues ofM . Since the only null eigenvalue is γ0, the following solutions are obtained:

zi(ξ) = (ai − xi) exp(γi ξ) + yi ξ + xi, for i ≥ 0, (27)

in which the coefficients xi and yi are given by:

y0 = h0 x0 = 0, yi = 0, xi = −hi
γi
, for i > 0. (28)

Finally, by employing equation (24), the following solution for the transformed potentials is obtained:

θ∗i =

I∑
j=0

Qi,j [(aj − xj) exp(γj ξ) + yj ξ + xj ] (29)

Although another closed-form analytical solution is obtained, its computational implementation involves the numerical
evaluation of an inverse matrix and the numerical calculation of eigenvalues and eigenvectors.

4.3 Solution with analytical integration and numerical shooting scheme

A solution for the complete problem, as given by system (15), using analytical integration can also be obtained. The
proposed solution is based on converting this system to a first order initial-value problem by replacing the boundary
condition at ξmax by an initial condition and introducing a new dependent variable vector φ̄:

θ̄∗
′
(0) = p, θ̄∗

′
(ξ) = φ̄(ξ), (30)

which substituted in equation (15) yields:

d

dξ

{
θ̄∗

φ̄

}
=

(
0 I
D B

){
θ̄∗

φ̄

}
− Pe2H

{
0
ω̄

}
(31)

where I is the identity matrix, and 0 is a zero matrix. In this form analytical solutions for the transformed potentials can
be obtained as previously described for the simpler cases without axial diffusion.

4.3.1 Isothermal wall

For a constant wall temperature, equation (31) is simplified since ω̄ = 0, leading to the following solution{
θ̄∗

φ̄

}
= C+

{
b̄
p

}
, (32)

in which

C+ = exp
(
M+ ξ

)
, with M+ =

(
0 I
D B

)
. (33)

where, naturally, all matrices are generated from m = 1 and n = 1 since there is no non-trivial solution for the zero
eigenvalue. Although the obtained solution is obtained via analytical integration, the calculation of the vector b requires
the employment of a numerical shooting method. In this work, the FindRoot function was used for iteratively calculating
the appropriate value of p that will satisfy the boundary condition at ξ = ξmax given in equations (15).
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4.3.2 Constant wall heat flux

When constant heat flux is considered, the same problem generated by the µ = 0 eigenvalue for the case without
axial diffusion occurs. As a result, a solution a procedure similar to that described in section 4.2.2must be employed. The
solution is initiated by defining a vector w:

w =

{
θ̄∗

φ̄

}
, (34)

allowing equation (31), and the associated boundary conditions, to be written in the following form:

w′(ξ) = M+w(ξ) + g+, (35a)

w(0) = b+ (35b)

where

g+ = −Pe2H

{
0
ω̄

}
, b+ =

{
b̄
p

}
, (36)

Once the system is expressed in the above form, the same solution method described for the no axial diffusion case is
employed, such that the solution to equations (35a)-(35b) is given by the following expression:

wi =

∞∑
j=0

Q+
i,j

[(
a+j − x

+
j

)
exp(γ+j ξ) + y+j ξ + x+j

]
, (37)

in which Q+
i,j are the coefficients of a matrix having the eigenvectors of M+ as columns and γ+i are the associated

eigenvalues. In addition, the coefficients x+i and y+i are given by:

y+0 = h+0 x+0 = 0, y+i = 0, x+i = −h
+
i

γ+i
, for i > 0. (38)

where the coefficients hi and ai are components of the vectors below:

h+ = (Q+)−1 g+, a+ = (Q+)−1 b+. (39)

5. RESULTS AND DISCUSSION

Table 1 presents the results for the Nusselt number convergence with the isothermal wall condition and no axial
diffusion. The calculated values of Nu are the same, regardless the employed strategy for solving the transformed system;

Table 1. Nusselt number for isothermal wall and no axial diffusion.
I ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1
10 25.2425 12.0299 7.63289 7.54128
20 24.7301 12.0165 7.63224 7.54077
30 24.7006 12.0151 7.63218 7.54072
40 24.6934 12.0147 7.63216 7.54071
50 24.6909 12.0146 7.63216 7.54071
60 24.6898 12.0146 7.63215 7.54070

100 24.6885 12.0145 7.63215 7.54070
200 24.6883 12.0145 7.63215 7.54070
300 24.6883 12.0145 7.63215 7.54070
400 24.6882 12.0145 7.63215 7.54070
500 24.6882 12.0145 7.63215 7.54070

hence, a single convergence table for this condition is presented. The results show that the convergence rate is worse
for positions near the channel entrance, as expected for GITT solutions due to the proximity to the discontinuous inlet
condition. For ξ = 10−3 as most as 400 terms are required for six-digit convergence, whereas in the vicinity of the fully
developed region (ξ = 1) 60 terms are sufficient for the same precision.
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Table 2 presents a comparison between the amount of CPU time spent for calculating the solution (in seconds) for the
differently employed solution strategies. As can be seen, the direct numerical solution without matrix inversion (as given
by eq. (18)) requires much more time than the other approaches, to point of being prohibitive with for more than 10 terms.
For relatively lower truncation orders (lower than 20 terms) the analytical integration option (eq. (21)) is clearly the best
option. This solution is competitive up to about 50 terms; over this limit the numerical solution given by equation (20) is
the best option. The last column in this table provides the CPU time spent for a fully analytical solution of a slug-flow
(uniform velocity profile) version of the problem, for comparison purposes.

Table 2. CPU time for no axial diffusion with isothermal wall.
Numerical Integration Analytical Integration

I eq. (18) eq. (20) eq. (21) slug-flow
2 4.5×10−3 2.3×10−3 1.4×10−3 7.0×10−4

4 2.8×10−2 5.7×10−3 2.4×10−3 1.0×10−3

6 1.5×10−1 1.0×10−2 4.0×10−3 1.3×10−3

8 80.2 1.5×10−2 6.2×10−3 1.8×10−3

10 – 2.0×10−2 1.2×10−2 2.1×10−3

20 – 5.5×10−2 5.9×10−2 3.7×10−3

40 – 2.0×10−1 5.7×10−1 7.2×10−3

60 – 5.8×10−1 2.1 1.1×10−2

80 – 1.8 7.0 1.6×10−2

100 – 2.9 15.8 1.8×10−2

As similarly presented for the isothermal wall heating condition, tables 3 and 4 illustrat the convergence behavior and
the CPU time for the constant wall-flux solution with no axial diffusion, respectively. As seen for the isothermal wall

Table 3. Nusselt number for uniform wall flux and no axial diffusion.
I ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1
10 29.9970 14.4399 8.57417 8.23559
20 29.9085 14.4327 8.57375 8.23533
40 29.8881 14.4317 8.57370 8.23530
60 29.8860 14.4316 8.57369 8.23530
80 29.8854 14.4316 8.57369 8.23529

100 29.8852 14.4316 8.57369 8.23529
200 29.8851 14.4316 8.57369 8.23529
300 29.8850 14.4316 8.57369 8.23529
400 29.8850 14.4316 8.57369 8.23529

Table 4. CPU time for no axial diffusion with uniform wall flux.
Numerical Integration Analytical Integration

I eq. (18) eq. (20) eq. (29) slug-flow
2 1.4×10−2 3.4×10−3 1.9×10−3 8.6×10−4

4 4.7×10−2 7.3×10−3 3.0×10−3 1.2×10−3

6 1.2 1.0×10−2 4.5×10−3 1.7×10−3

8 78 1.4×10−2 6.7×10−3 2.0×10−3

10 – 2.0×10−2 1.1×10−2 2.5×10−3

20 – 5.4×10−2 5.6×10−2 4.7×10−3

40 – 1.8×10−1 5.5×10−1 8.5×10−3

60 – 3.6×10−1 2.3 1.3×10−2

80 – 7.3×10−1 6.9 1.7×10−2

100 – 1.9 16.3 2.2×10−2

case, better convergence rates are obtained for positions upstream, with 80 terms providing a six-digit converged solution
for ξ = 1 and 300 terms providing the same precision at ξ = 10−3.

The next tables present the results of computational simulations including the axial diffusion effect. The first portion of
table 5 presents the results calculated with the numerical solution of the system given by equations (15) for an isothermal
wall and PeH = 10. This solution was only calculated up to 10 terms since higher truncation orders became prohibitive
using the Mathematica routine NDSolve due to an extremely high computational cost. An important factor that contributes
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to the high computational cost is the elevated working precision (denoted as WP) required. This is the actual number
of digits used in floating-point operations necessary to ensure that the employed ODE solver completed the solution
algorithm in a stable way. This occurs due to the more complex nature of the problem, which now is of second order,
and is a boundary value problem (whose solution is more involved than an initial value one). In addition, the case with
PeH = 10 possess a significant stiffness.

Table 5. Nusselt number for isothermal wall with Pe = 10.
I WP ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1

numerical integration 1 33 8.11742 8.11742 8.11742 8.11742
2 42 15.8436 14.2828 8.38243 7.75794
3 59 23.3481 18.5103 8.19601 7.74381
4 85 30.6041 21.4518 8.16546 7.74123
5 110 37.6244 23.5640 8.15701 7.74044
6 140 44.4207 25.1411 8.15349 7.74014
7 190 51.0030 26.6099 8.15174 7.74000
8 240 57.3797 28.0810 8.15077 7.73993
9 290 63.5599 30.1564 8.15019 7.73989

analytical integration 10 200 69.5288 27.7774 8.14983 7.73986
20 300 120.003 28.7805 8.14897 7.73982
40 600 183.733 28.8168 8.14887 7.73982
60 800 217.714 28.8162 8.14886 7.73982
80 1100 235.837 28.8160 8.14886 7.73982

100 1400 245.504 28.8160 8.14886 7.73982

In order to circumvent the problem encountered with the numerical solution, the alternative strategy that uses analytical
integration and a numerical shooting scheme for calculating the additional inlet condition (as given by equation (32)). The
results are presented in the second portion of table 5. As can be seen, with this solution algorithm a smaller floating-point
precision is required when compared to the previous solution scheme. However, when compared to a traditional 16-digit
precision, a large number of digits are still necessary. This occurs because the matrix exponential calculation is quite
elaborate from a computational standpoint, especially for this stiff case with PeH = 10.

When looking into the convergence behavior with the axial position, one notices that the same behavior seen for the no
axial-diffusion case is repeated here, with the solution convergence rate being much worse for positions near the channel
entrance. Twenty terms yield a six-digit converged solution at ξ = 1, whereas 80 are required for the same convergence
at ξ = 10−2. At ξ = 10−3, 100 terms are hardly enough for a one-digit convergence.

The next table (tab. 6) presents similar results calculated for PeH = 1 also with an isothermal wall condition. Again,

Table 6. Nusselt number for isothermal wall with Pe = 1.
I WP ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1

numerical integration 1 16 8.11742 8.11742 8.11742 8.11742
2 16 16.0111 15.7825 13.8134 8.45040
3 16 23.9401 23.2625 17.9676 8.45242
4 16 31.8560 30.5201 20.9937 8.45088
5 16 39.7508 37.5555 23.1994 8.45041
6 60 47.6223 44.3740 24.8078 8.45025
7 70 55.4698 50.9819 25.9811 8.45018
8 110 63.2931 57.3857 26.8370 8.45015
9 180 71.0920 63.5919 27.4615 8.45013

analytical integration 10 100 78.8666 69.6035 27.9173 8.45012
20 100 155.286 120.397 29.0950 8.45011
40 100 301.107 184.589 29.1472 8.45010
60 100 438.048 218.833 29.1472 8.45010
80 200 566.649 237.101 29.1472 8.45010
100 200 687.418 246.847 29.1472 8.45010
200 300 1189.50 257.510 29.1472 8.45010
300 500 1556.23 257.970 29.1472 8.45010

the same behavior in which the convergence rate improves as the position is further upstream is seen here. However, when
compared to the PeH = 10 case, a worse convergence rate is seen; that is, more terms are necessary for obtaining the
same precision at the same positions. On the other hand, the problem stiffness is reduced for PeH = 1 and a smaller
precision is required for solving the transformed system, both with numerical or analytical integration. Nevertheless,
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the numerical integration – as seen for the larger Péclet solution – requires a greater numerical precision (WP) than
its analytical counterpart, such that for a system of more than 10 equations the numerical integration routine becomes
extremely time-consuming.

The last two tables present the calculated Nusselt number for the uniform wall heat flux condition. Table 7 presents
results of the analytical and numerical integration routines for PeH = 10. As one can observe is this table, the same
trends previously seen for the isothermal wall condition are seen again here. This is corroborated by table 8, which shows

Table 7. Nusselt number for constant wall flux with Pe = 10.
I WP ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1

numerical integration 1 50 28.2280 20.9677 9.52822 8.32780
2 60 43.8673 23.7975 9.29037 8.25660
3 60 56.8196 24.6976 9.26217 8.24322
4 80 67.5323 25.0673 9.25414 8.23906
5 100 76.4172 25.2381 9.25092 8.23737
6 150 83.8209 25.3502 9.24938 8.23655
7 150 90.0227 25.3841 9.24855 8.23612
8 180 95.2505 25.4257 9.24807 8.23586
9 220 99.6870 25.5359 9.24777 8.23570

analytical integration 10 160 103.448 25.3899 9.24758 8.23559
20 290 122.225 25.3933 9.24710 8.23533
30 430 128.001 25.3919 9.24705 8.23531
40 570 130.266 25.3915 9.24703 8.23530
50 700 131.287 25.3913 9.24703 8.23530

the Nusselt results using both integration routines for PeH = 1. Again, a higher working precision is required by the
stiffer large Péclet case, whereas a slower convergence rate is seen for the smaller Péclet case. Comparing the results with

Table 8. Nusselt number for constant wall flux with Pe = 1.
I WP ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1

numerical integration 1 16 29.2474 27.4616 17.9558 8.97248
2 16 48.4083 42.1910 20.3740 8.88656
3 16 67.1320 54.2479 21.2754 8.87046
4 18 85.3885 64.0991 21.6648 8.86552
5 18 103.169 72.1785 21.8503 8.86352
6 22 120.473 78.8449 21.9450 8.86256
7 100 137.302 84.3836 21.9957 8.86205
8 100 153.662 89.0177 22.0239 8.86175
9 200 169.559 92.9226 22.0400 8.86156

analytical integration 10 16 185.003 96.2312 22.0494 8.86144
20 32 316.899 112.460 22.0632 8.86114
30 42 415.600 117.372 22.0631 8.86111
40 60 490.490 119.288 22.0630 8.86110
50 70 548.298 120.150 22.0630 8.86110

the two different heating conditions, a small difference in the convergence rate near the fully developed region (ξ = 1) is
seen, with the uniform temperature case presenting a slightly better convergence rate.

6. CONCLUSIONS

This work presented a comparative analysis of different solution strategies for steady thermally-developing flow us-
ing the Generalized Integral Transform Technique (GITT). Both an isothermal wall and a constant heat flux case were
considered, as wall heating conditions and different values of the Péclet number were analyzed.

The simpler case without axial diffusion was shown to result in first-order ODE systems after transformation, behaving
initial-value problems, whose solution is simpler than that for boundary value problems (which are encountered in the
presence of axial diffusion). Three different solutions were implemented for the case without axial diffusion using closed-
form analytical solutions in terms of matrix exponentials and fully numerical algorithms. The numerical algorithm that
removed the coupling in the first-order term prior to integration resulted, in overall, in a smaller CPU time. The analytical
solution was only faster than this numerical algorithm for very low truncation orders.

For the cases with axial diffusion, boundary value ODE systems were obtained after integral transformation. These
were solved by two different solution approaches: a fully numerical solution and a solution with analytical integration and
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a numerical shooting scheme required to convert the BVP into an IVP form. The fully numerical scheme was demonstrated
to be ineffective for more than 10 terms due to a high CPU time and the large working precision required for the solution.
For these cases, the analytical integration solution with numerical shooting was more effective. Nevertheless, as the
truncation order increases a higher numerical precision is always required, for both computational algorithms.

The results herein presented demonstrate that for cases where axial diffusion must be considered, the solution strategy
with analytical integration is superior to the direct numerical solution using the NDSolve function. As final commentaries,
one must mention that the data presented in this work not only serve to illustrate which solution strategy is superior for
each in case, but also serve as a motivation for the development of different solutions approaches for a variety of problems,
using the Generalized Integral Transform Technique.
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