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Abstract. In this work a study of the two-dimensional transient heat diffusion problems in domains of rectangular and 
elliptical geometries, submitted to boundary conditions of first kind, is carried out. For the problem formulation, the 
diffusive means were considered with variable thermo physical properties. The differential equation that governs the 
energy conservation is non linear. In this context, the diffusion equation was linearized by using of the Transformed 
Integral of Kirchhoff. Transformations of the coordinate systems were realized in order to facilitate the boundary 
conditions application. The differential equation resulting after these transformations doesn't allow the application of 
the variable separation techniques. Thus, it was applied the Generalized Integral Transform Technique – GITT to solve 
the energy equation. As a result of this transformation it was obtained a coupled ordinary differential equation system 
that can be solved through classic numerical methods. Thus, for the determination of the evolution of the temperature 
field it was used the inversion formulas of all the transformations realized. Physical parameters of interest were, then, 
calculated and compared for several cylindrical cross section geometries. 
 
Keywords: Kirchhoff Transform, Generalized Integral Transform Technique, Transient heat diffusion. 

 
1. INTRODUCTION 
 

In recent years, several works dedicated to solve transient diffusive problems can be found in the literature, in 
particular, those that characterize the heat transfer in a nuclear fuel cell. There are several methods and techniques 
available to solve this kind of problem, but it is observed that the most accurate and more powerful are, generally, 
applied to the simplest problems where the results are already known. For fuel cells with a more complex geometry, or 
for temperature dependent fluid properties, analytic solutions and even approximate solutions are more difficult to be 
obtained and are not frequently found in the literature. 

More recently, a generalization of the Integral Transform Techniques (Cotta, 1998) is being developed to obtain 
solutions for the most varied and complex diffusion problems, usually those that do not possess a closed form solution 
by the Classical Integral Transform Techniques – CITT or by the Method of Separation of Variables. This method is 
being used successfully for solving several kinds of diffusive problems such as those involving irregular domains 
(Aparecido et al., 1989), diffusive problems with moving boundaries (Diniz et al., 1999) and non linear diffusive 
problems (Cotta et al., 2003). 

Like this, this work explores the GITT potential, presenting the solution of transient diffusive problems with 
variables sources in fuel cells of the rectangular and elliptical cross section. 

The non linear diffusion equation will be conveniently linearized by using a change of variable known as Kirchhoff 
Transformation (Özisik, 1993). With this procedure are obtained proper conditions to apply the GITT to the energy 
equation, allowing the solution of the temperature distribution within the cell and others parameters of interest. 

 
2. ANALYSIS 

 
For the proposed cell it will be considered that the source term is proportional to the neutron diffusion flux through 

the fuel element. The neutron diffusion within a nuclear fuel rod is a complex phenomenon of difficult solution (Maia, 
2003). Thus, in this work, this problem will be solved by Fick Diffusion Law. For this analysis, it will be considered 
that the thermal properties exhibit significative variations due to the wide variation of temperature. 

As the temperature gradient along the fuel housing is relatively small when compared to the temperature gradients in 
the whole fuel cell, it will be assumed that the temperature is constant along of the fuel element boundary. Also has 
been admitted a uniform initial temperature profile. In this model, the diffusion equation for cylindrical shapes, in a Ω  
domain and Γ  contour, is given by: 
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( ), , 0 i wT x y T T= = ,     ( ){ },x y ∈Ω ; (3) 

 
where, q′′′  represents the average source term, φ (x,y) the non-dimensional and normalized neutron flux in the fuel cell, 

wT  the temperature on the fuel element surface and Ti the initial temperature. 
 
2.1. Linearization of diffusion equation 
 

To facilitate the analytical procedure, the Kirchhoff Transformation will be applied on the temperature potential as 
follows: 
 

( ) ( )
( )
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0
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where ( )0 0k k T=  and 0T  is a reference temperature. With this new variable T ∗ , the diffusion equation is transformed: 
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( ), , 0 i wT x y T T∗ ∗ ∗= = ,     ( ){ },x y ∈Ω ; (7) 

 
where wT ∗  is the Kirchhoff transformed temperature at the boundary, iT ∗ is the Kirchhoff transformed initial temperature 

and ( ) ( ) ( ) ( )* * * *
pT k T T c Tα ρ=  is the thermal diffusivity. In its dimensionless form Eqs. (5), (6) and (7) can be 

written as: 
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where the parameter Lref  is a reference length for each shape considered. In this work, the second order effects due to 
the local variation of τ with the thermal diffusivity in the time transformation of t to τ  was neglected, a procedure 
adopted in similar investigations (e.g., Alves et al., 2006, Pelegrini, 2005 and Maia, 2003). 

All cell shapes present symmetry to the axes X and Y, therefore it is sufficient to consider for solution just the 
domain indicated by the gray shaded area on Figure 1. 
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Elliptical cell cross section Rectangular cell cross section 
Figure 1: Cell shapes geometries. 

 
2.2. Changing the coordinate system 

 
For cells with elliptical cross section, it is not easy the representation in a Cartesian coordinate system. Therefore, is 

adequate to proceed a proper change in the coordinate system in order to facilitate the application of the boundary 
conditions. 
 
2.3. Cell with elliptical cross section 

 
The orthogonal elliptical coordinate system is used to change the original domain with boundary shaped as an 

ellipsis on the plane (X,Y) to a new domain with boundary shaped as rectangle defined on the new change plane (u,v): 
 

( ) ( )cos coshX a u v∗= ,     ( ) ( )sin sinhY a u v∗= , (12a, b) 
 
with 
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L
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= , (13a, b, c, d) 

 
where a is the focal distance, As is the cross section area, Per is the perimeter and v0 is the parameter that defines 
domain boundary on the plane ( ),u v . 

The Jacobian transformation is obtained by using the following equation: 
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,
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. (14) 

 
For a domain having just one quadrant represented by { }0 00 , 0u u v v≤ ≤ ≤ ≤  with 0 2u π=  and 0v  given by  

Eq. (13c), the diffusion equations and boundary conditions in elliptical coordinate system are given by: 
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2.4. Cell with rectangular cross-section 

 
For cell with rectangular cross section, the domain boundary matches naturally with the Cartesian coordinate system 

and for to keep the uniformity in the representation of the space variables and in the identity transformation is applied to 
this geometry the following transformation: 

 
X u= ,     Y v= . (19a, b) 

 
Then, for a domain of a quarter, the diffusion equation and its boundary conditions are rewritten as: 
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2.5. GITT development 

 
To obtain temperature profiles the integral transformation is applied to the diffusion equation. Due to its two-

dimensional characteristic, the potential θ (u,v,τ) is written in terms of expansion in series by using orthonormal 
eigenfunctions obtained from the solution of auxiliary eigenvalue problems for each space coordinate. In this way, it is 
done by parts for each one of eigenvalue problems proposed. 

 
2.5.1. Application of GITT for a cell with elliptical cross section 
 

Consider the following auxiliary eigenvalue problem: 
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2
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The orthogonality properties of the eigenfunctions above allow the development of the following transform-inverse 

pair: 
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∞
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where ( )τθ ,vi  is the transformed potential related to the axis u and Ki(u) are the normalized eigenfunctions given by: 
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Removing the partial derivation related to the variable u is done through the function dot product between the set of 

normalized eigenfunctions, Ki(u), and the diffusion equation. Making use of the respective boundary conditions, of the 
boundary conditions of the eigenvalue problem and of the eigenfunctions orthogonality property, it is achieved the first 
transformation of the partial differential equation that becomes: 
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To proceed the integral transformation related to the coordinate v, consider the following eigenvalue problem: 
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Eigenfunctions ( )vϕ  are orthogonal and can be used to development of the following transform-inverse pair: 
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where i mθ  is the transformed temperature and Zm(v) are the normalized eigenfunctions related to the v axis and given 
by: 
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Removing of the partial derivation related to the variable v is done through the dot product of the normalized 

eigenfunctions, Zm(v), with the one time transformed partial differential equation. Doing use of problem boundary 
conditions, of the boundary conditions of the second eigenvalue problem, and of the orthogonality property of the 
respective eigenfunctions, it is reached finally the integral transformation for the diffusion equation that is given by:  
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where: 
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The Equation (38) must to satisfy the transformed initial condition, given by: 
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The Equation (36) shows the coupled, infinite and linear differential equations system to the transformed potential 

( )imθ τ , that may be numerically evaluated, just truncating the expansion in series of orthogonal functions, for a given 
order i = M  e m = N: 
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1 1
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M N
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ijmn i m i m im
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d
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d
θ τ
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⎡ ⎤+ + + =⎣ ⎦∑ ∑ . (40) 

 
Thus, the potential temperature ( ), ,u vθ τ  for fuel cell is obtained through the inversion formula: 
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where the normalized eigenfunctions Ki(u) e Zm(v) are defined by specified problem: elliptical cross section fuel cell or 
rectangular cross section fuel cell. 

 
2.5.2. Application of the GITT for cells with rectangular cross section 
 

The boundary condition of the rectangular cross section cells differs from the previous problem. But, following the 
same procedure, the application of the GITT leads to a formula similar to the potential: 
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with, ijmnB e imD  is given by Eqs.(37) e (38) and 
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2.6. Neutron Diffusion Equation 
 

How mentioned before, the source term of the energy equation is proportional to the thermal neutrons flux within 
the fuel cell. This particularity may be represented, in a first approximation, by Neutron Diffusion Equation, obtained 
by Fick’s Law and this equation and the boundary conditions are: 
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,     wφ φ= ,     ( ){ },x y ∈Γ ; (45a, b,c) 

 

where φ is the neutron flux, 2
dL  is the length diffusion, D is the diffusion coefficient and the Σa is the absorption cross 

section to thermal neutrons in a fuel cell element. 
Making use of the same procedure described above, the non-dimensional and homogenized diffusion equation and 

the boundary conditions for the fuel cell with elliptical cross section are given by: 
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( ), 0u vφ = ,     { }0 00 ,u u v v≤ ≤ = ; (49) 
 

where φ (u,v) is the non-dimensional and normalized neutrons flux, and J(u,v) is the Jacobian of the transformation, 

0 2u π=  and 0v is given by Eq. (13c). 
For the fuel cell with rectangular cross section the diffusion equation and the boundary conditions are presented in 

Eq. (20) to Eq. (24). 
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The neutron diffusion problem in a nuclear fuel cell, when represented by Fick’s Law, may be calculate by GITT. 

The GITT is applied in the u e v coordinates by internal product of Ki(u), Zm(v) and φ (u,v). Making use of the boundary 
conditions, the following algebraic system can be obtained: 

 

( )2 2

1 1
ij m n jn im i m i m

j n
B Dφ μ λ φ

∞ ∞

= =

+ = +∑ ∑ ,           , 1, 2,3 ...i m =  (55) 

 
Despite all involved terms in the problem to be transformed, the equation system is not coupled due to absorption 

term (Dim) in the resultant equation, which makes the solution matrix of this problem sparse. Finally, the infinite 
equation system above may be calculate truncating the expansion for a given order i = N and j = M sufficiently larger to 
get the required accuracy. 

 
 

2.7. Parameters of Physical Interest 
 
2.7.1. Average Temperature and Normalized Temperature 
 

The average temperature of this problem in a τ instant is given by: 
 

( ) ( ) ( )
0 0

0 0

4 , ,  ,
v u

av
s

u v J u v du dv
A

θ τ θ τ= ∫ ∫ . (56) 

 
2.7.2. Time Constant 

 
For a better problem’s analysis, is convenient to define an appropriate parameter able to verify the heat diffusion 

transient behavior in function of the aspect ratio for elliptical and rectangular cross section cylinders. Thus, the 
maximum normalized potential that occurs in the domain, for any τ  instant, is given by: 

 

( ) ( )
( )

max
max

max
N

θ τ
θ τ

θ
=

∞
. (57) 

 
In Equation (57), may be observed that the potential ( )max maxNθ τ  will be in [0,1] interval. Thus, is defined the time 

constant τc as the parameter that determines the necessary time for the temperature ( )maxθ τ  stay to 1/e of your value in 
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steady state ( )maxθ ∞ (Maia, 2003), that can be represented by: 

 
( )
( )

max max

max

11 0.63212
e

θ τ
θ

⎡ ⎤= − =⎢ ⎥∞ ⎣ ⎦
. (58) 

 
 
3. RESULTS AND DISCUSSION 

 
In order to determine the coefficients ( )imθ τ , the series expansion has been truncated to several choices of values 

for M and N. The parameters Bijmn and Dim have been numerically calculated by a Gauss quadrature method (36 points 
of quadrature) (Pelegrini, 2005) and the equation system resultant has been solved by using the routine DIVPAG of the 
IMSL Library (IMSL Library, 1994). 

For cells with rectangular cross section, it was observed that the series convergence to compute temperature 
distribution becomes slower when the aspect ratio l/L is small (l/L < 0.1), being necessary a high number of terms to get 
stable results over four or five decimal numeric places (N = M > 20). For cells with elliptical cross section, this fact 
happens when the focal distance tends to zero (a → 0), for example, when an ellipse tends toward a circular shape 
(l/L → 1.0). For all cases, it was verified that the series converge to 4 or 5 decimal places when it is truncated to an 
order of approximately M = N = 15. Anyway, even considering a high number of terms in the series, the computer 
processing time is small.  

In Figures 2 and 3 are shown, respectively, the variation of maximum temperature with non dimensional time in 
elliptical cross section cylinders, for several l/L and length diffusion 2

dL .  
In Figures 4 and 5 are presented the behavior of the maximum temperature for rectangular cross section cylinders in 

function of the l/L and length diffusion 2
dL , respectively. Particularly, in the Fig. 4 should be noted the major influence 

of the l/L in a maximum temperature profiles. 
 
 

Figure 2: Variation of maximum temperature with non 
dimensional time, in elliptical cross sections cylinders for 

2
dL   = 1.0 and several l/L. 

Figure 3: Variation of maximum temperature with non 
dimensional time, in elliptical cross sections cylinders for 

l/L = 0.5 and several 2
dL . 

 
 
In Tables 1 and 2 are shown, respectively, the maximum temperature in steady state and maximum time constant for 

several l/L and 2
dL  in elliptical and rectangular cross-sections cylinders, where can be noted that, when the smaller 

length diffusion, major the maximum time constant value. 
Finally, the Figures 6 and 7 show the maximum time constant along l/L-axis for several 2

dL  in elliptical and 
rectangular cross-sections cylinders, where may be noted that, when the smaller length diffusion, major the maximum 
time constant value. 
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Figure 4: Variation of maximum temperature with non 
dimensional time, in rectangular cross sections cylinders 

for 2
dL  = 1.0  and several l/L. 

Figure 5: Variation of maximum temperature with non 
dimensional time, in rectangular cross sections cylinders 

for l/L = 0.5 and several 2
dL . 

 
 
 

Table 1: Maximum temperature in steady state and maximum time constant for several l/L and L2
d  

in elliptical cross sections cylinders. 
 

l/L 
2
dL = ∞  2 2.0dL =  2 1.0dL =  2 0.5dL =  

maxθ  maxτ  maxθ  maxτ  maxθ  maxτ  maxθ  maxτ  
0.10 0.2071 0.1725 0.2004 0.1730 0.1944 0.1734 0.1838 0.1743 
0.20 0.2150 0.1771 0.2082 0.1779 0.2019 0.1786 0.1908 0.1799 
0.30 0.2235 0.1812 0.2165 0.1822 0.2100 0.1832 0.1984 0.1849 
0.40 0.2313 0.1843 0.2241 0.1855 0.2175 0.1866 0.2055 0.1886 
0.50 0.2378 0.1865 0.2305 0.1877 0.2237 0.1889 0.2114 0.1911 
0.60 0.2427 0.1881 0.2353 0.1894 0.2284 0.1906 0.2160 0.1928 
0.70 0.2463 0.1892 0.2388 0.1905 0.2318 0.1917 0.2192 0.1940 
0.80 0.2485 0.1900 0.2410 0.1912 0.2340 0.1924 0.2212 0.1947 
0.90 0.2497 0.1903 0.2421 0.1916 0.2351 0.1928 0.2223 0.1950 
1.00 0.2509 0.1904 0.2425 0.1916 0.2354 0.1928 0.2226 0.1951 
 
 

Table 2: Maximum temperature in steady state and maximum time constant for several l/L and L2
d   

in rectangular cross-sections cylinders. 
 

l/L 
2
dL = ∞  2 2.0dL =  2 1.0dL =  2 0.5dL =  

maxθ  maxτ  maxθ  maxτ  maxθ  maxτ  maxθ  maxτ  
0.10 0.6061 0.5049 0.5712 0.5080 0.5415 0.5109 0.4928 0.5163 
0.20 0.7198 0.6009 0.6631 0.6058 0.6177 0.6103 0.5482 0.6182 
0.30 0.8359 0.6936 0.7538 0.7033 0.6907 0.7113 0.5986 0.7243 
0.40 0.9403 0.7670 0.8345 0.7832 0.7548 0.7964 0.6416 0.8172 
0.50 1.0250 0.8183 0.8999 0.8393 0.8066 0.8568 0.6759 0.8843 
0.60 1.0884 0.8526 0.9489 0.8765 0.8453 0.8967 0.7014 0.9289 
0.70 1.1325 0.8749 0.9829 0.9004 0.8721 0.9221 0.7191 0.9572 
0.80 1.1601 0.8884 1.0042 0.9147 0.8890 0.9373 0.7301 0.9742 
0.90 1.1746 0.8953 1.0153 0.9220 0.8977 0.9450 0.7359 0.9826 
1.00 1.1788 0.8973 1.0186 0.9241 0.9003 0.9472 0.7376 0.9851 
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Figure 6: Maximum time constant along l/L-axis for 
several 2

dL  in elliptical cross-sections cylinders. 

 

Figure 7: Maximum time constant along l/L-axis for 
several 2

dL  in rectangular cross-sections cylinders. 
 
4. CONCLUSION 
 

In this work it was analyzed a class of diffusion problems that characterizes cylindrical fuel cells with rectangular 
and elliptical cross section. The diffusive problem studied presents variables sources in its domain that are proportionals 
to the thermal neutrons flux within the fuel cell. Assuming a general thermal dependency on the physical properties, the 
diffusion equation was linearized through the use of Kirchhoff transformation and, to facilitate the application of 
boundary conditions, the coordinate system was changed from cartesian to elliptical, according to each case. 

Analytical solutions were obtained, by applying the Generalized Integral Transform Technique to the diffusion 
equation, resulting in a decoupled system of linear equations for the transformed potential. The expansion that 
determines the temperature distribution presented a slow convergence for rectangular cells with aspect ratio 
(l/L) tending to zero and for elliptical cells with focal distance (a) tending to zero, being necessary to consider a high 
quantity of terms to achieve accurate results.  

Finally, the results presented are interesting, since that was possible to demonstrate the efficiency of GITT to obtain 
analytical solution for diffusive complex problems, which does not have solution through classical techniques, such as 
separation of variables, as is the case for the problem of fuel cells with elliptical cross section. 
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