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Abstract. Due to emissions law, as the Kyoto protocol, and customer’s requirements, as lower fuel consumption, the 
automotive industry have been having a lot of difficulties to improve their engines. One way to reduce the emissions 
and the fuel consumption is increasing the engine’s power. Turbochargers are a vital turbomachinery’s class designed 
to improve the power for internal combustions engines, and, as a turbomachine, it has hydrodynamic bearings. In this 
case, the lubricant acts like a flexible liking element between the journal-bearing surfaces. The lubrication is essential 
for the turbocharger, because it reduces the wear between the internal parts and prevents the metal contact. Due to the 
shear stresses present in the lubricant, the temperature rises and, consequently, it changes the lubricant properties. 
The viscosity is strongly dependent on the temperature and it is the parameter that strongly influences the fluid flow 
and its dynamic behavior. Therefore, a thermohydrodynamics (THD) analysis allows a more accurate prediction of the 
bearings performance characteristics in rotating machines. So, due to the high importance of turbomachynery for 
engines’ better performance, a rotor model to analyze the dynamic behavior of an automotive turbocharger is 
developed, focusing the study of bearings. 
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1. INTRODUCTION  
 

The dynamic analysis of rotating machines is a complex task, because it involves the analysis of many parameters. 
Therefore, this investigation should not only take into account the dynamic behavior of the rotor, because it is necessary 
to analyze the interaction between other components of the same system, such as the supporting structure and the 
bearings. 

In rotor-bearing-structure systems, the vibration transmitted from the rotor to the bearing generates motion in the 
supporting structure. The interaction between the supporting structure and the bearings retransmit the vibration to the 
rotor. Thus, the bearings play a very important role in this system by transmitting the forces from the rotor to the 
supporting structure and vice-versa. For that reason, in order to carry on a dynamic analysis in rotor-bearing-structure 
systems, the equivalent coefficient of stiffness and damping of the bearings that compose theses systems should be 
previously known. 

The equivalent coefficients determination in hydrodynamic bearings has been a research theme for many years, 
because there is no global methodology applied in all types of bearings without the generation of uncertainties only a 
few methods are developed, in which can be noticed the perturbation analysis, the analytical analysis and the numerical 
approach. 

In order to obtain these coefficients, various lubrication models have been developed to represent the behavior of 
hydrodynamic bearings. These models are classified according to the condition of lubrication, such as hydrodynamic 
(HD), thermohydrodynamic (THD), elastohydrodynamic (EHD) and thermoelastohydrodynamic (TEHD). However, 
regardless of the type of model, pressure determination is usually obtained through of the Reynolds’ equation solution 
(Reynolds, 1886). 

Thermohydrodynamic analysis, have been used in modeling of bearings considering the heating of the fluid due to 
the lubricant shearing during the operation. This heating affects the lubrication properties, since the viscosity decreases 
with the temperature increasing. Consequently, the viscosity reduction causes a decrease in the viscous friction and 
reduces the oil film sustaining capability.  

These effects have been investigated by many authors and with different approach. One of the most significant 
papers on this subject was written by Dowson and March (1966). In this work, the authors suggest that the 
thermohydrodynamic behavior in journal bearing can be investigated from the conduction effects between the fluid film 
and the isothermal shaft. Within this context, Ferron et al. (1983) studied the thermohydrodynamic behavior in plain 
journal bearings and compared the experimental results with the results obtained through a theorical model. This model 
was developed by finite difference method and it takes into account the heat transfer between the film and both the shaft 
and the bearings. Because of the high computational costs, Lund and Hansen (1984) developed an approximated 
analysis of the temperature conditions in a journal bearing. Boncompain et al. (1986) developed a general THD theory, 
where the Reynolds’ equation, the energy equation in the film, the heat transfer equation in the bearing and in the shaft 
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are solved simultaneously. The results obtained in this method were in good agreement with experimental results. 
Similarly, Han and Paranjpe (1990) evaluated the thermohydrodynamic performance of journal bearing through a finite 
volume analysis, and concluded that the oil supply pressure and the oil input configuration significantly affect the 
bearing performance. Fitzgerald and Neal (1992) investigated the temperature distributions and the heat transfer in 
journal bearings through an experimental analysis. The results show that the neglecting of the bearing conduction does 
not lead to serious overestimation in the prediction of bearing operating temperature. This behavior has been observed 
by Cameron (1951) as well. 

Thus, these researches show the importance in studying and investigating the thermohydrodynamic behavior of fluid 
film in journal bearing, because a robust analysis improves the reliability and design optimization, avoiding the 
occurrence of problems during the machine operation. 

 
2. METHODOLOGY 

 
The basis of the modern theory of hydrodynamic lubrication is the Reynolds’ equation (Reynolds, 1886), which 

solution provides the pressure distribution in the oil film. This pressure distribution is the necessary information for 
solving most of the problems in hydrodynamic bearings analysis .The bearing hydrodynamic forces are obtained from 
the integration of the pressure field. 

The theoretical solution of thermohydrodynamic problems requires the determination of the pressure distribution 
and, subsequently, the determination of the temperature variation in the oil film. Therefore, firstly, it is assumed the 
temperature field as being constant and the Reynolds’ equation is solved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schematic representation of the journal bearing. 

 

 
 

Figure 2: Spring-damper model for fluid film. 
 

 
To deduce the Reynolds’ equation is necessary to obtain the velocities in the circumferential (θ ), radial direction 

(y), and axial (Z ) direction (u ,v  e w ) that are determined from the Navier-Stokes equations and the continuity 
equation as follow: 
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So, according to the scheme shown in Fig. 1, the Reynolds’ equation can be written as (Dowson 1962): 
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the oil film, θ and Z  are the circumferential and radial coordinates, respectively, µ  is the absolute viscosity, er  is the 

shaft radius, h  is the thickness of the oil film and ω  is the rotor rotating speed. 
After obtaining the pressure distribution and the velocity field, it is necessary to determine the energy equation. The 

energy equation presented in this paper is simplified. Firstly, the fluid density is considered constant, because there is no 
heat generation source. The specific heat (Cp ) and the thermal conductivity (k ) are also considered constant. 

Moreover, any heat conduction through the axial coordinate has not been considered, because such conduction is 
very small when compared with others present in the system as stated by Dowson (1966). Thus, the conduction through 

of the oil film is the most significant. For this reason, the term 22 / ZT ∂∂ can be vanished.  
In the most of radial bearings, the shear flow is dominant and the temperature variation in the Z  direction can be 

neglected as it is very small, i.e. 0/ =∂∂ ZT . Therefore, the bi-dimensional energy equation (with temperature 
variation in circumferential and radial directions due to the boundaries conditions and the viscous shear) is given by the 
following expression: 
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The viscosity function in the system is determined from the temperature distribution. The relation of the viscosity 

with respect to temperature and pressure is given by Larsson (2000): 
 

( ) ( ) ( )[ ]{ } ( ) ( )[ ]{ }TZ
pTTTp ⋅×++−⋅+⋅= −9

00 101.51167.9lnexp, µµµ  (7) 

 

( )[ ] ( )000 log
135

1log2.4loglog G
T

S +






 +⋅−=+µ          (8) 

 

( ) 






 +⋅+=
135

1log
T

CDTZ ZZ             (9) 

 

Where 0S , 0G , ZD  e ZC  are the lubricant parameters.  

This sequence (steps of solution) is repeated until the equilibrium point is found. The equilibrium is reached when 
the forces, given by: 
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are WFX =  and 0=YF , where W  is the static load. 

Thus, the lubricant will be discretized as a spring-damping model, as can be seen in Figure 2, and characterized by 
equivalent stiffness and damping coefficients K  and B , respectively. 

The equivalence between oil film and equivalent spring and damper sets makes use of simple linearized equations, 
whose response matches with real systems studied. 
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In a coordinate system yx−  with origin in the center of the bearing, and the y  axis in the static load direction 

(Figure 3), the reactions forces in the lubrication oil film are given by Equation (10). 
 

 
Figure 3. Coordinate system. 

 
As said before, the differential equation, that describe the pressure in the lubricant film, is the Reynolds equation 

(Equation 1.). 
The thickness of the oil film is given by: 
 

θθ sincos ⋅+⋅−= yxCrh          (11), 

 
where Cr  is the radial clearance, and x  and  y are the coordinate of the journal center. 

It can be noticed that the reaction forces are function of coordinates x and y , and of the instantaneous velocity of 

the journal center x&  and y&  (“dot” indicates time derivate). So, for small deviations, x∆  and y∆ , measured form the 

static equilibrium ( 0x  and 0y ), a first order Taylor expansion gives: 
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where the coefficients are parcial derivates evaluated in the equilibrium point.  
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At the equilibrium point ( 0x , 0y ), as said before, WFX =0  and 00 =YF . 

In this paper the coefficients are directly evaluated by numerical differentiation by employing a perturbation 
solution. So, the fluid film thickness can be written as:  

 

hhh ∆+= 0             (14), 

 
where: 
 

θθ sincos 000 ⋅+⋅−= yxCrh             (15); 

 
θθ sincos ⋅∆+⋅∆=∆ yxh           (16); 
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3. NUMERICAL MODEL 
 

The modeling of the complete rotating system includes both the rotor journal and the bearings that connects the shaft 
to the supporting structure. The journal, modeled by finite elements, is represented mathematically by matrices of mass, 
stiffness and damping. The rotor is composed of 19 beam elements with circular section. The diameters of these 
elements are, 6 millimeters for the elements between nodes 1 and 9, 8.62 millimeters for the elements between nodes 9 
and 16 and between nodes 18 and 20, and 15.37 millimeters for the elements between nodes 16 and 18. The numbers 
inside the elements, in Figure 4a, represent the length of the element in millimeters. The masses of the rotating parts, 
attached to the shaft, were introduced as lumped masses added in certain nodes. The unbalance forces were placed in 
nodes 5 and 19, corresponding to the location of lumped masses (0.232 milligrams) of the compressor and the turbine, 
lagged in 180° between each other and changing with the rotational speed. The hydrodynamic bearings are placed in 
nodes 10 and 15. In this rotor, a static analysis was performed giving the static load used in the bearings. 

Once this work emphasizes the study of bearings, the details of the finite element model to the shaft can be seen in 
Genta e Gugliotta (1998). 

 

 
a) 

 
b) 

 
Figure 4. a) Scheme of turbocharger. b) Discretized rotor used in numerical simulation. 

 
However, a complete solution of the THD model is very difficult to obtain analytically, for this reason, the 

introduction of numerical methods is necessary. One of the most widely used methods is the finite difference method 
(Morton 2005). This numerical method evaluates the pressure distribution and, by integration, the sustaining forces, 
allowing the application of the perturbation method to calculate the bearings equivalent stiffness and damping 
coefficients. 

In order to accomplish the numerical simulation, some approaches are applied for the boundary conditions of journal 
and bearing. In 1966, Dowson et al. (1966b) experimentally demonstrated that the journal has a small fluctuation of 
temperature, due to its rotational motion. This study allows the isothermal approach to the shaft without expressive 
losses of information. According Cameron (1951), the major part of the heat present in the work fluid is transferred 
through the journal, and Fitzgerald (1972) concluded that bearing conduction can be neglected with no serious 
overestimation in the prediction of the bearing operating temperature. This overestimation is, according to Khonsari 
(1996), about 3% higher. So, the adiabatic condition in the bearing shell was adopted. Therefore, the boundary 
conditions for the energy equation are: heat exchange with the isothermal shaft and adiabatic bearing shell. For the 
Reynolds’ equation the well known Reynolds’ boundary condition was adopted, as stated by Dowson (1962). 
 
4. RESULTS 

 
The input data for the numerical simulation are presented in Table 1. 
 

Table 1. Operation Conditions 
Diameter of the bearing D = 8.62 mm 
Length of the bearing L = 5 mm 

Radial clearance  C = 70 µm 

Load 

1W  = 0.7472 N 

2W  = 0.9714 N 
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Density of the lubricant ρ= 860 Kg/m³ 
Thermal conductivity of the lubricant k = 0.13 W/m.°C 

Reference viscosity ηi = 0.04541 Pa.s 
Reference temperature Ti = 60 °C 

Shaft temperature Te = 120 °C 
 
Since it is difficult to precisely determine the average viscosity of the lubricant film, the supply temperature, which 

is the reference temperature (60 oC), is adopted to a lubricant viscosity for the isothermal analyses.  
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Figure 6. Stiffness Coefficients for the bearing 1 (0.7472 N): a) HD model. b) THD Model. 
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Figure 7. Damping Coefficients for the bearing 1 (0.7472 N): a) HD model. b) THD model.  
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Figure 8. Stiffness Coefficients for the bearing 2 (0.9714 N): a) HD model. b) THD model 
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Figure 9. Damping Coefficients for the bearing 2 (0.9714 N): a) HD model. b) THD model.  

 
Figures 6 to 9 shows that both stiffness and damping coefficients have the same standard behavior. However, it is 

clear that the HD and THD models present different slopes, because for each rotational speed, the shaft has a different 

equilibrium position. This difference can be better seen in the cross-couple stiffness coefficients, xyK  and yxK , where, 

these coefficients reach lower values for the THD model then for the HD model, as the rotational speeds increases. This 
happens due to the viscosity decreasing as a consequence of the temperature increasing. The direct stiffness coefficients 
do not present differences in the shape, but in the magnitude, due to the shaft lower location inside the bearing in the 
THD model, at the same rotation speed. 

Besides,  both models presents the same tendency to the damping coefficients, except the direct coefficients in the 
THD model are lower than in the HD model. About the cross-couple coefficients, because they are given by an self-
adjoint operator, they have the same values, and consequently, the damping matrix is symmetric and it presents 
orthogonal basis formed by eigenvectors. However, this effect does not occur in the stiffness matrice, so the cross-
couple stiffness coefficients are different.  
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Figure 10. Frequency Response for the bearing 1 (0.7172 N): Amplitude. a) HD model. b) THD Model. 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 
 

0 50 100 150 200 250 300 350 400

-150

-100

-50

0

50

100

150

Rotational Speed [Hz]

D
eg

re
e 

[º
]

Phase HD: Node 10

 

 

PhiX
PhiY

 
a) 

0 50 100 150 200 250 300 350 400

-150

-100

-50

0

50

100

150

Rotational Speed [Hz]

D
eg

re
e 

[º
]

Phase THD: Node 10

 

 

PhiX
PhiY

 
b) 

 
Figure 11. Frequency Response for the bearing 1 (0.7472 N): Phase. a) HD model. b) THD Model. 
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Figure 12. Frequency Response for the bearing 2 (0.9714 N): Amplitude. a) HD model. b) THD Model. 
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Figure 13. Frequency Response for the bearing 2 (0.9714 N): Phase. a) HD model. b) THD Model. 

 
The Figures (10) and (11), are about the node 10, that correspond to the bearing 1 described in table (1), which load 

is 0.7472N, while the Figures (12) and (13) correspond to the node 15, where is located the bearing 2 described in table 
(1), with load of 0.9714N. So, analyzing this figures, can be noticed some critical velocities, where the vibration is 
higher, that are located in the initial range of velocities. Also, in the THD model, the vibration peak happens on a 
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difference frequency than in the HD model, i.e., in the THD model, we have a displacement of the critical velocity for 
the right. Moreover, is easy to notice that, due to the decrease of viscosity, the vibration amplitude tends to be higher, 
cause the stiffness of the bearing decrease too. The Figures (14) and (15) shows the rotor shape for both models, and for 
two different rotational speeds. Can be seen that the amplitudes in the THD model are greater than in HD model, due to 
the lower oil viscosity. However, for both models, the operational mode is of rigid body, which is plausible, because the 
natural frequencies of the shaft, corresponding to its bending modes, are much higher than the analyzed range, so they 
are not being excited. 
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Figure 14. Rotor shape at 39 Hz: a) HD model. b) THD model. 
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Figure 15. Rotor shape at 65 Hz: a) HD model. b) THD model. 

 
 
5. CONCLUSIONS 

 
According to the outcome results, some conclusions about the thermohydrodynamic model applied to bearings can 

be stated: 
o Due to the lower viscosity, the equivalent coefficients are different in the THD and HD models. This difference 

is more expressive in the case of cross-couple stiffness coefficients and direct damping coefficients. 
o The thermal influence causes expressive changes in the location of the maximum peak of vibration. 
o The vibration in the THD model present higher magnitude than in the HD model due to the bearings stiffness 

coefficients decreasing. 
The finite difference solution proposed for this problem seems to be very promising and the results present an 

acceptable consistence. 
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