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Abstract. The objective of this work is to propose a topology optimization scheme for the optimum material distribution 

applied to tridimensional structures, which it is competitive and capable of providing high-resolution layouts. The 

proposal is a formulation to minimization of the mass subject to stress criterion (failure function, the topology is 

obtained by optimum distribution of the material in the project domain. In order to solve the elasticity problem, the 

Galerkin Finite Element Method was applied. The process considers tetrahedral elements with four nodes that 

interpolates not only the displacement fields, but also the relative density field. Furthermore, this work proposes to 

combine a stabilized element to avoid checkerboard problems. The design variables are given by the nodal relative 

densities of the finite element mesh using the SIMP material. This formulation uses an integral criterion relaxing an 

exact condition (local criteria), it allows to work with parametric constraints of efficient way. The topology 

optimization problem when considerate some stress criterion, can generate feasible topology results like solutions of 

realistic problems of engineering, but this causes ill-conditioning of the optimization problem. Differently of the 

classical compliance optimization problem, here the topology structure is obtained at final form, ready to be built. 

Finally, analyzing the results, the formulation produces good layouts with definition quality proportional to medium 

size of element used. 
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1. INTRODUCTION  
 

The basic idea behind the concept of topology or layout optimization is the characterization of the body domain by a 

relative density measure denoted by density function ( )ρ x , been x  the position vector of body domain. This function 

characterizes the regions of the body domain which are associated with mass, i. e., with ( ) (0,1]ρ ∈x  and void (without 

structural material), ( ) 0ρ =x . The problem is illustrated in Fig. 1. In order to assure the existence of the solution we 

make use of the composite material with a microstructure approach where the effective homogenized composite 

material has a variable relative density such that ( ) (0,1]ρ ∈x . 

The formulation of the problem is developed to tridimensional models using topology optimization method under 

stress constraint. The classic finite element called linear tetrahedron since its shape functions are linear polynomials. 

This paper is divided at five sections where this introduction is the first one. The second section is dedicated to 

formulation of the problem, This item explains the considerations of the problem of minimizing the mass subjected to 

stress constraints, stability constraints (density gradient control) and side constraints. Furthermore, the material type 

model to be used on the stress optimization (ill-conditioned phenomenon) problem and considerations to the problem of 

stress singularity. The third section corresponds to study of approach of de problem with formulation of FEM (Finite 

Element Model). The fourth section presents some numerical examples of the topology optimization problem by using 

the techniques proposed in the previous sections. Finally, some conclusions are stated in the fifth section. 

 

2. PROBLEM DEFINITION 
 

2.1. Formulation of the Problem 
 

The objective of this work is to determine the optimum layout of the domain. This is obtained by minimizing the 

mass of the structure subjected to an effective von Mises stress constraints and side constrains. This may be illustrated 

in Fig. 1, where we consider an initial simply connected domain. As a result of the topology optimization we determine 

a multi-connected optimum domain.  



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 

 
 

a) Initial domain (b) Final domain 

Figure 1: Definition of the problem 

• Ω  - domain of the body; 

• ∂Ω - boundary, such that, ∂Ω = Γ ∪Γu t
 and Γ ∩Γ = ∅u t

; 

• Γu
 - part of the boundary with prescribed displacement, i. e., =u u ; 

• Γt
- part of the boundary with prescribed traction, i. e., =t t ; 

• b - body force. 

 

The displacement field ( )( ),ρu x x  is solution of: 

 

( ) ( ) o, ,= ∀ ∈a l Hu v v v
 (1) 

 

with 

 

( ) ( ) ( ) ( ), ρ
Ω

= ⋅ Ω∫ Ha du v D ε u ε v
 (2) 

 

and 

 

( ) ( ) ( ), , ,= +vol dista a au v u v u v
 (3) 

 

been ( ),vola u v  are the volumetric terms and ( ),dista u v  the distortion terms. And 

 

( )
Ω Γ

= ⋅ Ω + ⋅ Γ∫ ∫l d d

t

v b v t v
 (4) 

 

( ){ }2
1

o ( ) , at Ω = ∈ Ω = ∈Γ H H uv v v 0 x  and { }o= +H Hu  are variation and displacement allowable fields, 

respectively. 

 

2.2. Model Material Definition 

 

The porous material concept employed here is modeled with the so-called, proportional “fictitious material” model, 

also name as the solid isotropic material with penalization model (SIMP). So, a continuous variable ,  0 1ρ ρ≤ ≤  is 

introduced. In numerical implementations, a small lower bound, 
inf0 1ρ ρ< ≤ ≤ , is imposed, in order to avoid a 

singular FEM problem, when solving for equilibrium conditions equations in the full domain Ω , see Bendsoe and 

Sigmund (1999). The homogenized constitutive equation of the effective material may be fully expressed in terms of 

the relative density of the porous material. 

 

( ) ( )ρ =  
Hσ D ε u

 (5) 

 

where 

 

{ }, , , , ,σ σ σ σ σ σ=T

xx yy zz xy yz zxσ
 (6) 
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( )ρ     = +     
H H H

vol distD D D
 (7) 

 

and 

 

( ) { }Τ11 0
  ,   , , , 0,0,0

0 0

ρ
ε ε ε

 
  = =  

 

H

H

vol xx yy zz

D
D ε

 (8) 

( ) { }Τ

22

0 0
  ,   0,0,0, , ,

0
γ γ γ

ρ
 

  = =  
 

H

dist xy yz zxH
D ε

D  (9) 

 

with 

 

( ) ( )
( )( )11

1
1 1

1
1

1 1 2 1 1

1
1 1

ν ν
ν ν

ν ν ν
ρ

ν ν ν ν
ν ν
ν ν

 
 − − 

−    =   + − − −
 
 
 − − 

H
E

D
 (10) 

 

( )
( )22

1 0 0

0 1 0
2 1

0 0 1

ρ
ν

 
   =   +
  

H E
D

 (11) 

 

ν  is Poisson’s ratio. 

 

( ) ηρ ρ= oE E
 (12) 

 

oE  is the Young’s modulus of solid material and η  is a penalty parameter of “porous material concept”. 

 

Due to the fact to use of stress constraint, it is define a measure to effective stress * ( )σ ρ , according to Duysinx and 

Sigmund (1998) and Duysinx and Bendsoe (1998). 

 

( ) ( )*

η

σ ρ
σ ρ

ρ
=

 (13) 

 

Therefore, the failure criterion of the material defined by von Mises is denoted per: 

 

( )
( )

*

η

σ ρ
σ ρ σ

ρ
= ≤eq

eq y  (14) 

 

σ y  is the allowable stress. 

 

2.3. Stress Singularity Problem 

 
In order to open the degenerated parts of the design space with the possibility of creating or removing holes without 

violating the effective stress constraint we apply the κ-relaxation technique. In this work, is implemented an automatic 

and systematic strategy to reduce the initial perturbation parameter κ. The stress relaxation parameter is decremented, as 

we get closer to the solution. Now, let 0ρ  be the relative density associated with the full material condition. Then, the 

relaxed admensionalized effective stress constraint may be written as: 

 

( )
( )*

0

, ( ) 1 1
, ( ) 1 0 .

σ ρ ρ
ρ ρ κ

σ ρ ρ
 

= + − − ≤ 
 

eq

y

g
u

u
 (15) 
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From this consideration, the relaxed minimization problem may be formatted as: 

 

min ρ
Ω

Ω∫ d
 (16) 

 

such that 

 
*

0

1 1
1 0 ;

σ
κ

σ ρ ρ
 

+ − − ≤ 
 

eq

y
 (17) 

inf 0 ;ρ ρ− ≤
 (18) 

sup 0 , .ρ ρ− ≤ ∀ ∈Ωx
 (19) 

 

3. APPROACH OF THE PROBLEM 
 

3.3. Formulation of the discretized problem 
 

In order to discretize the problem is applied the Galerkin Finite Element Method. It is employed a four nodes 

tetrahedron finite element that interpolates not only the displacement components but also the relative density ρ . 

Consequently, the discretization formulation of the problem way be stated as: 

 

 
Figura 2: Displacement and density fields. 

 

min ρ
Ω

Ω∫ d
 (20) 

 

Subject to: 

 

(i) Stress Constraint: 

 

( )
( ) ( )( )( )

( ) ( )( )
*

sup

, ,
1 0

σ ρ ρ
ρ ρ κ ρ ρ

σ

 
 − + − ≤
 
 

eq

y

x u x x
x x x

 (21) 

 

at this work was proposed the follow global criteria: 

 

( )( ) ( )
1

*

sup

1
ρ, ρ 1 0

σ
ρ ρκ ρ ρ

σΩ

   
= − + − Ω ≤   Ω   

∫
pp

eq

y

g du
 (22) 

 

where, ( ) ( ){ }max 0,=f fx x , for all positive part of ( )f x . 

 

( )
( )

*

max 1 1 0.
σ ρ

ρ κ ρ
σ∈Ω

 
− − − ≤  

 

eq

y
x  (23) 

 

(ii) Side Constraint: 
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inf sup0 and 0 ;    =1,...,  (  is the number of nodes in the mesh)ρ ρ ρ ρ− ≤ − ≤i i i n n
 (24) 

 

(iii) Stability Constraint 

 

( ) ( )
1

1
ρ ; , and

Ω

  
= Ω = 

Ω  
∫

p

p

j ej e
h h x d j x y z

 (25) 

 

with 

 

( )

2

ρ 1  ;   , , and 1, ,

ρ ∂
 ∂ = − = = K

ej e

j

j
h j x y z e n

c  (26) 

The constants xc , yc  and zc  impose a superior limit to the components of the relative density gradient. 

Consider a generic element, according to Fig. 3, with ( ), , ;=n i i ix y zx  1,..., 4=i  vertices coordinates and 

( ), ,=m m m mx y zx  as barycenter coordinates of tetrahedral element.  

 
 

Figura 3: Four nodes tetrahedral coordinates. 

 

min min   p/  1,..., 4= =j
j

d id
 (27) 

min

1
.= = =e e e

x y z
c c c

d  (28) 

 

3.4. Augmented Lagrangian Method 
 

Being ∈ρ X  with { }inf sup
, 1, ,n

i
R i nρ ρ ρ= ∈ ≤ ≤ =X ρ K  and 

en  is the number of elements in the mesh. 

 

Step – 1. Initial Conditions: 0=k , 0λ =k , kµ = 0 , 1,0=erro , ζ , ωk  and tol . 

 

Step – 2. While >erro tol , to do: 

 

(i) Solution of the minimization problem with side constraint: 

 

( )min , , ; , ,ζΠ ∀ ∈ρ λ µ ω ρ X
 (29) 

 

where, 

( ) ( ) ( ) ( )
3

1 1 1

1 1
ρ, ,µ; ,ω ρ , ,λ ζ ζλ ω µ

ζ ω= = =

 
Π = + Λ + Ψ 

  
∑ ∑ ∑
e en n

j j

e e e e e j ej

e j ej

f g h
 (30) 

with 
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( )
( )

2

   ,   if 
2

, ,

   ,   if 
2 2

ζλ
ζλ

ζλ
ζλ ζλ


+ ≥ −


Λ = 

  − < −   

e

e e e e

e e e

e e

e

g g g

g

g
 (31) 

and 

( )
( )

2

   ,   if 
2

, ;  1,...,3.

   ,   if 
2 2

ω µ
ω µ

ω µ
ω µ ω µ


+ ≥ −


Ψ = =

  − < −   

j ejj j j

e e j ej e

j j

e e j ej

j ej j ejj

e

h h h

h j

h
 (32) 

 

(ii) Update of Lagrange multipliers 

 

( )1 2
max 0,λ λ

ζ
+  
= + 

 

k k k

e e eg x
 (33) 

and 

( )1 2
max 0, ;  1,...,3.µ µ

ω
+

  
= + = 

  

k k k

ej ej e

j

h jx
 (34) 

 

(iii) Update of penalty parameters  

 

( )1 1 11
  with  0,1 ,   if γ ζ γ γ ζ ζ

ζ
ζ

+
 ∈ >

= 


k k crit

k

crit  (35) 

and 

( )
1

  with  0,1 ,   if 
  ;  1,...,3.

β ω β β ω ω
ω

ω
+

 ∈ >
= =


k k crit

j j j j j jk

j crit

j

j
 (36) 

 

(iv) Error 

 
1 1 1 1

1 1 2 2 3 3
max , max , max  and  maxλ λ µ µ µ µ µ µ+ + + += − = − = − = −k k k k

e e e e e e e e
e e e e

a b c d
 (37) 

 

so, { }max , , ,=erro a b c d . 

 

Step – 3. End 

 

The problem can be formulated as: 
1 2 3, , , enRλ µ µ µ ∈  and 

1 2 3, , , Rζ ω ω ω ∈ , determinate nR∗ ∈ρ , such that: 

 

( )* arg min , , ; ,  ,   .ζ= Π ∀ ∈ρ ρ λ µ ω ρ X  

 

4. NUMERICAL EXAMPLES 
 

4.1. Problem #01 

 

 Consider a problem according to Fig. 4. The case consists in one block of dimensions: 5.0=a m , 20.0=b m  and 

4.0=c m . The properties material are: Young’s modulus, 9 2215 10 N/m= ×E , Poisson’s ratio 0.3ν =  and Tensile 

Strength, Yield of  6 2
260 10 N/m= ×yS . On block is applied a load of 6=150 10 N×W . It was analyzed the structure 

with 11,133 elements 2,337 nodes.   
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Figure 4: Problem #1 Topology Result. 

 

 
 

Figure 5: Problem #1 Failure Function Result. 

 

4.3. Problem #02 
 

 Consider a problem according to Fig. 5. The block dimensions are: 4.0=a m , 6.0=b m  and 2.0=c m . On block 

is applied a load of W=150x106N. The block present a prescribed displacement of [ ]0,0,0  on 1 2 3 4Ω = Ω = Ω = Ω . The 

properties material are: Young Module, 9 2215 10 N/m= ×E , Poisson’s Ratio 0.3ν =  and Tensile Strength, Yield of  

6 2260 10 N/m= ×yS . 

It was analyzed the ¼ of block structure with 10,651 elements and 2,261 nodes. 
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Figure 6: Problem #2 Result. 

 

 
 

Figure 6: Problem #2 Failure Function Result. 

 

 

5. CONCLUSIONS 

 
The method considered showed to be effective and robust in the generation of excellent structural layout for 3D 

structural problems. The final resolution of the contour material is directly dependent of the average size of the finite 

element employee, representing the direct relation with the computational cost. Note that, the stress optimization 

problems, differently of the optimization problems without stress constraints (like classical compliance formulation), 

are sufficient to project structures. The optimum stress problems should be applied to get an ultimate conception of 

topology structure, ready for construction. 

 

The formulation revealed promising for the implementation of h-adaptive process, that is, the implementation of an 

intelligent process of refinement of the mesh with information of the topology gotten in the original mesh. It is detailed 

in the works of Costa Jr (2003), Costa Jr and Alves (2003a-b). For the solution optimization problem, according to 

described in the main body of this paper, the Augmented Lagrangian Method is applied. The solver presented excellent 

performance, in a posterior version will compare with computational structure TANGO of Andreani et al. (2004), 

Andreani et al. (2005) and Birgin and Martinez (2002). 
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