Proceedings of COBEM 2011 21st International Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

COMPARING ARTIFICIAL NEURAL NETWORK IMPLEMENTATIONS
FOR PREDICTION AND MODELING OF DYNAMICAL SYSTEMS

André L. S. Braga, alsbraga@unb.br
Carlos H. Llanos, llanos @unb.br
University of Brasilia - UnB, Mechatronic Systems. Brasilia, Brazil

Leandro dos Santos Coelho, leandro.coelho @pucpr.br
Pontifical Catholic University of Parana - PUCPR, Production and Systems Engineering Graduate Program. Curitiba, Brazil

Abstract. Identification and prediction of nonlinear dynamic systems is a difficult task. There are several reports in the
literature about the utilization of different models of Artificial Neural Networks to approximate this class of systems. This
work compares the application of two categories of ANNs in the work of modeling nonlinear dynamical systems and in
the prediction of systems outputs: MLP - Multilayer Perceptron and GMDH - Group Method of Data Handling. GMDH
networks can be trained faster than many models of ANNs. They also exempt the network neurons from the use of complex
activation functions which require big efforts from microprocessor to perform their calculations, hence tending to become
an interesting option for engineering applications.

Keywords: neural network, dynamic system, prediction, gmdh, embedded system
1. INTRODUCTION

The stability of nonlinear systems can be established for the most part only on a system-by-system basis and hence
it is not surprising that design procedures that simultaneously meet the requirements of stability, robustness, and good
dynamical response are not currently available for large classes of such systems (Narendra and Parthasarathy, 1990).
Neural network techniques have been found to be useful in highly uncertain, nonlinear and complex systems. It is not
uncomon to apply Artificial Neural Networks (ANNSs) as approximation models of unknown nonlinearities. (Polycarpou,
1997). For exemaple, optimization of classical Proportional-Integral (PI) controllers is difficult to perform when nonlinear
and non-stationary processes are considered. ANNs have the ability to adapt their gains in order to minimize a cost
function, what can take place in an on-line or off-line basis, i.e. before starting the system or during its operation (Grzesiak
et al., 2006).

This work compares the modeling and the prediction of dynamical systems using two different models of ANNS,
namely: MLP - Multi-Layer Perceptron and GMDH - Group Method of Data Handling. MLP is a very known and one of
the mostly used model of ANNs. The GMDH algorithm was developed and introduced by (Ivakhnenko, 1970, 1971) with
the purpose of performing the approximation of the relationship among the inputs and the outputs of complex systems.
The GMDH ANNS used in this work were created and trained with software developed by the authors. The implemented
algorithms are written in MATLAB’s M-code (MathWorks, 2011). It is the intention of the authors to release the tool set
as Open Source software.

The remaining of this article is structured as follows: Section 2present a brief explanation about the two network
models; Section 3details the dynamical systems models used in the experiments performed; Section 4show the results of
the experiments and; Section Sconcludes the work.

2. NETWORK MODELS
2.1 MLP - Multilayer Perceptron

The MLP is a feed-forward model organized in one input layer, one or more hidden layers and an output layer, where
the nodes in one layer are fully interconnected with the nodes in the following layer. Figure 1.a shows a conceptual
example of a MLP net. Except for the nodes in the input layer, the nodes in all the layers are processing units in the
form of Eq. 1 where X;(n) is the vector with the inputs to the n'"* neuron of layer I; W;(n) contains the weights of that
neuron and y;(n) is its output. Each neuron has one activation function, ¢(.), which constrains the output of the neuron.
Normally, it is in the form of a sigmoid, as the logistic function (Eq. 2) or the hyperbolic tangent (Eq. 3). Different
activation functions are allowed in neurons from different layers.

The number of output values produced by the ANN is determined by the number or neurons in the output layer.

yi(n) = p[Xi(n)W] (n)] (1)

1

— 2
1+e—2v ()

o(v)

Proceedings of COBEM 2011 21st International Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

e2v —1

p(v) = tanh(v) = P

3)

The training process of the MLP is known as the error-backpropagation algorithm, consisting of two phases: feed-
forward and error-backpropagation. In the feed-forward phase, one sample with one or more inputs, depending on the
topology of the network, is introduced in the input layer and the output(s) of the network is(are) calculated by forwarding
the outputs of the neurons in each layer as inputs to the neurons in the following layer, down to the output layer. The error-
backpropagation phase is performed by first calculating the error between the desired output 3, (n) of each n'* neuron in
the output layer and the actual output §,(n) of that neuron, as given by Eq. 4. Starting from the output layer and going
backward in the direction of the first hidden layer, the weights are adapted by the delta-rule, presented in Eq. 5 where n
is a constant that determines the learning rate and ¢ is the learning gradient. The gradient is calculated using Eq. 6 in the
output neurons or Eq. 7 in the hidden neurons (¢’ is the first derivative of the activation function). In equation Eq. 7,
d14+1(m) denotes the previously calculated gradient for the neuron m in layer I + 1 and w41 ,,(m) is the weight applied
in neuron m belonging to layer [+ 1 to the input coming from neuron n in layer [(Haykin, 1999).

e(n) = yo(n) — go(n))
Awy(n) = nd(n)z;(n) (5)
do(n) = e(n)¢’[vo(n)] (6)
8i(n) = @iloi(n)] Y i1 (m)wisrn(m))

2.2 GMDH - Group Method of Data Handling

The GMDH algorithm is based on an inductive self-organizing approach to the estimation of black box models with
unknown relationships between variables (Vissikirsky and Stepashko, 2005).

Despite the resemblance to MLP, the structure in the GMDH network is not fully connected. Its nodes can be connected
using different combinations, depending on choices regarding the architecture of the network. The mostly used style
applies two-combinations of connections, as can be seen in Fig. 1.b.

(b)

Figure 1. Comparison betwen (a) Multilayer Perceptron and (b) GMDH neural networks

Another difference is that the topology of the GMDH networks is not defined by the designer, as in the MLPs. Based
on the number of inputs in each sample, the training algorithm instantiates a number of neurons in the first layer. The
structure of the neurons used in this work is based on (Pham and Liu, 1994), where each GMDH neuron has two inputs.
When training starts, the number of neurons created in the first layer is defined by the two-combination of n, as stated in
Eq. 8, where n is the number of inputs to the network.

n!
27 2(n—2)! ®
The internal expression of one GMDH neuron is given by Eq. 9 (Pham and Liu, 1994) where x; and x5 are the two
inputs to the neuron and [ao, ..., as] are the coefficients or weights of the neuron. Equation 9 can be rewritten in the
matrix form given by Eq. 10, where x is called the preprocessed inputs, expressed by x = [1, 21, ¥o, 2%, 23, (v122)], and
A = [ag, ...,a5]T (Pham and Liu, 1994).

Y =ag+ ai1r; + axx2 + asﬁ + a4x§ + asr122 &)

y=xA (10)

Proceedings of COBEM 2011 21st International Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

Making X a matrix containing all the preprocessed two-inputs samples to the neuron and Y a column vector with
all the desired outputs corresponding to the samples, the relation among the weights A, the inputs and the outputs of the
neuron can be expressed by Eq. 11, where matrices Y, X, and A are of order N x 1, N x 6, and 6 x 1, respectively (the
first element in each row of the X matrix is unity).

Y = XA 1D

The normal equations are formed by premultiplying both sides by the transpose of X (Eq. 12). Matrix X7 X is a 6 x
6 matrix and the solution, shown in Eq. 13, is found by inverting this matrix (Ivakhnenko, 1971).

X7y = (XTX)A (12)
A= (XTX)"'XTY (13)

After calculating the coefficients for all the neurons, those which produce the poorest results according to a previously
chosen selecting criterion must be removed from the layer. The next step is to create a new layer with the number of
neurons defined by Eq. 8 using as n the number of the remained neurons in the current layer.

The overall training process consists of adding layers, calculating the weights and remove the poor performable neu-
rons. It will stop when one layer remains with only one neuron or when a new layer added does not improve the previously
selected performance criterion. In the case where the last layer does not improve performance, this layer is removed. In
any case, if the last layer contains more than one neuron, that one which produces the best result, i.e., the one which
mostly fits the selection criterion, is preserved. All other neurons in the last layer are removed, as so the neurons in the
previous layers which do not contribute to the value of the output neuron.

3. DYNAMICAL SYSTEMS MODELS

The studies presented in this work were performed using four examples of non-linear systems introduced in (Narendra
and Parthasarathy, 1990) and which resembles the behavior of non-linear plants. In the following subsections, each plant
is described in terms of its modeling expression and in terms of the inputs used for training and validating the ANNs.

Three different types of input data signals were used for training the neural networks. The modeled plants receive
sinusoid inputs, therefore, in each example, the ANNs were trained with data sets corresponding to this expected inputs
to the plants. These data sets are referred as "original" inputs.

The second group of data sets is composed of random data in the range (maximum and minimum values) of the
original data sets and are referred as "random" inputs. The third group is formed by a sinusoid signal, as is the original
data set, with the difference that it is created with random inputs given to the sinusoid function. It is referred as "random
+ sinusoid". Details on the formation of the training data sets are better explained in the following subsections.

One fourth input data set is created for each example and is used to evaluate the performance of the ANNs. They are
called "validation" inputs.

3.1 System 1

The plant represented in System 1 can show two different behaviors, determined by Eq. 14 (Model 1) and Eq. 15
(Model 2). The input data sets for training and selection based on Model 1 are determined by Eq. 16 and for Model 2 by
Eq. 17, where rnd(n, by, b2) is a function that produces n random numbers in the range [by, b2]. Equation 18 defines the
values entered to u,, (-) to produce the sinusoid training data set. Equation 19 produces 10001 sorted random numbers in
the range [0, 10000] used into w,, (-) to generate the "sinusoid + random" training data. The data set ¢, defined in Eq. 20
are used to validate the output of the ANNs.

y1(k+1) = 0.3y1(k) + 0.6y1(k — 1) + 0.6 sin[ruy (k)] + 0.3 sin[37uq (k)] + 0.1 sin[5muq (k)] (14)
Y2 (k + 1) = 0.3y2(k) + 0.6y (k — 1) + ui (k) + 0.3u3 (k) — 0.4uz (k) (15)

sin [27i:(k)/250] if sinusoid training;
(k) = rnd(10001,—1,1) if random input training; (16)
Y=Y sin [2miy (k)/250] if sinusoid + random input training;

sin [27i, (k)/250] if validating

sin [27i, (k) /250] 4 sin [27i, (k) /25] if sinusoid training;
rnd(10001,—1,1) if random input training;

sin [27i} (k)/250] 4 sin [27¢} (k) /25] if sinusoid + random input training;
sin [27i, (k) /250] + sin [27i, (k) /25] if validating

a7

Proceedings of COBEM 2011
Copyright © 2011 by ABCM

iy = [0,0.1,0.2, ..., 1000]
iy = sort [rnd(10001, 0, 1000)]
ip = [0,0.05,0.10,0.15, .. ., 1000]

21st International Congress of Mechanical Engineering
October 24-28, 2011, Natal, RN, Brazil

(18)
19)
(20)

3.2 System 2

In System 2, the plant to be modeled is represented by Eq. 21. The training and validating inputs are defined by Eq.
22. Equations 23, 24 and 25 define the values used in the "original", "sinusoid + random" and in the validating data sets
produced by u(-).

y(R)y(k — Dly(k) +2.5]

E+1)= k 21
R R R o
sin [27i4(k)/25] if sinusoid training;
(k) = rnd(1001, —2,2) if random input training; 22)
Y= sin [2mif (k)/25] if sinusoid + random input training;
sin [27i,(k)/25] if validating
i = [0,0.1,0.2, ..., 100] 23)
iy = sort [rnd(1001,0,100)] (24)
iy = [0,0.01,0.02,0.03, .. .,100] (25)

3.3 System 3

In System 3, the behavior of the plant is defined by Eq. 26 and the input data sets by Eq. 27. Equations 28, 29 and 30
describe the values used in the sinusoid functions to produce the training and validating data sets.

y(k) 3
k+1)= ——— k 26
b+ 1) = 25 26)
sin [27i¢(k)/25] + sin [27i¢(k)/10] if sinusoid training;
(k) = rnd(1001, —2,2) if random input training; 27
Y= sin [2miy (k)/25] + sin [2mi} (k)/10] if sinusoid + random input training;
sin [27i, (k) /25] + sin [274, (k) /10] if validating
ip = [0,0.1,0.2, ..., 100] (28)
iy = sort[rnd(1001,0,100)] (29)
iy = [0,0.01,0.02,0.03, ..., 100] (30)

3.4 System 4

Despite the fact that the plant described by Eq. 31, behaves similarly as the previously described systems, this example
shows a slightly different input scheme. Equation 32 defines the input values for training and validating, however the
behavior of the sinusoid functions changes according to the index of the original sample, as it is explained by Eq. 33.
Equations 34, 35 and 34 determine the values used in 32 for laying down the sinusoid input values.

y(k)y(k — Dy (k — 2)u(k — 1)[y(k — 2) — 1] + u(k)

k+1)= 31
y(k+1) T+ 520k~ 2) + (k- 1) GD
Ik, it (k)] if sinusoid training;
w(k) = rnd(801,—2,2) if random input training; (32)
R N ALEA)] if sinusoid + random input training;
Ik, ip(K)] if validating
| sin[2mg(k)/250] if £ < 5005
f(k;g(k)) = { 0.8 sin [2mg(k)/250] + 0.2 sin [2wg(k)/25] if k > 500 (33)
i =10,1,2,3,...,800] (34)
iy = sort [rnd(801,0,800)] (35)

iv =1[0,0.1,0.2,0.3,...,800] (36)

Proceedings of COBEM 2011 21st International Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

4. EXPERIMENTAL RESULTS

The values yielded by the systems represented in Eqs. 14, 15, 21, 26 and 31 are functions of the present input and
of the present and past outputs. To perform the prediction tasks the networks were trained with delayed inputs but with
non-modified targets. In the experiments carried out on this work, the order of prediction is of twenty samples of advance.
Hence, the previously mentioned equations can be rewritten, respectively, as Eqs. 37, 38, 39, 40 and 41. The inputs
given to the networks were the ones produced by the original systems and the expected outputs from the networks are the
prediction of the systems’ outputs twenty samples in advance.

To perform the validation of the networks designed for modeling tasks, the original expression used to produce the
systems’ outputs were substituted by the trained ANNs. The expected result is that the neural system be able to replace
the original system and lay down similar results.

yi(k+1) = 0.3y1(k—20)+ 0.6y, (k —21) 4+ 0.6 sin[ru; (k — 20)] 4+ 0.3 sin[37u;(k — 20)]+

0.1 sin[5muq (k — 20)] 37

yo(k +1) = 0.3ya(k — 20) + 0.6y2(k — 21) + ud(k — 20) + 0.3 u2(k — 20) — 0.4 us(k — 20) (38)
~ y(k —20)y(k — 21)[y(k — 20) + 2.5]

y(k+1) = 15 420k — 20) + y2(k — 21) + u(k — 20) 39)

y(k+1) = m + u®(k — 20) (40)

y(k+1) = y(k —20)y(k — 21)y(k — 22)u(k — 21)[y(k — 22) — 1] + u(k — 20) @)

1+ y2(k —22) +y2(k — 21)

Taking into account the input schemes and the tasks for which the network were trained, a number of experiments
were performed. The parameters for each experiment are (a) ANN Type, which can be GMDH or MLP; (b) Simulation
Task: prediction, denoted by the letter P, and modeling, denoted by M; (c) Input type: S - sigmoid, R - random and SR -
sigmoid + random and; (d) Samples delay: 1 and 20 samples.

To evaluate the performance of the ANNSs after training, they were simulated with the validation data sets of each
system. The performance measurement is based in the errors between the validation targets (expected value) and the
network output. A success match, or a hit, was computed for every error smaller than 15%. The number of hits divided
by the total number of targets denotes the performance value, in percentage, for each particular experiment. A secondary
parameter of comparison is the training time.

4.1 Results for System 1

Table 1 show the results for the 36 experiments performed with System 1. Since this system has two different models
of behavior, Tab. 1 contains one column informing which model is analyzed (1 or 2). Figure 2 compares the performance
of the MLP and of the GMDH implementations. Each mark on the x-axis represent a comparison between one GMDH
experiment and one MLP experiment with similar parameters. On the first mark the values yielded by experiment 1
(GMDH) and experiment 19 (MLP) are shown, both aiming a one-sample prediction. Results for experiments 2 and 20,
which target 20-samples prediction, are presented on the second mark. This pattern of analysis keeps on the rest of the
marks, i.e., over one mark there data comparing two one-sample prediction and over the next mark, values comparing two
20-samples prediction. The last six nodes in each line are related to the experiments 13 through 18 and 31 through 36,
which are "modeling" experiments.

Looking at Fig. 2 it is noticeable that in general, the GMDH networks present better results than MLP networks for
prediction tasks regarding System 1, except when comparing experiments 8 and 26, where the MLP version has a better
performance. On the other hand, the GMDH networks could not implement the modeling tasks. Nonetheless, only two
MLP networks, from experiments 31 and 34, presented serviceable modeling results. Is is also worth noticing that the
the GMDH network in the modeling experiment 15 could not give forth convergent outputs during the validation process.
Moreover, its MLP counterpart, in experiment 33, yielded the worse result among the MLP modeling experiments.

4.2 Results for System 2

Results for the 18 experiments performed with the ANNs trained with data from System 2 are presented in Tab. 2.
The performance comparisons among MLP and GMDH networks are presented in Fig. 3.

GMDH implementations for System 2 did not converge in experiments 2, 7 and 8. Also, only GMDH experiments 1
and 3 produced usable results. With the exceptions of experiments 11 and 15, MLP implementations performed well and
had exceptional outcomes in the modeling experiments 16, 17 and 18.

Proceedings of COBEM 2011 21st International Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

Table 1. Results for System 1

Exp. Net Delay Train Exp. Net Delay Train

No. Type Model Simulation Input (samples) Time(s) Hits No. Type Model Simulation Input (samples) Time(s) Hits
1 GMDH 1 P 1 0.03 99.99% 19 MLP 1 P 1 397.56 100.00%
2 GMDH 1 P S 20 0.04 93.94% 20 MLP 1 P S 20 42585 88.60%
3 GMDH 1 P R 1 0.03 99.96% 21 MLP 1 P R 1 400.83 53.80%
4 GMDH 1 P R 20 0.04 95.56% 22 MLP 1 P R 20 173.62 41.88%
5 GMDH 1 P SR 1 0.04 98.74% 23 MLP 1 P SR 1 162.79 1.72%
6 GMDH 1 P SR 20 0.04 55.66% 24 MLP 1 P SR 20 11221 2.06%
7 GMDH 2 P S 1 0.07 99.78% 25 MLP 2 P S 1 258.63 99.98%
8 GMDH 2 P S 20 0.04 6137% 26 MLP 2 P S 20 272.62 98.18%
9 GMDH 2 P R 1 0.03 87.05% 27 MLP 2 P R 1 460.27 29.20%
10 GMDH 2 P R 20 0.04 2555% 28 MLP 2 P R 20 163.64 20.62%
11 GMDH 2 P SR 1 0.04 30.24% 29 MLP 2 P SR 1 22243 14.28%
12 GMDH 2 P SR 20 0.04 4.96% 30 MLP 2 P SR 20 24297 6.42%
13 GMDH 1 M S 1 0.04 5.86% 31 MLP 1 M S 1 41442 81.72%
14 GMDH 1 M R 1 0.04 15.74% 32 MLP 1 M R 1 147.88 12.52%
15 GMDH 1 M SR 1 0.04 0.00% 33 MLP 1 M SR 1 156.87 231%
16 GMDH 2 M S 1 0.04 742% 34 MLP 2 M S 1 413.19 89.22%
17 GMDH 2 M R 1 0.04 2.85% 35 MLP 2 M R 1 23248 3.22%
18 GMDH 2 M SR 1 003 271% 36 MLP 2 M SR 1 21458 3.49%

120.00%
100.00%
80.00%
60.00%
& GMDH
40.00% - MLP

20.00%

0.00%

2;20 4,22 6;24 8,26 10;28 12;30 14,32 16;34 18;36
1,19 3;21 5;23 7;25 9;27 11;29 13;31 1533 17,35

experiments

Figure 2. Comparing GMDH and MLP performances for System 1

4.3 Results for System 3

Both GMDH and MLP groups of networks trained for System 3 were successful for 1-sample prediction but neither
was able to produce the 20-samples forecasting. Table 3 and Fig. 4 bring forward that both net types behave similarly
when they are trained for the prediction task. Nonetheless, regarding the modeling task, MLP ANNs are effective while
GMDH were not capable to approximate the system responses.

4.4 Results for System 4

Table 4 and Fig. 5 present the results for the training of the artificial neural networks for predicting and modeling the
behavior of System 4. From Fig. 5 it is possible to see that the MLP types lay down an overall better result. Experiments
6 and 15 are both unsuccessful and GMDH experiment 7 produces an unconvergent behavior during the validation phase.

120.00%
100.00%
80.00%

60.00%

hits

& GMDH

40.00% *MLP

20.00%

0.00%
1;10 2;11 3;12 4,13 5;14 6;15 716 8;17 9;18
experiments

Figure 3. GMDH and MLP performances for System 2

Proceedings of COBEM 2011
Copyright © 2011 by ABCM

21st International Congress of Mechanical Engineering
October 24-28, 2011, Natal, RN, Brazil

Table 2. Results for System 2

l;xo.' Net Type Simulation Input (s;);nl:lis) T{r;:l?s) Hits
1 GMDH P S 1 0.11 97.04%
2 GMDH P S 20) (-)
3 GMDH P SR 1 0.05 95.96%
4 GMDH P SR 20 0.06 30.32%
5 GMDH P R 1 0.06 51.20%
6 GMDH P R 20 0.02 7.01%
7 GMDH M S 1 0.11 (-)
8 GMDH M SR 1 0.07 (-)
9 GMDH M R 1 0.14 31.60%
10 MLP P S 1 7224 99.92%
11 MLP P S 20 1446 60.66%
12 MLP P SR 1 2.02 9748%
13 MLP P SR 20 248 75.86%
14 MLP P R 1 9.13 98.16%
15 MLP P R 20 1.13 4.29%
16 MLP M S 1 66.6 92.48%
17 MLP M SR 1 66.54 99.84%
18 MLP M R 1 1597 99.24%
Table 3. Results for System 3 Table 4. Results for System 4
Exp. Net A . In Dela Train Exp. Net q q Dela Train 3
N(?. Type S u:) (sampl{s) Time (s) LE Nop. Type SO it (samplis) Time (s) Lars
1 GMDH P S 1 0.09 99.26% 1 GMDH P S 1 0.03 99.74%
2 GMDH P S 20 0.09 22.54% GMDH P S 20 0.01 4891%
3 GMDH P SR 1 0.06 97.46% 3 GMDH P SR 1 0.02 56.78%
4 GMDH P SR 20 0.01 23.44% 4 GMDH P SR 20 0.01 4422%
5 GMDH P R 1 0.04 82.99% 5 GMDH P R 1 0.05 51.69%
6 GMDH P R 20 0.03 18.54% 6 GMDH P R 20 002 0.75%
7 GMDH M S 1 0.08 12.82% 7 GMDH M S 1 0.03 (-)
8 GMDH M SR 1 0.03 4.22% 8 GMDH M SR 1 0.03 15.86%
9 GMDH M R 1 0.01 3.68% 9 GMDH M R 1 0.08 24.61%
10 MLP P S 1 150.61 99.77% 10 MLP P S 1 7739 99.93%
11 MLP P S 20 129.7 9.68% 11 MLP P S 20 26 56.87%
12 MLP P SR 1 67.65 99.93% 12 MLP P SR 1 7.64 67.98%
13 MLP P SR 20 229 27.07% 13 MLP P SR 20 2.18 51.36%
14 MLP P R 1 1522 99.79% 14 MLP P R 1 179 79.43%
15 MLP P R 20 3727 42.18% 15 MLP P R 20 0.88 2.37%
16 MLP M S 1 110.06 91.76% 16 MLP M S 1 673 99.93%
17 MLP M SR 1 131.32 98.59% 17 MLP M SR 1 64.09 78.25%
18 MLP M R 1 387 86.71% 18 MLP M R 1 12 2447%
120.00% 120.00%
100.00% * * 100.00% S
.\ » °
80.00% \ 80.00% R 3
@ 60.00% \ / @ 60.00%
z \ / & GMDH z
40.00% ‘\/ \; & MLP 40.00%
\ \
20.00% " 20.00% .,//]
¢ i —
0.00% 0.00%
1510 2311 312 413 514 6,15 716 817 9;18 1,10 211 312 4,13 5114 6;15 7;16 8117 9;18
experiments experiments

Figure 4. GMDH and MLP performances for System 3

5. CONCLUSION

& GMDH
*-MLP

Figure 5. GMDH and MLP performances for System 4

This work presented the comparison among several implementation of artificial neural networks for the tasks of pre-
diction and modeling of dynamical nonlinear systems. Two types of ANNs were applied in the experiments: the well
known Multilayer Perceptron (MLP) model and the Group Method of Data Handling (GMDH).

The analysis performed showed that the GMDH networks can be trained much faster than the MLPs but their overall
performance were similar regarding the prediction tasks. On the other hand, MLPs showed to be superior in terms of
the modeling experiments. Despite these results, GMDH networks showed an interesting potential for the proposed
application. Considering that this model is much simpler than the MLPs, that the training process is carried out much
faster and yet, taking into account that there are reports of other works using GMDH for the approximation of complex
nonlinear systems, it is plausible to state that it worths continuing to improve the training algorithms in order to apply this
model in real world problems.

Proceedings of COBEM 2011 21st International Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

6. REFERENCES

Grzesiak, L.M., Meganck, V., Sobolewski, J. and Ufnalski, B., 2006. “On-line trained neural speed controller with variable
weight update period for direct-torque-controlled ac drive”. In Power Electronics and Motion Control Conference,
2006. EPE-PEMC 2006. 12th International. pp. 1127 —1132. doi:10.1109/EPEPEMC.2006.4778553.

Haykin, S., 1999. Neural Networks : A Comprehensive Foundation. Upper Saddle River, EUA : Prentice-Hall.

Ivakhnenko, A.G., 1970. “Heuristic Self-Organization in Problems of Engineering Cybernetics”. Automatica, Vol. 6, pp.
207-219.

Ivakhnenko, A.G., 1971. “Polynomial theory of complex systems”. Systems, Man and Cybernetics, IEEE Transactions
on, Vol. 1, No. 4, pp. 364 —378. ISSN 0018-9472. doi:10.1109/TSMC.1971.4308320.

MathWorks, 2011. “MathWorks’ website”. URL http://www.mathworks. com/.

Narendra, K.S. and Parthasarathy, K., 1990. “Identification and Control of Dynamical Systems Using Neural Networks”.
IEEE TRANSACTIONS ON NEURAL NETWORKS, Vol. 1, No. 1, pp. 4-27.

Pham, D.T. and Liu, X., 1994. “Modelling and prediction using GMDH networks of Adalines with nonlinear preproces-
sors”. International Journal of Systems Science, Vol. 25, pp. 1743-1759.

Polycarpou, M.M., 1997. “Stable Adaptive Neural Control Scheme for Nonlinear Systems”. I[EEE TRANSACTIONS ON
AUTOMATIC CONTROL, Vol. 41, No. 3, pp. 447-451.

Vissikirsky, V.A. and Stepashko, V.S., 2005. “Growth Dynamics of Trees Irrigated with Wastewater: GMDH Modeling,
Assessment, and Control Issues”. Instrumentation Science and Technology, Vol. 2, p. 229-249. doi:10.1081/CI-
200048085.

