
Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

A FINITE ELEMENT FOR COMPOSITE LAMINATED BEAMS WITH A 

SHEAR CORRECTION FACTOR MODEL 

 
Murilo Sartorato, murilosart@gmail.com 

Volnei Tita, voltita@sc.usp.br 

Rômulo Vinícius Vera, romulo.vera@hotmail.com 
USP – Universidade de São Paulo, EESC – Escola de Engenharia de São Carlos – Av. Trabalhador São Carlense, 400 – 13 São 

Carlos /SP, Brasil 

 

Abstract. In the last decades, the use of composite material in several industries that need a high strength to weight 

ratio has greatly increased. Thus, several studies about the behavior of such structures, especially composite laminated 

structures have been performed and provided an abundant number of theoretical and semi-empiric models that are 

used in the commercial finite element packages nowadays. The majority of models included in these packages are 

based on the first order shear deformation theories which require shear correction factors to account for the shear 

stiffness and transverse shear effects. As the most common use of this kind of material consists on thin laminated plates 

where the transversal shear effects are small, the classical isotropic rectangular solution of k equal 5/6 is commonly 

used. However, there are some particular structures and analysis cases such as wing-box fixing frames in the 

aeronautical industry, deep-water oil drilling and draining tubes in the petroleum industry or modal analysis of high 

frequency modes in which the effects of transverse shear stresses are predominant, and as such need a better 

mathematical model of the shear corrections factors. Studies are being made on new models, but most of them are time 

consuming with low computational efficient, invalidating their use. Therefore, a one-dimensional simple calculated 

shear correction factor expression was used with basic finite elements based on the first order shear deformation 

theory for composite laminated beams that were implemented as a UEL (User Element Subroutine in FORTRAN) and 

linked to software ABAQUS. Analysis of the influence of the material properties, number of layers and fiber orientation 

in the shear corrections factors were done. Finally, comparisons of the simulated results with experimental ones found 

in the literature are presented. 
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1. INTRODUCTION 

 

In the last decades, the use of composite material in several industries has been steadily increasing, especially in 

areas that focus on highly optimized structural projects that aim for a weight per resistance ratio as low as possible, such 

as the aeronautical, aerospace and petroleum industries. This fact is due to the advantages of these materials over 

traditional engineering materials like its high density to strength ratio and the great number of possible structure 

configurations that can be produced and assembled. In special, the laminate composites are greatly used and studied as 

its inherent anisotropy can be used in a positively away in a structural project by aligning the principal directions of the 

material to the greatest loads through the direction of the fibers in each layer, enabling to choose a configuration 

specifically designed for each application. However, one of the downsides of such materials is its complex mechanical 

behavior that leads to costly and sometimes inaccurate models. Consequently, several studies about the behavior of such 

structures providing an abundant number of theoretical and semi-empiric models that are used for simulating their 

mechanical behavior in the commercial finite element packages nowadays. 

The majority of models included in these packages are based on the first order shear deformation theories, which 

require shear correction factors to account for the shear stiffness and transverse shear effects. As the most common use 

of this kind of material consists on thin laminated plates where the transversal shear effects are small, classical solutions 

of the problem where the correction factors are constant, including the classical isotropic plate solution of 

Reissner/Mindlin (Bathe, 1996) of k equal 5/6, are commonly used. However, some authors such as Whiney (1973), 

Reddy et al. (1992) and Dong et al. (2010) say that there are some particular structures and analysis cases such as wing-

box fixing frames in the aeronautical industry, deep-water oil drilling and draining tubes in the petroleum industry in 

which the effects of transverse shear stresses are predominant, and as such need a better mathematical model of the 

shear correction factor. Also, as Reddy and Ochoa (1993) pointed out, in dynamic analysis, some of the higher modes, 

as well as the torsion modes can be heavily influenced by the transversal shear effects. This has led to several studies 

and the creation of models and corrections that better calculate the effects of transverse shear stresses, and although 

there are several modern models that can predict accurately this phenomena (Dong et al., 2010; Wooran et al. 2010; 

Singh, 2010) most of them use higher order shear deformation theories or hybrid stress-strain formulations that are not 

computational efficient making impossible for mass use in commercial finite element packages in an industrial 

environment. 

Therefore, a simple, one-dimensional shear correction factor expression, based on the models proposed by Raman 

and Davalos (1996) was used to analyze the influence and sensibility of different laminate configurations over its value 
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such as: material properties; fiber orientation angles, disposition of layers (symmetric or anti-symmetric), number of 

layer and aspect ratio. Then both classical one-dimensional beam element and two-dimensional plate elements based on 

the first order shear deformation theory for composite laminated beams, (Bathe, 1996) including the model, were 

implemented as an UEL (User Element Subroutine in FORTRAN) and linked to software ABAQUS. 

The advantage of the implementation of the models into pre-processing software like ABAQUS is the ability to 

model complex structures as, like is shown in Figure 1, the inclusion of an UEL affects only its main core processing, 

specifically the residue and stiffness and mass matrixes calculations. As such, other phases of finite element analysis 

that are time consuming and difficult to program like geometry, node, element and indexing matrixes creation are 

covered by ABAQUS’ functions and user interface. 

 

 
 

Figure 1. Summary of the Abaqus and UEL subroutine interactions 

 

 

Finally, these elements were used in comparisons of simulated analysis with existing models and experimental 

results found in the literature. 

 

2. SHEAR CORRECTION FACTOR MODEL 

 

In this section the formulation of the shear correction factor is presented. The transversal shear coefficients of a 

laminated beam are derived by utilizing the method proposed by Raman and Davalos (1996): first the constitutive 

equations for a composite laminated plate are degenerated into beam equations by applying the classic beam theory 

contour and constitutive relations and other simplifying assumptions on the expressions from the classical laminated 

plate theory; the transversal shear strain energy are then calculated by integrating these relations over the thickness of 

the beam. Then, using Bert (1973) definition of the strain energy with the shear correction factors, these two 

expressions can be manipulated into a final expression for the coefficients. 
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2.1. Laminated Plate Constitutive Relations 

 

The constitutive relations for a composite laminated plate based on the classical laminated plate theory, as presented 

by Reddy and Ochoa (1993) and, are obtained from the integration of the constitutive equations of each layer, found on 

Eq. (1), over the plate thickness. The final relations of the laminated can be separated into the axial and bending 

relations and the transverse shear relations. Thus, we have the relations for axial and bending stresses in Eq. (2) and the 

relations for the transverse shear stresses in Eq. (5). 
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Where {  }  *               + , {  }  *               +  are the stresses and 

deformations of each layer; * +  *       +  are the axial loads and on-plane moment, 

* +  *       +  are the bending and torsional moments, *  +  *   
   

    +  are the in-plane 

deformation, * +  *       +  are curvatures;  ̅  are the stiffness matrix of each k
th

 layer and  ̲  ̲ and  ̲ are the 

stiffness matrix integrated through the thickness of the laminated. This expression can be rewritten as: 
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Also, using    and    as the plane shear correction factors, the transverse shear loads    and    can be related to 

the transversal shear deformations     and     by the relation (Raman and Davalos, 1996) bellow. It is important to note 

that in this formulation, according to Bert, the transversal strains     and     are constant over the thickness of the plate 

and their values are corrected by    and   . 
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2.2. Laminated Beam Contour and Constitutive Relations 

 

The first assumption made for degenerating the plate relations into beam relations is that, on beams, the shear load 

on the    plane    is negligible, thus the shear deformation     can be computed from Eq. (5) as:  
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   (6) 

 

Also, from this assumption the equilibrium equation for the stresses on a beam on the    plane, in the absence of 

external body forces, can be written as in the Eq. (7) (Bert, 1973). 
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Integrating Eq. (7) through the thickness and using the relations presented in Eq. (2) an expression for     is 

obtained: 
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Substituting the deformations and curvatures for the external loads using Eq. (3) we get a final expression for     
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Using the second assumption that, for the classic beam theory, * +     ,           and that        

  we can simplify Eq. (9) into 
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2.3. Derivation of the Shear Correction Factor 

 

The transversal shear strain energy per unit of length can be calculated using Eq. (9) and (12) by integrating the 

transversal shear stress     over the thickness of the plate. Also, from Eq. (8) and Bert (1973) assumption that by using 

the shear correction factors     is approximated constant over the thickness of the plate we can have two distinct 

expressions for the energy. 
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Equation 11 can be manipulated into one final expression for the shear correction factor: 
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It is interesting to note that, by using an isometric material and a rectangular beam with b and h dimensions, the 

expression in Eq. (12) is simplified to the expression in Eq. 19 below. By doing so the shear correction factor returns to 

the classical value of 5/6 and retrieves Reissner/Mindlin plate theory (Raman and Davalos, 1996). Also, the proposed 

expression is different from the classic plate transversal shear distribution presented in Eq. (14) in that, if normalized 

and transformed in a warping function, it is discretized along each layer of the laminated, and it depends on the material 

properties. 

 

  [ ∫
4∫  

 

 
 
 

5

 

 
  

 

 

 
 

 

]

  

 
 

 
 (13) 

 

 ( )  
 

 
 (  .

 

   
/
 
) (14) 

 

3. FINITE ELEMENT FORMULATIONS 

 

With the shear correction factor model, both a 2-node Timoshenko beam finite element, including the torsion 

rotation degrees of freedom and a 4-node Reissner/Mindlin plate were implemented into Abaqus FORTRAN 

subroutines (UEL). The formulation for the beam element can be found at the (Bathe) reference, and is summarized by 

the expressions in Eq. 15 to Eq. 23. 
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In the same way, complete formulations for the plate element can be found in the Reddy reference and can be 

summarized by the expressions found in Eq. 1 a 3. 
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Where   is the jacobian matrix for coordinate transformation from the global system to the element isoparametric 

local system. 

 

4. RESULTS 

 

4.1. Comparison with literature results 

 

The first analysis was a comparison between the transverse shear model discussed in the present work with other 

models found in the literature, contained on Tab. 1. It can be seen that the maximum percentage difference between the 

values is 12.9%, which is reasonable considering the simplicity of the formulation. Also, it can be seen that the greatest 

differences were for thin laminates with angles other than 0°, 45° and  90° which have coupling effects, this may be due 

to the assumptions in the formulation neglecting the effects outside the    plane. 

 

Table 1. Comparison between the calculated shear correction factor and examples found in the literature 

 

Study Case 
Shear Correction Factor (k) 

Difference [%] 
Present Theory Reference Value 

[+45° -45°] (Bert, 1973)
 

0.8209 0.8212 0 

[+45° -45°]S (Whitney, 1973) 0.5952 0.5953 0 

[+30° -30°] (Whitney, 1972) 0.7605 0.8592 12.9 

[+30° -30°]S (Whitney, 1972) 0.6221 0.6730 7.50 

[0° 90° 0°]S,    /   =13 (Whitney, 1972) 0.8343 0.8212 1.57 

[0° 90° 0°]S, h=2 mm (Pai, 1995} 0.8343 0.8538 2.28 

[0° 90° 0°]S, h=2 mm (Pai, 1995) 0.8343 0.8676 3.83 

[0° 90° 0° 90°]S, h=1mm (Raman and 

Davalos, 1995) 
0.8963 0.8969 0.664 

 

 

4.2. Parameters sensibility 

 

The expression on Eq. (12) was then used to measure the sensibility of the shear correction factor to various 

parameters of a composite beam: material properties, number of layers and aspect ratio, and ply angle orientation. 
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Symmetric and anti-symmetric composite laminates in the form  ,(     ) -  and ,(     ) -   with N a number of 

layers ranging from 3 to 9,    ply angles ranging from 0° to 90° and with material properties as follow:    /   =10 or 

50;        =1;    /   =   /   =0.5;    /   =0.2;     0.25 had the corrections factors evaluated. 

 

 
 

Figure 2. Variation of the shear correction factor for a symmetric composite laminate with    /   =10 for both 

number of layers and ply orientation angles 

 

 
 

Figure 3. Variation of the shear correction factor for a symmetric composite laminate with    /   =50 for both 

number of layers and ply orientation angles 

 

 
 

Figure 4. Variation of the shear correction factor for an anti-symmetric composite laminate with    /   =50 for 

both number of layers and ply orientation angles 
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Figure 5. Evolution of the shear correction factor with the thickness of the plate 

 

The average of the factors obtained was below the classical value of 5/6, but there were cases where higher factors 

were found. It is interesting to note that while for the symmetric laminates, the minimal values occurs for 45°, this angle 

is 90° for the anti-symmetric laminates which probably occurred because the transversal shear effects diminishes as the 

difference between the ply angles increases. Another interesting fact is that the number of layers, and consequently the 

thickness and aspect ratio of the laminate are more influent on the transversal shear as the difference between the 

strength of the fiber and transverse directions increases, which reduces the magnitude of the normal and consequently 

the in-plane stresses. From Fig. 5 can be observed that, as the laminate gets thinner, the shear correction factor gets 

smaller is explained by the reduced effects of the transversal shear stresses; at the same time, as the plate starts to grow 

thick the correction factor stabilizes at k=0.678. 

 

4.3. Comparison between existing commercial finite element packages 

 

These finite elements containing the shear correction factor model were used in two different tests. The first was a 

static analysis of a single clamped laminated plate subjected to a constant concentrated bending-torsional load F=40N, 

modeled using the plate element. The material properties used were: E11=132GPa, E22=10.3GPa, ν12=0.357, ν23=0.306, 

ρ=1470kg/m3, G12=G13=6.5GPa, G23=4.3GPa, h=2mm with a composite laminate with the ply angles orientations equal 

to [0° 90° +45° -45°]S. The vertical displacement (  ) on the B point was recorded as the aspect ratio of the plate were 

changed by running simulations with increasing values of L. 

This is a classical benchmark example for testing effects of shear-locking (Simulia Dassault, 2008) as the plate is 

over a strong bending-torsional load and the predominant effects are out-of-the plane shear stresses. Thus, it was used to 

compare the results of the existing elements within the Abaqus software and the proposed element, as well as studding 

the influence of the shear correction factor on the shear-locking problem and its influence in a case where it is one of 

the most influential effects. For that the analysis was made using three different elements: Abaqus’ S8R, an 8-node 

plate element with reduced and selective integration and hour-glass control as the reference, as this kind of element 

would hardly fell any kind of shear-locking effect; Abaqus’ S4, an 4-node full-integrated plate element that is highly 

susceptive to this problem, and the created element containing the shear correction factor model. 

 

 
Figure 5. A schematic view of the first numerical problem studied 

 

Remembering that the only difference between the created element and Abaqus’ S4 element is the shear correction 

factor model, it can be observed from Figure 5 that the shear locking, although still having a strong effect over the 

created element, was lessened by the shear correction factor model. 
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Figure 5. Results from the shear-locking Abaqus benchmark test 

 

4.4. Comparison with experiments found in the literature 

 

Another test was made using the beam element: a modal analysis of a composite laminated beam was done and 

compared to experimental results obtained by Tita (1999). The beam has 425 mm x 25 mm x 1.6 mm. The material 

properties are    =48.6GPa;    =11.27GPa;    =0.28;    =   =4.85GPa;    =4.45Gpa e  =1780kg/m
3
. Two 

different pile-ups were prepared: a [(+45° -45°)3 (0° 90°)]S and a [(0° 90°)4]S. The beam was created on Abaqus and the 

modal results were obtained for both Abaqus’ solution, the created element and the experimental results. 

 

Table 2. Vibration Modes for the [(+45° -45°)3 (0° 90°)]S case 

 

Mode Abaqus (undamped) [Hz] Created Element (undamped) [Hz] Experimental (damped) [Hz] 

1 4.734 4.369 4.0 

2 28.90 27.33 25.5 

3 80.12 67.70 - 

4 82.83 76.52 74.0 

5 163.5 141.3 139.0 

6 182.8 150.0 - 

7 252.6 248.5 - 

8 386.3 372.1 - 

 

Table 3. Vibration Modes for the [(0° 90°)4]S case 

 

Mode Abaqus’ B31 (undamped) [Hz] Created Element (undamped) [Hz] Experimental (damped) [Hz] 

1 4.802 5.333 4.5 

2 29.96 33.36 28.0 

3 83.01 82.91 - 

4 94.84 93.27 84.0 

5 164.5 93.59 111.5 

6 192.8 182.4 155.5 

7 272.6 281.5 - 

8 315.1 301.1 - 
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As it was expected, both MEF simulations got higher natural frequencies than the experimental ones as the formers 

are undamped analysis. However, for most of the values the model with the shear correction factor obtained a closer 

result to the experimental ones, especially on the first case. That makes sense as in the cross-ply case there are a greater 

shear stresses, as in the (0° 90°) the internal loads are basically normal which can great influence the results. Also, the 

simplification applied in Eq. 5 can also have had an effect as in the (45° -45°) case the    loads have a lower effect as 

the transversal shear effect is more homogenized. Another interesting fact is that, in the first case, the model with the 

shear correction factor got much better results than the common element in higher modes, where there’s an increased 

influence of the transversal shear effects as the smaller distance between nodes in these modes has an effect of virtually 

increase the aspect ratio of the beam. 

 

 

5. CONCLUSIONS 

 

A simple, one-dimensional model of the shear corrections factors for composite laminated plates was formulated 

based on the works of Pai (1995) and Ramon and Davalos (1996). The final expression was used to evaluate the 

sensibility of the shear correction factor to various properties of a composite material such as number of layers, 

thickness, ply angles orientation, configuration (symmetric or anti-symmetric). The model was then used in two classic 

beam and plate finite elements which were used to test the characteristics and limitations of the formulation using 

comparisons between experimental results found in the literature and the existing finite-element models. Those tests 

showed that the formulation used for the transversal shear to be more precise than the classical theories in specific cases 

where the transversal shear loads have a prominent effect at the structural system behavior and the shear loads are close 

to a one-dimensional load case. Also, because of its simple implementation that causes a great computational efficiency, 

this model can be further developed into a more complex, bi-dimensional model in future works as, even if existing 

modern theories are more precise, they are time consuming solutions. 

 

6. ACKNOWLEDGEMENTS 

 

The authors would like to thank Research Foundation of State of Sao Paulo (process numbers: 09/00544-5 and 

10/13596-0), as well as, CNPq and FAPEMIG for partially funding the present research work through the INCT-EIE, as 

well as to thank Prof. Reginaldo Teixeira Coelho from EESC-USP (Escola de Engenharia de São Carlos – Universidade 

de São Paulo) for kindly lending the licenses for the Abaqus software. 

 

7. REFERENCES 

 

 

Bathe, K., 1996, “Finite Element Procedures”, - Prentice Hall, New Jersey. 

Bert, C.W., 1973, “Simplified analysis of static shear factors for beams of nonhomogeneous cross-section”, Journal of 

Composite Materials. 1973, Vol. 7, pp. 525. 

Callister Jr., W. D., 2002, “Materials Science and Engineering: An Introduction”. Wiley Higher Education, 2002. 6
th
 

Edition. 

Dong, S.B., Alpdogan, C and Taciroglu, E., 2010, “Much ado about shear correction factors in Timoshenko beam 

theory”, International Journal of Solids and Structures, Vol. 47, pp. 1651–1665. 

Kaneko, T., 1975, “On Timoshenko’s correction for shear in vibrating beams”, Journal of Physics D, Vol.  8 (1975), pp. 

1927–1936 

Kwon, Y.W., Bang, H., 1997, “The Finite Element Method Using MATLAB”, CRC Press, United States of America. 

Mindle, W.L. and Belytschko, T., 1983, “A study of shear factors in reduced-selective integration Mindlin beam 

elements”, Pergamon Press, Ltd, Computers and Structures, Vol. 17, No 3, pp. 339-344 

Ochoa, O. O.; Reddy, J. N. “Finite Element Analysis of Composite Plates”, Kluwer Academic Publisher, 2nd Edition, 

Boston, 1992 

Pai, P.F., 1995, A new look at shear correction factors and warping functions of anisotropic laminates” International 

Journal of Solids Structures, Vol 32, No 16, pp. 2295-2313. 

Puchegger S., Bauer, D., Loidl, D., Kromp, K, and Peterlik, H, 2003, “Experimental validation of the shear correction 

factor”, Journal of Sound and Vibration, No261, pp. 177-184. 

Raman, P.M. and Davalos, J.F., 1996. “Static shear correction factor for laminated rectangular beams”. Composites: 

Part B, 27B, pp. 285-293. 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 

Reddy, J. N. e Ochoa, O. O., 1993, “Finite Element Analysis of Composite Laminates”. Kluwer Academic Print on 

Demand, 1993. 3
rd

 Edition 

Reissner, E. 1945,. “The effect of transverse shear deformation on the bending elastic plates”. Journal of Applied 

Mechanics, Vol 2. ASME 67, A-69-77 2,  

Simulia Dassault, 2008, “Abaqus User Subroutines Reference Manual”, Providence – USA, 2008 

Singh, M.T.B.N., 2010, “Static response and free vibration analysis of FGM plates using higher order shear deformation 

theory”, Applied Mathematical Modeling, Vol 34, pp. 3991-4011. 

Tita, V. 1999, “Análise dinâmica teórica e experimental de vigas fabricadas a partir de materiais compósitos 

poliméricos reforçados”, São Carlos, 1999. 

Vinson, J.R. and Sierakowski, R.L., 2005, “The Behavior of Structures Composed of Composite Materials”, Kluwer 

Academic Publishers, 2
nd

 Edition. 

Whitney, J.M., 1973, “Shear correction factors for orthotropic laminates under static load”. Journal of Applied 

Mechanics, Vol. 40, pp. 302. 

Whitney, J.M., 1972, “Stress analysis of thick laminated composite and sandwich plates.”, Journal of Composite 

Materials, Vol. 6, pp. 426. 

Wooram, K.; Reddy, J. N., 2010, “Novel mixed finite element model for nonlinear analysis of plates”, Latin American 

Journal of Solids and Structures, Vol 7, pp. 201-226, 2010. 

 

 

8. RESPONSIBILITY NOTICE 

 

The authors are the only responsible for the printed material included in this paper. 

 


