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Abstract. Electrical Impedance Tomography (EIT) is a imaging technique that attempts to reconstruct the impedance
distribution inside an object from the impedance between electrodes placed at the object’s surface. The EIT reconstruction
problem can be approached as a non-linear non-convex optimization problem where one tries to maximize the matching
between a simulated impedance problem and the observed data. This non-linear optimization problem is often ill-posed,
and not very suited to methods that evaluate derivatives of the objective function. It may be approached by Simulated
Annealing (SA), but at a large computational cost due to the expensive evaluation process of the objective function, that
involves a full simulation of the impedance problem at each iteration. We propose here a variation of SA where the objective
function is evaluated only partially, while ensuring boundaries on the behavior of the modified algorithm.
Keywords: Simulated Annealing, Electrical Impedance Tomography, Inverse Problem.

1. Introduction

The non invasive and non destructive imaging of the interior of objects has been a challenge. Electrical impedance
tomography (EIT) is one possibility to obtain information from otherwise inaccessible regions within a closed and often
opaque volume. EIT estimates the electrical conductivity distribution within the body when a low amplitude current
pattern is applied to a body surface and the potential at determined points of that surface is measured through electrodes or,
alternatively, when a potential is applied and the current flowing through the surface is measured (Trigo et al., 2004).

The model of the body is based on an elliptic partial differential equation obtained from Maxwell’s equations and the
electrical conductivity distribution represents the solution of an ill-posed nonlinear inverse problem, meaning that large
changes in conductivity at the interior of the body may result in only small potential or current changes at the surface.
The main problems with EIT are its sensitivity to electrode positioning, its rather low image resolution due to noise in the
measurements and numerical effects of the discretization, and its sensitivity to the boundary geometry.

The two main forms of EIT are dynamic imaging and static imaging yielding differential and absolute images
respectively. The images produced by differential imaging represent the conductivity changes of a region between two time
intervals (Barber and Brown, 1984). Imaging physiological function within the body largely relies on this technique. This
work, is mainly concerned with the reconstruction of static conductivity images which requires more advanced numerical
algorithms.

EIT has a wide range of medical applications, detection of acute cerebral stroke (Clay and Frree, 2002), breast cancer
(Kao et al., 2006), monitor cardiac activity (Eyüboglu et al., 1989) and monitor lung aeration imposed by mechanical
ventilation in critically ill patients (Hua et al., 1993; Trigo et al., 2004). The last application is the main interest of our
group, where EIT can be used to implement a protective lung strategy that can result in an improved lung function and
survival (Amato et al., 1998).

2. Formulation of the forward problem

The typical forward problem in EIT is given the conductivity distribution σ and the current J injected through boundary
electrodes, find the potential distribution φ within Ω and in particular the resulting potentials at the measurement electrodes
φm. The frequencies used in EIT are low enough so that the quasi-static approximation hold, and thus we can ignore
capacitive and inductive effects. Under such quasi-static conditions, the solution of the forward problem is rather simple as
it only requires solving the Laplace equation

∇ (σ∇φ) = 0. (1)

That is an elliptic equation in the divergence form (Evans, 2010, ch. 6). The boundary conditions are given by the currents
J at the domain’s frontier

σ
∂φ

∂n̂
= J (2)

where n̂ is the external normal. The convention adopted here is to have positive J values for currents exiting the domain.
First-derivative boundary conditions such as the formulated in (2) are called Neumann boundary conditions. The forward
problem with Newmann boundary conditions is particular to scenarios where the boundary currents are known. Another
possible scenario is that of known boundary potentials, leading to Dirichlet boundary conditions. On boundary conditions,
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it is important to notice that integrating (1) over the domain Ω and applying Gauss’ theorem, then∮
∂Ω

σ∇φ · n̂ds = 0. (3)

Replacing (2) in (3),∮
∂Ω

J ds = 0

that is a necessary condition for (1,2) to have a solution. Physically, it is equivalent to require that the sum of currents
entering and leaving the domain is zero.

2.1 Variational Formulation of the forward problem

Consider the functional F (φ) given by

F (φ) =
1

2

∫
Ω

σ∇φ · ∇φ dx−
∮
∂Ω

φJ ds. (4)

If φ∗ is a solution of (1, 2), then φ∗ is a minimum of F (φ). Indeed, let φ be an arbitrary potential distribution, and φ∗ a
solution of (1). Then,∫

Ω

(φ∗ − φ) [∇ (σ∇φ∗)] dx = 0

integrating by parts,∫
Ω

σ∇ (φ∗ − φ) · ∇φ∗ dx−
∮
∂Ω

(φ∗ − φ)σ∇φ∗ · n̂ ds = 0

replacing (2) on the second term and expanding,∫
Ω

σ∇φ∗ · ∇φ∗ dx =

∫
Ω

σ∇φ∗ · ∇φ dx−
∮
∂Ω

J (φ− φ∗) ds = 0.

Applying the Cauchy inequality 1 to the first term and collecting on the left side the terms in φ∗, we have

1

2

∫
Ω

σ∇φ∗ · ∇φ∗ dx−
∮
∂Ω

Jφ∗ ds ≤ 1

2

∫
Ω

σ∇φ · ∇φdx−
∮
∂Ω

Jφ ds

for any φ, proving that φ∗ is a minimum of (4). Applying the Generalized Dirichlet Principle (Evans, 2010, p. 456-467),
one can show that the reverse is also true, that is, if a potential distribution φ∗ is a minimum of (4), then it is also a solution
of (1, 2). In general lines, if φ∗ is a minimum of F , then it’s variation ∂F is zero at φ∗

∂F (φ)|φ=φ∗ = ∂

(
1

2

∫
Ω

σ∇φ · ∇φdx−
∮
∂Ω

φJ ds

)∣∣∣∣
φ=φ∗

=

∫
Ω

∇ (∂φ))σ∇φ∗ dx−
∮
∂Ω

∂φJ ds = 0.

Where ∂φ is an infinitesimal arbitrary variation of the function φ∗. Applying Green’s formulas to the first term,

0 =

∫
Ω

∇ [∂φ (σ∇φ∗)] dx−
∫

Ω

∂φ∇ (σ∇φ∗) dx−
∮
∂Ω

∂φJ ds.

Applying Gauss’s theorem to the first term,∫
Ω

∂φ∇ (σ∇φ∗) dx =

∮
∂Ω

∂φ (∇φ∗ · n̂− J) ds (5)

This equation holds true for any ∂φ. In particular, if we take ∂φ = 0 in ∂Ω,∫
Ω

∂φ∇ (σ∇φ∗) dx = 0 =⇒ ∇ (σ∇φ∗) = 0

showing that φ∗ satisfies (1). On the other hand, if ∂φ 6= 0 in ∂Ω then, replacing (1) in (5),∮
∂Ω

∂φ (∇φ∗ · n̂− J) ds = 0 =⇒ σ
∂φ

∂n̂
= J

showing that φ∗ satisfies (2). This is somehow surprising, as (4) does not even require φ to have a second order derivative (it
only requires for the two integrands to be integrable). The formulation of a differential equation as a functional optimization
problem is known as the weak or variational formulation.

1~u · ~v ≤ 1
2
(~u · ~u+ ~v · ~v)
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2.2 Finite Element Method applied to the forward problem

Analytical solutions for (1, 2) for arbitrary domains Ω are not known. The Finite Element Method (FEM) is a process to
obtain approximate numerical solutions for Partial Differential Equations (PDEs) such as those studied in this work (Castro,
2006; Bathe, 1995). It can be derived from the variational form of the problem described in section 2.1. The basic idea is
to adopt as approximated solution of (1,2) a minimum of (4) when the potential distributions φ are restricted to a linear
subspace generated by a base of functions. As such, let Ψ = [ψ1, ψ2, . . . , ψn]

T a finite vector of n linearly independent
functions such that ψi ∈ C

(
R2
)
. The domain A of functions considered by FEM is given by

A =
{
u : R2 → R | u = xT ·Ψ, x ∈ Rn

}
. (6)

An approximated solution φ̃ can be written as

φ̃ = ΦT ·Ψ (7)

where Φ = [φ1, φ2, . . . , φn]
T is the coefficient vector that defines φ̃. As stated above, φ̃ is the function inA that minimizes

(4). Replacing (7) in (4) we have

F
(
φ̃
)

=
1

2

∫
Ω

σ
(
ΦT · ∇Ψ

)
·
(
ΦT · ∇Ψ

)
dx−

∮
∂Ω

ΦT ·Ψ · J ds.

Using ⊗ as notation for the outer product 2 and grouping the terms in∇Ψ,

F
(
φ̃
)

=
1

2

∫
Ω

σΦT · (∇Ψ⊗∇Ψ) ·Φ dx−
∮
∂Ω

ΦT ·Ψ · J ds.

As the vector Φ is independent of x,

F
(
φ̃
)

=
1

2
ΦT ·

n×n︷ ︸︸ ︷(∫
Ω

σ (∇Ψ⊗∇Ψ) dx

)
·ΦT −

n×1︷ ︸︸ ︷(∮
∂Ω

Ψ · J ds

)T
·Φ.

Notice that the integral in the first term is now a n × n array, and that in the second term is a vector of n components.
Defining the Stiffness Matrix3 of the system K (σ) as

K (σ) =

∫
Ω

σ (∇Ψ⊗∇Ψ) dx

and the Load Vector C

C =

∮
∂Ω

Ψ · J ds

we have

F
(
φ̃
)

=
1

2
ΦT ·K (σ) ·Φ−CT ·Φ. (8)

By definition. K (σ)ij =
∫

Ω
σ (∇ψi ⊗∇ψj) dx is symmetric and positive definite (it suffices to notice that ΦT ·K (σ)·ΦT

is equivalent to the first term of (4), that is necessarily positive). As such, it is easy to show that (8) has a minimum (see for
instance Shewchuk (1994)) given by the solution of

K (σ) ·Φ−C = 0 (9)

that is a linear system that can be efficiently solved by numerical methods.

2The outer product or tensor product between two vectors u1×m e v1×m is given by u⊗ v = Pn×m such that Pij = uivj . It can be easily shown
that

(
aT b

) (
cT d

)
= aT (b⊗ c) d

3The denominations Stiffness Matrix and Load Vector come from the traditional application of FEM to the Field of Structural problems
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2.3 The Inverse Problem as an Optimization Problem

The EIT inverse problem is the problem of, given the electric currents and tensions on the boundary of the domain
for multiple patterns, find the distribution of electric conductivity in the domain interior. Since there are known methods
for efficiently solve the forward problem (such as FEM), one possible approach to the inverse problem is to look at it as
an optimization problem, where the optimization variables are a parametrization of the conductivity inside the domain
(for instance, the domain is divided in continuous segments and the conductivity inside each segment — presumed to
be constant — becomes a parameter) and the optimization function is some measure of how the solution of the forward
problem applied to the conductivity distribution produced by the optimization variables matches the measured data. One
possible objective function E is the Euclidean distance between the measured electric potentials φim and the calculated
potentials φic for all the applied current patterns

E =

√
Σ|φim − φic|

2
. (10)

An example of such approach is in (Mello et al., 2008), where the objective function 10 is minimized by Sequential Linear
Programming yielding estimations of the conductivity distribution. It was pointed by Mello et al. (2008) that the solution
of this optimization problem by methods that require the computation of the objective function gradients is difficult since –
as the problem is intrinsically ill–conditioned – the errors on such computations can become quite large.

That is why the interest on Simulated Annealing (SA) applied to EIT is increasing, as it requires no evaluation of
objective function derivatives (in fact, as we will show, it does not even require a complete computation of the objective
function).

3. Simulated Annealing

SA is a hill-climbing local exploration optimization heuristic, which means it can skip local minima by allowing the
exploration of the space in directions that lead to a local increase on the cost function. It sequentially applies random
modifications on the evaluation point of the cost function. If a modification yields a point of smaller cost, it is automatically
kept. Otherwise, the modification also can be kept with a probability obtained from the Boltzman distribution

P (∆E) = e−
∆E
kT (11)

where P (∆E) is the probability of the optimization process to keep a modification that incurs an increase ∆E of the
cost function. k is a parameter of the process (analogous to the Stefan–Boltzman constant) and T is the instantaneous
“temperature” of the process. This temperature is defined by a cooling schedule, and it is the main control parameter of the
process. The probability of a given state decreases with its energy, but as the temperature rises, this decrease (the slope of
the curve P (∆E)) diminishes.

4. Applying Simulated Annealing to EIT

As seen in section 2.3, the EIT inverse problem can be formulated as an optimization problem, and as such, can be
approached with SA. Herrera et al. (2007) minimized objective function (10) calculated in a model and measured on real
subjects with SA and by doing so, managed to reconstruct very accurate conductivity distributions of the body, but at a very
high computational cost. This is unsurprising, as each step of the SA involves the solution of a full FEM problem in order
to evaluate the objective function.

4.1 Incomplete Evaluation of the Objective Function

As the evaluation of the objective function is responsible for the bulk of the SA computational cost, it is interesting
to look for means to reduce its cost. In particular, we will study how the SA process behaves in the presence of a partial
evaluation of the objective function. We will use the objective function given by (10). The calculated potentials φic for
each current pattern are obtained from a FEM algorithm whose kernel is a solver for the linear system given by (9). Notice
that there are multiple current patterns Ci, leading to multiple calculated potentials Φi. Let us suppose that there is a way
to iteratively solve the linear system such that at each iteration we have an estimative of the solution and a (decreasing)
upper limit on the l2 norm of the difference between the estimative and the correct solution. Then, if di =

∣∣φim − φic∣∣ is the

component of the objective function for a given current pattern, d̃i =
∣∣∣φim − φ̃ic∣∣∣ is its estimate obtained with the partial

solution φ̃c and εi ≥
∣∣∣φic − φ̃ic∣∣∣ is an upper boundary on the error of the solver algorithm, we have

di ≤ dimax = d̃i + εi

di ≥ dimin = max
(

0, d̃i − εi
)
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and of course,

Ẽ =

√
Σ
(
d̃i
)2

E ≤ Emax =

√
Σ(dimax)

2

E ≥ Emin =

√
Σ
(
dimin

)2
.

The upper and lower boundaries for E converge to the exact value as the number of iterations of the multiple solver
algorithms increases. As SA is sensible only to relative variations of the objective function those boundaries must be
converted to boundaries of the variation of E. If ∆E = Ej − Ei is the variation of the objective function when the SA
process moves from one solution xj to another xj+1 then, by interval arithmetic,

∆Ẽ = Ẽj − Ẽj+1

∆E ≤ ∆Emax = Ejmax − E
j+1
min

∆E ≥ ∆Emin = Ejmin − Ej+1
max.

(12)

Again, those boundaries for ∆E converge to the exact value, but this time, it is necessary to increase the number of
iterations for both the evaluation of xj and xj+1.

From that it can be seen that a SA process that would use the partial solutions φ̃c for its linear systems instead of the
exact ones φc would have a limited probability of diverging from the process that uses the exact solutions. Indeed, by
imposing Perr as an upper limit on the probability of the process taking a “wrong” decision (rejecting a solution when it
should accept it or accepting when it should reject), we can create conditions for the boundaries given in (12)

e
−∆Emax/kt ≥

{
1− Perr if ∆Ẽ ≤ 0,

e
−∆Ẽ/kt − Perr if ∆Ẽ > 0

(13)

e
−∆Emin/kt ≤ min(1, Perr + e

−∆Ẽ/kt). (14)

The conditions given by (13) and (14) do not translate directly into stopping criteria for the solver algorithm, as ∆Emax
and ∆Emin are the partial solutions of two separate sets of FEM problems, and in general, they are not reachable by
tightening the boundaries in just one set. As such, every solution must have its objective function evaluation process stored
so it may be possible to continue it from where it has stopped.

In fact, it is often computationally more efficient to improve the boundaries on the evaluation of the previous SA
solution than the current one. Since CG has an asymptotically geometric convergence behavior and presuming that both the
previous SA solution and the current one have similar convergence rates (a reasonable assumption is that the K matrix
varies very little from one iteration to another and a preconditioner equalizes even more the convergence rate), a simple
heuristic for picking which solution to evaluate further is to just pick the one with larger boundaries.

5. Conjugated Gradients Algorithm with estimates on the l2 norm of the error

The CG Algorithm is an iterative algorithm for solving systems of the form

A · x− b = 0 (15)

when A is a symmetric positive definite matrix. It is well suited for solving linear systems like (9). Indeed, a way to derive
the algorithm is from the minimization of quadratic forms like (8) (see for instance (Golub and Van Loan, 199, sec. 10.2)
or (Shewchuk, 1994)). For this work, it is more interesting to consider its derivation from the Lanczos Algorithm. The
Lanczos Algorithm is a decomposition algorithm for symmetric positive definite matrices in the form

A = V · T · VT (16)

where V is an orthonormal matrix and T is a tridiagonal symmetric matrix. In (Meurant, 2006) it is shown how V is built as
an orthonormal basis for the Krylov subspace

K (A, v) = span
{

v,A · v,A2 · v, . . . ,An−1 · v
}
.
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Indeed, applying the Grand-Schmidt orthogonalization process to K (A, v), we have:

v1 = v/‖v‖

ti,j = vTj · A · vi, j ≤ k

v̄i = A · vi −
n∑
j=1

tj,ivj

ti+1,i = ‖v̄i‖
vi+1 = v̄i/ti+1,i.

Let Vk be a n×k matrix collecting the vi vectors generated in the first k iterations and Tk a k×k matrix whose coefficients
are ti,j (notice that every coefficient below the first subdiagonal is zero). It can be shown that Tk is symmetric and
consequentially, tridiagonal. Then the decomposition in (16) can be obtained taking V = Vn and T = Tn.

The Lanczos decomposition can be used to solve linear systems like (15). Indeed, let x0 be an initial guess and
r0 = A · x0 − b the initial residue. Then, if r0 is taken as the initial vector for the Krylov subspace K (A, r0). An iterative
solution may be computed using the vectors in Vk. The solution at iteration k is given by (Golub and Meurant, 2010)

xk = x0 + Vk · yk (17)

the vector yk is taken so the resulting residual rk = A · xk − b is orthogonal to Vk. It is clear that if such values of yk can
be found, then rn = 0 and xn is a solution of (15). By imposing Vk = 0 we have the condition Tk · yk = VTk · r0. Since
the vector r0 is taken as the base of the Krylov subspace, VTk · r0 = ‖r0‖ e1, where e1 is the first column of the identity
matrix of rank n. The vector yk is then given by yk = ‖r0‖T−1

k · e1, leading to

xk = x0 + ‖r0‖Vk · T−1
k · e

1.

Tk in turn can be decomposed as Lk · D−1
k · L

T
k , where Dk is a diagonal matrix and Lk is a lower bidiagonal matrix whose

main diagonal is the same as Dk and its subdiagonal is equal to the subdiagonal of Tk. Through this decomposition it can
be shown (Golub and Meurant, 2010, pg 46-49) that xk can be computed iteratively with only a single matrix × vector
product per iteration. The full algorithm follows:

Algorithm 1 Solve A · x− b = 0

Input: A a n× n symmetric positive definite matrix, b and x0

Output: x such that A · x− b = 0

r0 = b− A · x0

p0 = r0

γ0 = rT0 ·r0/rT0 ·A·r0

for i = i to n do
xi = xi−1 + γi−1pi−1

ri = ri−1 − γi−1A · pi−1

βi = rTi ·ri/rTi−1·ri−1

pi = ri + βipi−1

γi = rTi ·ri/pT
i ·A·pi

end for
output xn

5.1 The l2 error estimate

Let εk = xk −A−1 · b be the error of the algorithm at iteration k. Noticing that εk = xk − x0 −A−1 · r0 and applying
the relation (17),

‖ek‖2 = rT0 · A
−2 · r0 − 2rt0 · A

−1 · Vk · yk + yTk · Vk · yk.

By applying the decomposition of Tk (Golub and Meurant, 2010, pg 69),

‖ek‖2 = ‖r0‖2
((

T−2
n

)
1,1
−
(
T−2
k

)
1,1

)
− 2 ‖εk‖2A

(
T−2
k

)
k,1(

T−1
k

)
k,1
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(a) (b)

(c) (d) (e)
Figure 1: (a) Simulation Domain. (b) Final result for the “Central Dot” problem. (Higher conductance is brighter). (c) Final
result for the “Box” problem. (d) Final result for the “Box” problem with modified neighborhood heuristic. (e) Evaluating
the effect of FEM mesh errors.

where ‖εk‖2A = εAk εk is the A-norm of the error at iteration k. Since Tk is positive definite, the last term will be always
negative, and will be disregarded here, as we are interested in upper bounds for the norm of the error. Of course, the
Tn matrix is unknown until the algorithm has reached the n-th iteration. Considering that the convergence of the CG is
geometric, by introducing a delay d such that ‖εk−d‖2 � ‖εk‖2, we may estimate an upper bound for ‖εk−d‖2A at iteration
k as

‖r0‖2
((

T−2
k

)
1,1
−
(
T−2
k−d
)

1,1

)
.

Notice the value will be obtained d iterations “late”, but as the norm of the error in the CG is monotonically decreasing, the
error estimate for a few iterations earlier is an upper boundary for the error in the current iteration. The value

(
T−2
k

)
1,1

can
be iteratively computed in parallel with the CG using a QR factorization of the matrix Tk (see Meurant (2005) for details,
or Ortega and Kaiser (1963) for more general results on the QR decomposition of tridiagonal matrices).

6. Results

To evaluate the viability of SA with partial evaluation applied to the EIT problem, a simple implementation was built
using a simulated domain. Our simulated domain shown in Fig. 1(a) is a square, measuring 16× 16 units, composed of 76
triangular elements with 320 nodes, of whose 32 are electrodes. The electric conductance domain was divided in 64 2× 2
squares (notice the potential discretization and the conductance discretization is not the same). The conductance in each
element is defined in the interval [1, 2]. The electrodes are modeled as 2× 1 rectangles, the larger edge being in contact
with the domain. The opposite edge is modeled as being in contact with an infinite conductivity element and consequently
the potential across it is constant (the triangular shapes seen in Fig. 1 are thus misleading, they just reflect the fact that the
outer edge is collapsed into a single potential node in the FEM model). The first electrode (the topmost electrode in the left
column) was defined as the ground. We applied 31 simulated current patterns, corresponding to an unitary current entering
each electrode – but the ground – and leaving through the other ground node. The FEM problems were solved using a
preconditioned CG method, with Incomplete Choleski decomposition preconditioning (Kershaw, 1978). As suggested by
(Meurant, 2005), the pre–conditioner l∞ norm was used for estimation of the error l2 norm. The 64 conductivity parameters
are generated by SA. The neighborhood heuristic used was taken from (Martins and Tsuzuki, 2009), changing only a single
conductivity parameter at each iteration and reducing the modifications on parameters that lead to rejected solutions. The
divergence probability Perr was arbitrarily defined as 1/100.

The first evaluated problem was a simple domain with conductivity 2 in all its extension but the 4 central squares,
which have conductivity 1. Fig. 1b shows the final result of the SA process. It can be seen that, despite the use of partial
evaluations of the objective function, it still converges to the correct solution.
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(a) (b) (c)

(d) (e) (f)
Figure 2: Convergence behavior for the “Checkerboard” problem.

This is a non–convex conductance distribution, with a high impedance (conductivity equal 1) 8× 8 box containing a
4× 4 low impedance box (conductivity equal 2). As the electric current naturally avoid the box interior, this is a highly
ill–conditioned problem, posing a challenge to an partial evaluation approach as ours. Fig. 1c shows the final result of the
optimization process. As it can be seen, while the external shape of the high–impedance region was correctly determined,
the process got stuck on a local minimum while determining the conductivity of the box interior. We suspected that our
initial neighborhood heuristic was to blame, and adopted a less restrictive heuristic where, in addition to modifications to
single conductivity values, a “conductivity transport” between two adjacent cells was allowed. The amount of conductivity
to be transferred from one cell to another also followed the adaptive heuristic proposed by (Martins and Tsuzuki, 2009).
The result with the new neighborhood heuristic is shown in Fig. 1d. As it can be seen, the initial blame on the neighborhood
heuristic seems justified, as the conductivity on the interior of the box is accurately determined.

As our goal is to estimate the impact of a partial objective function evaluation on the SA, for all the above problems
the observations of current patterns were simulated using the same mesh used by the SA to recreate the impedance (thus
compensating FEM errors). It is still interesting to see how the process behaves in the presence of errors introduced
by the FEM discretization. For such, a new simulated domain was created using a new mesh with twice the resolution
of the old one, composed of 2432 triangular elements. A quick simulation shows that the FEM errors can be quite
significant. Estimating the electric impedance between two adjacent electrodes in the middle of one side of the domain
(with conductivity 1 in all its extension) using the coarse mesh yields a result of 1.42, while the same simulation using the
fine mesh yields a result of 1.56, suggesting that the coarse mesh tends to underestimate the impedance of the electrodes by
almost 10%. A problem with a 8 × 8 square high impedance region was simulated using the fine mesh then the coarse
mesh was used by the SA to attempt to reconstruct the conductivity distribution. The results are shown in Fig. 1e. While
the image was reasonably reconstructed, there are – as predicted – impedance artifacts in front of the electrodes (caused
by the underestimation of electrode impedance by the coarse mesh). Also there is visible noise across the border of the
high-impedance region, particularly on its corners.

6.1 Checkerboard Problem and a qualitative observation of the convergence

To retrieve more information from the convergence of the process, we proposed a complex problem – a 4 × 4
“Checkerboard” conductivity pattern, alternating high conductivity (2) and low conductivity (1). The SA process has
accurately reconstructed the conductivity distribution. The examination of intermediary results, displayed on Fig. 2 and ??
shows that the impedance distribution is reconstructed from the outside towards the interior of the domain. While further
studies are required, it is reasonable to presume that the objective function is more sensible to modifications on external
cells.

Those results suggest the partial evaluation objective function can be as effective as the full evaluation for the SA, but
how efficient it is? The figure ?? shows the average number of CG iterations used by the process at each temperature.
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Figure 3: Energy (Objective Function) for the “Checkerboard” problem (error bars represent the standard deviation at a
fixed temperature).

Considering that the system has 320 nodes, it is remarkable that the system is able to achieve those results while using
in average less than 20 iterations of CG. More interesting is the evolution of the iteration number as the optimization
progresses. At high temperatures, the high kt and ∆Ẽ values lead to relatively loose conditions in (13) and (14), reachable
by few iterations of the CG algorithm. As the temperature diminishes, lower kt and ∆Ẽ values (as the evaluated solutions
become closer) impose through (13) and (14) tighter conditions, leading to a higher number of CG iterations. It may be
then a bit surprising that as the process converges towards the final solution the number of CG iterations reduce again. This
is explained by two factors.

First, the “initial guess” for the CG algorithm is obtained from the solution obtained at the previous solution of the
SA algorithm. Second, the adaptive neighborhood heuristic reduces dramatically the modifications on the conductivity
distribution as the process converges towards a global optimum (Martins and Tsuzuki, 2009). Combining those two factors,
it can be seen that in the final convergence of the optimization process, the previous FEM solutions are initial guesses good
enough to compensate for the increasingly severer conditions on the boundaries of ∆E.

7. Conclusions

We proposed here a new approach to the application of SA to the EIT inverse problem, where the optimization process
is allowed to proceed with just a partial evaluation of the objective function. We showed how in the particular case of
EIT it is possible to enforce upper bounds on the probability of the modified SA process to deviate from a regular one
(with full evaluation of the objective function) by converting those bounds in stopping criteria for the inner CG algorithms
used to solve the forward EIT problem. Initial results show that while the partial evaluation of objective functions do not
compromise the convergence of the SA algorithm, it has a great potential of improving its efficiency.
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