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IDENTIFICATION OF SMART STRUCTURES BY KAUTZ FILTER WITH
MULTIPLE POLES
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Abstract. Impulse response functions (IRFs) identification in mechanical systems and structural dynamics is important
in many engineering applications, particularly in experimental modal analysis. Several approaches are available for
identify the IRFs directly in the time domain by using input and output time series measured. The classical covariance
method is one of the most used and it is based on the sum of convolutions of the input forces. In this sense, the main goal
of this paper is to identify the IRF of mechanical structures lightly damped by considering the input force signals filtered
by Kautz filter with multiple poles. If a Kautz filter is chosen adequately, the number of parameters needed to estimate
the IRF is reduced drastically. The inclusion of different poles in the Kautz functions allows the use of a wide range
of frequency without preprocessing the signals. In order to illustrate the applicability and the efficacy of the proposed
approach, some experimental tests by using a smart beam with PZTs sensor/actuator coupled are performed. The results
show the advantages and drawbacks of the methodology with some further directions research necessary to improve the
procedure in order to implement in real-world engineering system.

Keywords: impulse response functions, orthogonal functions, Kautz filter.

1. INTRODUCTION

In several engineering aplications is necessary to know the dynamic behaviour of the system in order to be able to
predict events and let it more productive and safe. One method to obtain this is by using a white box modeling, that is
based on the physicals events and theory. This method can be complex and very expensive both in relation of time and
money. In order to overcome these drawbacks, an empirical procedure can be utilizated. This method is called black box
method and it are based only in the input and output signals measured experimentally in a real-world plant. In that case,
it is assumed no knowledge of the system theory (Aguirre, 2007).

In order to perform this, the aim of this paper is to use the covariance method (CM) basead on the sum of convolution
of orthogonal functions to indentify the impulse response functions (IRF) of mechanical systems. The ortogonal function
used in this paper is the Kautz filter, that is an orthogonal function in Hilbert space, and it is addressed to reduce the
number of parameters that must be found to describe the IRF of the system and reduce the complexity of the problem.
This approach is introduced to transform the input and output signals to an orthogonal Kautz basis functions. Once this
transformation is made, standard identification techniques are applied to the signals. The CM methodology has been
directed towards for the data reduction caused by the Kautz function. The CM approach estimates the terms of finite
impulse response. Thus, the goal of this paper is to show clearly this method, based on the input and output signals to
identify the impulse response function (IRF) of a low damped smart structure.

In other works, e. g. Pacheco and Junior (2004), different orthogonal functions were used to transform a set of
differencial equations into a set of algebraic equations. This procedure have some drawbacks, one is the need of a huge
amount of expansion terms and another limitation is the need of the knowledge of the mathematical model of the system
(da Silva et al., 2009). Moreover, the Kautz filter is described by complex conjugated poles that well describe oscillatory
systems, ideal for vibration applications. Additionally, non-linear system identification of Volterra kernels can be well
represented by Kautz filter. In this sense, da Silva (2011a) and da Silva et al. (2010) presented applications of these
approach by using mechanical systems, as beam and portal frame, and discussed the advantageous and the practical
enforceability. da Silva (2011b) presented a procedure involving the Kautz filter to be able to include different poles in
a filters set, seeking applications for modal analysis and structural dynamics of mechanical systems. This allowed the
use of a wide range of frequency without pre-processing the output vibration signal. However, the results showed were
based only in numerical simulation. The goal of the present paper is to realize an application of IRF identification with
Kautz filter with multiple poles by using experimental data provided by a smart beam in order to illustrate and validate
experimentally the methodology shown in da Silva (2011b).

The paper is organized as follows: first a review of covariance method expanded in ortonormal basis functions is
presented. Next, the Kautz filter with multiple poles and a briefly procedure to choose the poles in the Kautz filter based
on optimization is described. In order to illustrate the procedure, a smart structure composed by an aluminium beam with
PZT actuator/sensor coupled is used to identify the IRFs. The boundary conditions considered in the beam are free-free.
The experimental setup is controlled by using a dSPACE R© 1104 data acquisition board with ControlDesk R© software.
The numerical identification is performed by using the Matlab R© and Simulink R©. In order to show some features, it is
provided a number of simulations to illustrate the applicability and drawbacks of the approach. Finally, the final remarks
in this paper are presented with further direction researches.



Proceedings of COBEM 2011
Copyright c© 2011 by ABCM

21st International Congress of Mechanical Engineering
October 24-28, 2011, Natal, RN, Brazil

2. COVARIANCE METHOD EXPANDED IN ORTHONORMAL BASIS

The classical Wiener-Hopf equation describes the relationship between the correlation function Ruu(k) and cross-
correlation Ruy(k) trough the impulse response function (IRF) h(k) (Godfrey, 1986):

Ruy(k) ≈
N∑
j=0

h(j)Ruu(k − j) (1)

where the correlation function Ruu(k) computed with the input signal u(k) and cross-correlation Ruy(k) computed
with u(k) and output signal y(k) can be estimated by using different methods, for example, the Levinson-Durbin recursion
method.

A least-square identification method can be implemented to estimate the expansion coefficients in the time-series
h(k) that describes the finite impulse response model (FIR model). However, this identification method often leads to
conservative results because a vibrating system is hardly ever represented by a FIR model. Thus, the practical drawback
is that a large number of parameters h(k) must be considered in order to obtain a good approach in eq. (1).

The idea is to describe the IRF by using the Z transform and as a linear combination of the functions Ψi(z):

H(z) = α0Ψa(z) + α1Ψ1(z) + · · ·+ αJΨJ(z) =

J∑
j=0

αjΨj(z) (2)

where αj , j = 0, 1, . . . , J are the expansion coefficient values in the functions described by Ψj(z). Ψj(z) is a filter
chosen in order to obtain the minimum possible number of elements and a good approximation of the IRF.

After substituting eq. (2) in eq. (1) yields:

Ruy(k) ≈
N∑
i=0

h(i)Ruu(k − i) ≡
N∑
i=0

J∑
j=0

αjψj(i)Ruu(k − i)

=

J∑
j=0

αj

N∑
i=0

ψj(i)Ruu(k − i) =

J∑
j=0

αjvj(k) (3)

where vj(k), k = 0, · · · , N is the input signal Ruu(k) filtered by each element of the discrete-time function ψj(k),
j = 0, 1, . . . , J that is an approximation base functions:

vj(k) =

N∑
i=0

ψj(i)Ruu(k − i) = ψj(k) ∗Ruu(k) (4)

where the symbol ∗ represents the convolution operator.
The eq. (3) can be used to form the following matricial equation:

Ruy(0)
Ruy(1)

...
Ruy(N)

 =


v0(0) v1(0) · · · vJ(0)
v0(1) v1(1) · · · vJ(1)

...
...

. . .
...

v0(N) v1(N) · · · vJ(N)




α0

α1

...
αJ

 (5)

Finally, the IRF estimated ĥ(k) can be defined by:

ĥ(k) =

J∑
j=0

αjψj(k), k = 0, 1, . . . , N (6)

or in the matricial form:
ĥ(0)

ĥ(1)
...

ĥ(N)

 =


ψ0(0) ψ1(0) · · · ψJ(0)
ψ0(1) ψ1(1) · · · ψJ(1)

...
...

. . .
...

ψ0(N) ψ1(N) · · · ψJ(N)




α0

α1

...
αJ

 (7)

It worth noting that if the filter Ψj(z) is properly chosen, the order J << N . Thus, it is easier to identify the
coefficient expansion αj than the IRF in physical base h(k) once the convergence properties of Ψj(z) subsets is related
to the completeness properties of these subsets of functions.
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3. KAUTZ FILTER WITH MULTIPLE POLES AND CHOICE OF POLES

An appropriate choice of poles in Ψj(z) that reflects the dominant dynamics of the process is very important and which
still preserving the orthogonality accelerates the convergence for certain classes of transfer functions. The Kautz function
is a second-order filter described by pairs of complex conjugate poles in the z-domain, β = σ + jω and β∗ = σ − jω,
which provides a good generalization of mechanical vibration systems (da Silva et al., 2009).

da Silva et al. (2009) estimated the IRFs by using only one pole induced in the Kautz filter. This procedure required a
pre-filtering of the signals involved in the range of modal contribution to be identified. A sequence of filters can be used
with different poles in each section reflecting the modal behavior in the range of interest (da Silva, 2011b).

The elements in a set of Kautz filters can be also given by (den Hof and Bokors, 1995; Wahlberg, 1994; Heuberger
et al., 2005):

Ψ2n(z) =

√
(1− c2)(1− b2)z

z2 + b(c− 1)z − c

[
−cz2 + b(c− 1)z + 1

z2 + b(c− 1)z − c

]n−1

(8)

Ψ2n−1(z) =

√
1− c2z(z − b)

z2 + b(c− 1)z − c

[
−cz2 + b(c− 1)z + 1

z2 + b(c− 1)z − c

]n−1

(9)

where the constants b and c are relative to the poles βj and β∗
j in the j-th filter through the relations:

b =
(βj + β∗

j )

(1 + βjβ∗
j )
, (10)

c = −ββ∗
j (11)

A procedure for estimating the poles and the IRF simultaneously in an iterative way can be implemented based on
application of equation:

y(k) ≈
N∑
j=0

h(j)u(k − j) (12)

and the output experimental signal ye(k). An error function can be described by:

e(k) = ŷ(k)− ye(k) (13)

where ŷ(k) is the predicted output signal by the IRF ĥ(k) estimated considering Kautz basis defined by the poles βj
and β∗

j in the z-domain:

ŷ(k) =

N∑
i=0

ĥ(i)u(k − i) (14)

The optimization problem can be described by the following objective function that employs an Euclidean norm:

min ||e(k)|| =

√√√√ N∑
k=1

|e(k)|2 (15)

where the error e(k) is function of the placement of the Kautz poles. The Kautz poles are functions of the frequencies
and damping factors that are the optimization parameters. These parameters can be limited in a range searching. This
optimization problem can be solved by several classical approaches, as for example, sequential quadratic program (SQP)
(Goldbarg and Luna, 2000). However, in this paper was solved by using genetic algorithms (Goldberg, 1989; Michalewicz,
1996)

4. EXPERIMENTAL APPLICATION

In order to illustrate the approach, experimental tests are performed in a smart beam, see Fig. 1(a). The length, width
and thickness of the beam are 600 × 25 × 4.73 mm, respectively. In both ends of the smart structure are coupled two
PZTs ceramics used as actuator and sensor. The boundary condition simulated is the free-free (Fig. 1(a)) . The signal
input is produced by Matlab R© and Simulink R© and a Digital/Analogic board is used to applied the excitation signal in
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(a) View of the smart beam with data acquisition system.

(b) Schematic diagram of the experimental setup.

Figure 1. Smart beam with experimental setup.

Table 1. Channels of the dSPACE R© 1104 used in the tests.

Function Description Voltage range (V) Resolution (bits) Resolution (mV)
Signal generator DAC 1 -10 to +10 16 0.3

Measurement ADC 1 and ADC 2 -10 to +10 16 0.3

the PZT actuator. All data acquisition are realized by dSPACE R© 1104 data acquisition board. Figure 1(b) presents the
experimental procedure for the data acquisition. Information about the voltage range and resolution of the channels used
in dSPACE R© 1104 are presented in Tab. 1.

The sampling rate used in all tests is 8 kHz. The range of frequency to identify the modal contribution was from 0 to
2 kHz. For the boundary condition, material and geometric properties, the beam has several natural frequencies into this
range. Two signal were used to excite the beam. The first one is a white noise with 0.4 seconds of duration filtered by a
digital lowpass filter centered in 2 kHz. The second signal input used is a linear chip from 1 Hz to 2 kHz with the same
time duration. All signals were recorded with a sampling rate of 8 kHz with 3200 samples. Thus, to identify the IRF by
classical CM should be necessary to estimate 3200 parameters.

Figures 2(a) and 2(b) present the power spectral density (PSD) of the white noise input signal and the output measured
by PZTs, respectively. Both PSDs were estimated by Welch method using 500 samples, 60 % of overlap and Hanning
window.
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(a) PSD of the input signal applied in the PZT actuator.
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(b) PSD of the output signal measured by the PZT sensor.

Figure 2. Power spectral density (PSD) estimated by Welch method.

Figure 2(b) shows that the frequencies of 365 Hz, 605 Hz, 902 Hz, 1260 Hz and 1680 Hz can be chosen as candidates
to natural frequencies, once that the PSD of the output signal has amplitudes much bigger in these frequencies. Now the
modal damping factor are very small (less than 0.1). The candidate of natural frequencies and damping factors are used
to chose the initial poles in the Kautz filter. These candidates can also be confirmed by analyzing Fig. 3 which shows the
PZT response when a chirp signal is applied. It is worth noting that the amplitude of PSD in frequencies smaller than 300
Hz are not relevant and it will not be considered, see Fig. 2(b). In Tab. 2 is shown the analytical natural frequencies of the
beam in the free-free boundary condition (Rao, 2011). Thus, the candidates values are adequately close to the analytical
natural frequency.

Table 2. Analytical natural frequencies (Rao, 2011).

ωn[Hz]
pole 1 68
pole 2 189
pole 3 371
pole 4 614
pole 5 917
pole 6 1281
pole 6 1706

In order to identify the IRF is necessary firstly to chose the poles by an optimization problem. The optimization
procedure with genetic algorithm (GA) is done based on the initial values of the natural frequencies suggested before.
The GA codified the optimization parameters in binary vectors representing the genetic code of the chromosome. A
population of randomly generated chromosomes are created and submitted to crossover and mutation operators based
on a quality measure of the chromosome called fitness, given by Eq. (15). This process is iteratively repeated until a
pre-established stop criteria is reached or until a maximum number of generations. The best chromosome of the last
generation is selected as the possible solution of the optimization problem. The flowchart in Fig. 4 shows this procedure.
In order to ensure that the best chromosome in each generation has been selected until the GA reaches the stop criteria,
an elitist selection was implemented. This procedure records the best chromosome in each generation and ensure that this
elite chromosome remains to the next generation. The genetic algorithm applied to solve the optimization problem used
the configurations showed in Tab. (3). More information about the algorithm parameters can be founded in the literature
Goldberg (1989), Michalewicz (1996).

In the range of natural frequencies, one considered intervals into the frequencies centered in the candidates values
presented and with a small range of variation of the damping factor ζ. These two set of parameters define the five Kautz
poles in the continuos time (s domain). The range of searching is presented in Tab. 4. If one of the parameters shown
in Tab. 4 remains in the limit after of the optimization, the process can be done again with new intervals proposed.
All simulations were performed in a computer with Intel R© core 2 Quad with 2.83 GHz and 4 GB(RAM) and with the
Matlab R©. Once the poles in s domain is chosen, it are converted to the z domain trough the bilinear transformation
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(a) Time response of the PZT output. (b) Time-frequency response of the PZT output computed by short-
Fourier transform.

Figure 3. PZT output response when a chirp signal is applied in the PZT actuator.

Table 3. Genetic algorithm configurations.

Configuration Value
Type of selection Tournament
Type of crossover One point
Population size 100

Number of participants of the tournament 5
Number of iterations (generations) 50

Crossover tax 0.8
Mutation tax 0.05

Figure 4. Flowchart of a basic genetic algorithm

because the Kautz filter is a discrete time filter.

Table 4. Range of searching of poles si = −ξiωni ± jωni

√
1− ζ2i in the optimization procedure.

ωn[Hz] ζ
pole 1 345− 385 0.001− 0.01
pole 2 585− 625 0.001− 0.01
pole 3 882− 922 0.001− 0.01
pole 4 1240− 1280 0.001− 0.01
pole 5 1660− 1700 0.001− 0.01

Figure 5 presents the IRF estimated using the optimal parameters found, these results are presented in Tab 5. In this
case were used the data set provided by the noise input signal. Interestingly, the number of parameters to estimate in the
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case of using the classic covariance method is given by N = 3200. On the other hand, the number of parameters αj to
be estimated using the expansion of Kautz filter is given by J = 2 × 5 = 10. Clearly J << N . Figure 6 shows the
comparison between the IRF estimated through the Kautz filter with multiple poles and by using the classical covariance
method without expansion into orthogonal basis functions. The classical covariance method is implemented by using
the Matlab R© command CRA in the System Identification Toolbox. It is observed a good approach between the two
responses, but the identification without Kautz filter required more parameters into the problem. The differences between
the IRFs is due to use only five poles to described the dynamic behavior into Kautz filter. When the classical covariance
method is performed all modal contributions is considered in the data. However, the computational complexity is higher
(J << N ). Figure 6 also presents the IRF estimated by applying the inverse discrete Fourier transform (DFT) in the
frequency response function (FRF) computed by using the H1 estimate through spectral analysis, see Fig. 7 .
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Figure 5. Impulse response function of the smart beam by considering the covariance method with Kautz filter with
multiple poles. The poles are set based on results shown in Tab. 5.
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IRF computed by Kautz filter
IRF computed by Covariance Method
IRF computed by inverse DFT

Figure 6. Comparison of the IRF identified by using Kautz filter with multiple poles, by using classical covariance method
without orthogonal basis functions and through inverse discrete Fourier transform in the experimental FRF from Fig. 7.

Figure 8 shows the output estimated by Eq. (14) through the IRF estimated by Kautz filter. In order to better evaluate
each of these estimates, the simulated response from eq. (14), with ĥ(k) shown in Fig. 5, is compared with the exper-
imental response due the chirp input signal. These results are presented in Fig. 9(a) and 9(b). The poles used in this
validation tests are presented in Tab. 5.

Figure 9(b) ilustrates the response signal caused by a chirp input estimated by Kautz filter with non-optimized poles
showed in Tab. 6. This ilustrates the sensitivity of the estimated IRF due the choice of the poles. As near of the real poles
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Figure 7. Experimental FRF computed by H1 estimate by using the Welch method with 3000 samples, 50 % of overlap
and rectangular window.

Table 5. Parameters of the optimum poles found by GA.

ωn[Hz] ζ
pole 1 365 0.00171
pole 2 604 0.00166
pole 3 900 0.00820
pole 4 1259 0.00262
pole 5 1679 0.00158
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(a) Direct comparison - validation data.
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(b) PSD of the output.

Figure 8. Comparison between the experimental output signal PZT and the estimated by eq. (14) through the IRF
identified with Kautz filter.

are the used in the Kautz filter, more the IRF will be close to the real system.

5. FINAL REMARKS

The present paper illustrated that the use of expansion into orthogonal basis functions of the excitation force signals
can be effectively employed to describe the impulse response function (IRF). The Kautz filter allows to reduce the number
of parameters needed in the estimation of IRFs considerably since the multiple Kautz poles are correctly chosen to esti-
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(a) Experimental and estimated response of the beam due the chirp input
signal trough Eq. (14) and the IRF shown in Fig. 5.
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(b) Experimental and estimated response of the beam due the chirp in-
put signal with the IRF computed with Kautz filter with non-optimized
poles (Tab. 6).

Figure 9. Experimental and estimated response of the beam due to the chirp input signal.

Table 6. Non-optimized poles used in Fig. 9(b).

ωn[Hz] ζ
polo 1 380 0.0015
polo 2 610 0.0019
polo 3 910 0.008
polo 4 1240 0.0025
polo 5 1695 0.0013

mate a range of modal contributions of the IRFs. An optimization procedure based on genetic algorithms was proposed
and adjusted seeking to find what are the best conditions in which there is a good agreement between the experimental
measurements and the predicted responses using convolution PZT actuator signal with the impulse response identified.
Experimental results were used to identify the IRFs from a smart beam. Based on the results shown, this procedure can be
extremely useful in applications for the identification and modal analysis with the requirement of using IRFs in the time
domain. Other applications can be performed with Kautz filter, for example, non-linear system identification of Volterra
kernels or non-parametric damage detection. It is also worth while to note that the chosen Kautz pole is directly related to
the ability to predict the output behavior of the system. Therefore, future research effort should be made to applications
easier and faster in determining the poles of filters. Further methods for choosing the optimal poles need to be improved.
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