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Abstract. In machines and equipments high strain/stresddenamn, when occurring under a long period of timause
failure from fatigue. Thus, is important the chaexization of the spatial distribution of dynamic
displacement/strain/stress fields. With this pugasveral methods of estimation of dynamics saedsstrain using
vibrational parameters have been developed. Bdgicaesults from modal analysis are transformednfrdhe
displacement space to the strain space by use adpadifferential operator. However in some situatiothe
displacement field can’t be determined by measumsneso, the displacement field can be determinediybrid
Modal Analysis (HMA). This technique is based ainagonality of the eigenmodes of a system and dheergence
properties by least squares generalized Fourierieserin this context, this paper presents the nigakrand
experimental of the estimation of bending straia @bint on the surface of an aluminum beam usiNAHIn the first
moment, a numerical simulation was done to detegrttie strain at a point on the surface of an ahum beam using
eigenmodes obtained by finite element method amdrémsverse displacements of the beam by simolafitier, a
experimental analysis was done to determine thdiadpdistribution of strain using the eigenmodestaiorly
determined and the transverse displacement of élaenbobtained by acceleration measurements. Thes eaxsemined
showed promising results.
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1. INTRODUCTION

In machines and equipments high strain/stressdesaat, when occurring under a long period of tioaise failure
from fatigue. Thus, the characterization of theriistion of stress / strain dynamics in machinezguipment and
structures is becoming increasingly important. Tikislue to the demands of these products are isiaglg lighter,
more flexible and stronger.

The dynamic strain, conventionally, are obtainegegxnentally by strain gage techniques. Howeveremwh is
necessary to measure strain in many parts of thetste, this technique becomes very costly. TArstlucers used in
strain gage technique, for example, strain gagesesgpensive, disposable and there is a need &m d¢hee surface
analyzed with the removal of paint and other stashgaocedures, which may require standing for Ipegiods of
equipment.

The contradictory demands for high spatial resofutand less extensive measurements may to somet dde
solved using the Hybrid Modal Analysis (HMA) techoe. The HMA technique utilizes a mix of experinant
measured vibration responses and good numericabsipmations of well defined, three-dimensional, |rezormal
modes (Dovstam, 1998). The modes are assumeddollgons to an elastic eigenvalue problem corredpmy to the
true geometry of the analyzed body or structurembhical approximations of the modes can be obtaimgdfor
example, the Finite Element Method (FEM).

Having the modes and applying HMA to a vibratingusture, the spatial distribution of the dynamiat field
may be obtained transforming the displacement spadbe strain space by use of finite differenchesges. This
analysis of the dynamic strain analysis based orAHisin be called Hybrid Strain Analysis (HSA) (Sébd, 1999).

In this sense, methods that use the results ofihrethlysis to predict or estimate the dynamicrstod structures
were studied. These methods basically consistarsgiatial differentiation of displacement obtaitgdmodal analysis
and using mostly the finite difference method folveg differential equations of the problem ofstlaity.

In the work published in 1989, Bernasconi and Evehewn as strain gages and displacement transdcaerbe
used to determine the strain modes normalized kgsmBhus, the strain values in the time domaintmrfiound by
superposition in the same way that one can findithe response of displacement. Karczub and Kd385)Lproposed
a method with respect to deformation in bendinge Bixperimental evaluation using only two acceletensein a
Euler-Bernoulli beam, it is a one-dimensional metlamd therefore limited in its use. Okubo and Yanehg (1995)
predicted the distribution of dynamic deformationdar operating conditions, using the transformatioatrix
displacement - strain. Dovstam (1998) proposecifieid method of modal analysis to complement thieventional
modal analysis to determine the displacement efetldimensional structure and thereby determinestitaén tensor. In
Karczub and Norton (1999) the bending of an EulerABulli beam is studied in time domain and therapgh was
based on the finite difference schemes for thersbooder derivative of the transverse displacenénhe beam, ie,
analyzing the curvature of the beam. Measuremert® wnade at equidistant points and distributed sgtmically
around the point of analysis and the strain cooldoe predicted at boundaries. Lee and Kim (1988jied the normal
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and shear strain in a plate with a viscoelastie dayer. The strain were calculated using thedidifference schemes
on models obtained analytically bending vibratidntlee plate. Sehlistedt (1999) with the values dpliicements
obtained from hybrid modal analysis, made the aiglgf dynamic strain tensor in a plate using théef difference
schemes and the eigenmodes of vibration by theefelement method. Lee (2007) proposed a methodsfiimating
the strain responses from measurements using $htadement transformation matrix, obtained by tloglah matrix of
displacement and strain.

In view of these studies, this paper presents te¢hodology used by HMA and a numerical evaluatiod a
experimental distribution of dynamic strain bendofgan aluminum cantilever beam subjected to harenercitation,
using data obtained by HMA.

2.HIBRID MODAL ANALYSIS

The hybrid modal analysis is used to supplememrimétion obtained from conventional modal analysiem the
hybrid modal analysis is possible to estimate tiepldcement in points or directions of unmeasurtedctire. The
hybrid modal analysis was proposed by Dovstan (L9B1@s technique is based on the orthogonalitthefeigenmodes
of a system and mean square convergence propefteseralised Fourier series.

With the displacements obtained by the displacer®fs (Frequency Response Function), or measuretieby
ODS (Operating deflection shapes), it's possiblelétermine the spatial displacement not measurqubiots of the
structure, by the HMA. For a successful hybrid mi@ealysis, some requirements are needed:

» Known of geometry and boundary conditions ofgiistem.
» Good approximation of eigenmodes of the systeaset on the actual distribution of the structure.
* High quality measurements of responses.

It is assumed that the material undergoes is isaifileand small deformations, and has a linear niethdased on
the elastic-static properties, ie, at zero freqyenc

2.1. Development of Functionsin Series orthonor mal

In the same way that the three-dimensional véc}oman be write by a set of units vector can be emithy a set of
mutually orthogonal unit vectors in the forl{m} =cyi +C, | + gk, according to Spiegel (1974) there is the possilnif
developing a functiof(x) on a set of orthonormal functions, ie:

f(x) =ch¢n(x) as<x<b (1)

n=1

The series, called orthonormal series, are gematadins of Fourier series. Assuming that the rigininber of Eq.
(1) converges t(x), we can formally multiply both sides hg,(x) and integrate them fromnto b, obtaining:

b

e = [ 1(Ig(9x @

a
where,c,, are the generalized Fourier coefficients.
2.2. Approximation by L east Squares

Let f(x) ef' (x) piecewise continuous ora,p], withm=1, 2, 3, ..M, orthonormal §,b]. There is the finite sum:

M
SR AN (3)
m=1

as an approximation dfx), wherea,, is constant yet unknown. Then the mean square efrapproximation is given
by:
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[1100 -5 (0 ax

4
Erro=2
b-a
And the root mean square error is given by:
1 " 2
Erro, = .[——||T(X) - X)|"dx 5
Jb_al[ (¥ =8 (¥)] ©)

By determining the constantg, so as to minimize the root mean square error,(&q.the mean square error is
minimal when the coefficients are equal to the galimed Fourier coefficients, Eq. (2), ie, when:

b

=, = [ 100 (31lx ©)

a
It is often said thaBy(x) with coefficientsc, is an approximation of(x) in the sense of least squares.
2.3. Displacements by the Hybrid M odal Analysis.

According Dovstan (1998) the displacementp,w) of a pointp in the frequency domain can be represented by
generalized Fourier series, according to Eq. (7):

M
0(p,@) = D¢ (0) ¢y +es(P, ) (7)

r=1

where U,.,(P, @) is the pointwise error, or residual.

Since {ug} a vector of displacement in the directibrin the frequency domain, consisting Nfresponses of
displacement:

0 0.0

{Te}={" (zs’w) @®)
U (N, )

Since the modal displacement matfiR] .y , containing information about the direction of tedes and points
of the vecto{ue} , ie:

A1 A2 - 9m
0g]=q| %+ %2 7 v ©)
K1 K2 o A

Then{ug} can be expressed by:

{Te} =[Pe [T} +{Td (10)
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Since{E} the vector of generalized Fourier coefficientd thaigh the contribution of each mode in the resgoof
the structure is given by:

(& ={A ) ={c@ @ ... cy@} (11)

The residual vectoeres} is given by:

{GI'ES} = [q) I'ES]{ ares} (12)

The matrix[d)res] and the vectof Cres} of the Eq. (12) are defined with the Eq. (10) e @4), but refer to a large
numberM modes of analysis and are defined like M +1,M + 2,...c, have infinite dimension, whel{@res] is a real
array of dimensionsN x «, while {C,.¢} is a column vector of complex dimensiopsx 1).

Depending on the number of poiMNs the number of moded and the damping of the structure, the,J can be

neglect of the Eq. (10). In applications the numiemodesM, is chosen such that the angular frequengyfulfils
that w<w,, <@, , Wherewnais the maximum analysis frequency. The number edsnrementsy, must then also be

increased for the system of equations to be saffity overdetermined. Here means that the numbereafsurements,
N, should be large compared to the number of mddesp that the estimated Fourier coefficient areamenough in
the frequency interval of interest.

If N =M, the coefficient vector thus is estimated as:

{Eest} - [¢]_1({G} _{Gres} ) (13)

If N> M, the coefficient vector thus is estimated as:
{e.d=[o] @} -{u.d) (14)

where [CD] is the pseudo inverse matrix defined as:

[o] = (] [o]) Tl (15)

Finally, the displacements not measured at spepiiats @) or directions i) can be predicted according to Eq.
below:

L’:I‘i (O’ a‘) = [¢ol ¢o2 tt ¢0M ]{Eesl}(a’) + L’:I‘l (O’ a‘)res (16)

In a general case, different mode coefficieqtgu) and c,(u) in the modal expansioBg. (10) are not independent.
The modes are said to be coupled. Thus, when tldalnmemupling cannot be neglect, it is necessargvauate the
residue. The residudlu,} may be approximated using the uncoupled modalptanee model derived in Dovstam
(1998).

An approximation is obtained for the displacemezgponse (receptance) due to a point force with spgttrum
Fj(w) = 1 at pointp:



Proceedings of COBEM 2011 21* Brazilian Congress of Mechanical Engineering

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil
S S 2
~ ~ prikr
Ui (p1 w)res = apj = Zcr (u)%r + Z - 17)
r=1 r:M+1m(a‘]'2_a)2+”7ra42)

wherew; is the natural frequency; is the damping loss factor ang is the modal mass defined by:

{w)miw} (18)

where{¢} is the modal vector and/] is the mass matrix.

When the approximation (Eq. (17)) is not good efmug the general case, the residuals then habe tmodeled
and approximated in another way or, alternativelglected. Neglecting the residuals of course reguarlarge number,
M, of modes and thus also a larger numiers M, of measured responses compared to cases whenrgsiddal
approximations are known. Approximation of residutiderefore is a very important task in applicatidrthe HMA
technique in practical vibroacoustics (Dovstam,&)99

3. STRAIN ANALYSIS

The idea behind the method is to obtain the stramsor in a vibrating structure without the usecofiventional
strain gauges. Vibration (displacement, velocity amceleration) measurements are carried out onstheture
(Sehlstedt, 1999). Thereafter, the complete digptemt field of the body in question, or a parttp€an be obtained by
means of HMA. With the use of finite difference eates the strain tensor can be calculated for th@entody, or just
certain parts/points of interest.

The Eulerian finite strain tensor in Cartesian cditates is defined as:

1
&j =§(Ui,j+“1,i“+,iur,j) (19)

where the summation convention is used; i.e., sarndexk. In most applications the strain tensor, as in #§) is
approximated as linear; i.e., the last term of EiP) is neglected. Calculating the strain tensefdfifrom the
displacement fieldy, in a three-dimensional body thus involves calioite of nine different first order derivatives.

Sinceu, v e w the displacement components along the axeg and z, respectively, the strain tensor can be
expressed in matrix form, by:

w tfou o 1£@+0_w)'
0x 2ldy ox) 2\0z 0x
1(0u , ov ov 1({ov , ow
E = —| —+— —_ — —+— 20
! Z(Oy axJ ay 2(02 ayj (20)
Yo, ou) dfov 0wy o
12\0z ox) 2(0z 0dy 0z

For beams subjected to pure bending, initiallyighta and with constant cross section along thetlerof the
longitudinal normal strain specifig, can be found by the second derivative of the défia function related to the
distancey’ between the neutral axis and the point of analyg by analyzing the curvature of the beam.(Et)) shows
is about:

__y 92¥(x)

£x(X) =Y e (21)
By Eg. (21) the straim, may be determined for any poixtsince, knowing the deflectionof this point and the

distancey .
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4. NUMERICAL SIMULATION

In this work, will be made to estimate the benditrgin of a surface point of a beam, using thé fiesivative of the
longitudinal displacements obtained by the Hybridddl Analysis. The size of the beam was 25.4 mn26Gn#m x
3mm. The beam will be considered a conservativeesysvith zero damping. The strain estimated by rhadalysis
will be compared with the hybrid strain obtained &wyalyzing the curvature of the beam. The beam usdtie
simulations is depicted in Fig. (1).

Q)J— N

Figure 1. Beam used in the simulations

The first 10 vibration modes of the beam were algdifrom the finite element model using ANSYS ®Ql1n
Tab. 1 are the parameters used in the analysisiia €élements.

Table 1. Parameters used in finite element sinanati

Element type SOLID186
Linear Elastic Isotropic
Material Properties Ej:ggga
p = 2680 kg/m
Geometric model Dimensions of the beam studiesiqusty
Mesh Definition Es’?zgelrgi?rtns

10 modes analyzed
Modal Analysis Modes normalized by the mass
Block Lanczos Algorithm

The vibration modes of displacements of all pooftshe beam in the& andy directions were extracted and saved
for later use in the program developed in MATLAB7&. To simulate the use of hybrid modal analytbis,transverse
displacementsvf to a harmonic exciting force, with frequenty 70 Hz and= = 10 N, at the free end of the beam,
were determined to simulate modal harmonic analpsfNSYS ® 11.0. It was selected 29 points onghgace of the
beam, spaced at 15 mm to observe the operating randeuse the simulation by HMA. Fig (2) illustratése
determined mode:

At OPERATIONAL MODE 70 Hz

DEFLECTION {m)

—— ; i ; i : . i ;
0 005 01 095 02 02 03 03 04 045
LENGTH ()

Figure 2. Operating mode 70 Hz
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The displacements of the beam deflection, at a frequency of 70 Hz,ewesed to estimate the generalized Fourier
coefficients for this frequency through modal analysibrid. Modal relations of these points were groupgd modal
matrices. The 10 eigenmodes related to the 29 selpoiats and thex direction (longitudinal) were conditioned in a
modal matrix[d)ex] of dimensions29x10, and the 10 eigenmodes related to 29 points aad direction (transverse)

were conditioned in a modal matr[@eyj.

Since {Uy}m is the vector of displacements for the operatinglepcand based on the concepts of hybrid modal
analysis, the generalized Fourier coefficientstiier frequency of 70 Hz, were estimated by Eq. (22).

{Ed =[oe, [ a} (22)

From the generalized Fourier coefficients was fasio predict the displacements of the beam pdimtthe
directionx. The vector of these displacements have beenrdieited by Eq. (23).

{0} =[ve,JC.od (23)

A point of analysis has been chosen and the pestiitisplacements have been spatially derivativestinative of
the strain at this point. The beam in bending asgldcementsi in thex direction are depicted in Fig (3).

Point Analysis

i 2

Figure 3. Displacements in thex direction

The strain&, at the point of analysis has been estimated usiadinite central differences and first derivativie
orderO(h%). The finite difference equation may be writterEap(24) (Mathews et al. 1999).
_ —U, +8U, —8U_; +U_,
- 12h
whereh is the distance between points, illustrated in(Big

The value determined by Eq. (24) was compared thighstrain predicted by the second derivative spldicement

V in they direction, perpendicular to the direction of ars#yof strain. The beam in bending and the disphere V
in they direction are depicted in Fig (4).

(24)

Point Analysis

VW Vi Va2

‘%, W Pa P

15 15 15 15 *
I
T e n
> ‘\‘“\\\\ \\\\\\\\ 2
) h i T EN

Figure 4. Displacement in tlyadirection

The finite difference equation of the second deieamay be written by Eq. below:

dx2 12h2

(25)
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According to Eqg. (21) the strain can be predictgdrultiplying the second derivative, Eq. (25), ttistance from
neutral axis to the surface of the beghw 1,5mm. The strain values estimated by the deire of the first and second
order of the longitudinal and transverse displaggmare listed in Tab. (2).

Table 2. Strain estimated by the first and secarivdtive

£, First derivative 4,3993 .10
£,Second derivativg ~ 4,1895 .10
Value Percentage ~ 1%

The strain value estimated by the first derivab¥¢he displacements obtained by modal analysisitidpproached
the value of the strain estimated by the derivati/éransverse displacements obtained by the sopgign of finite
elements.

5. EXPERIMENT TEST CASE
In order to predict experimentally the dynamic istiistribution by HMA was realized an experimergabluation.

The analysis was performed on a cantilever alumilgam. The beam has the same dimensions are pdoiride
Section 2. To perform the experiment was mountimd) @nnecting all the equipment as shown in Fig (5)

Signal Generator Amplifier

Data
Acquisition Conditioner

accelerometer icantilever beam tobile
reference accelerometer

Figure 5. Arrangement of the experiment

The analyzed beam was subjected to a harmonicdtalsexcitation with a frequency of approximat&9 Hz,
generated by the signal generator. The accelesti@s measured in tlyedirection of 29 points equally spaced on the
surface of the beam using piezoelectric acceler@rm@elta Tron ® brand type 4508 Briel & Kjaer.

In the measurements, an accelerometer has remfkeedat the same poirg (reference accelerometer) and one
accelerometer (mobile accelerometer) was used feasorements of all other points The operating mode was
determined by transmissidi), as follows:

Sjyp(a))

Tip(w) = S, (@)

(26)

where§; is the cross spectral density between the refersigel and the signal of each measured pointSapds the
power spectral density of the reference point.

With information on the operating mode in thalirection of the beam was constructed a ve@ﬂzgxl. Thus,

through the displacement modal matrikef] , found earlier, and Eq. (22) were unable toreate the coefficients.
Later using Eq. (23), the displacemeﬁf§} of 29 points in the longitudinal direction of theam was estimated. With
these displacements, and by equation (24) waslpedsi estimate the longitudinal strain on the acefpoints of the
beam. Fig (6) illustrates the strain mode or theadyic strain distribution of the beam predicted Hyprid modal
analysis and simulated numerically by analyzingdhevature of the beam.
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xi0° €

Figure 6. Operation Strain mode (a) humericalgflperimental

The distribution of longitudinal strain along theam could be identified by hybrid modal analysssshown in Fig
(6), when comparing the deformation modes obtama&derically and by experimental data using the HNR&gions
with dark blue colors show areas of higher deforomatThis region is close to the crimp region of theam, where the
operational mode analyzed, it really is the regibgreatest strain.

6. CONCLUSION

The hybrid modal analysis is a technique basedherestimation of weighting coefficients of modahtdbution
and can be used to supplement information not medsu the structure. In this work, the hybrid mbdaalysis to
estimate the distribution of dynamic strain in atdaver beam was analized . In the qualitative parison of the
distribution of strain predicted using data obtdifieom HMA and strain simulated by analyzing theveuure of the
beam, one can observe good consistency of thetse3tilus, the use of HMA to estimate the dynamiaistshows to
be promising and opens a very wide range of istha&seed to be studied in future.
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