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Abstract. In order to design an effective thrust bearing, it is very important to know how the pressure is 

generated within the oil film and the magnitude of the load capacity transmitted from the collar to the bearing 

throughout the fluid. This lubricant fluid, which can be modeled as a spring-damper system with negligible mass, has a 

fundamental importance to avoid contact between solid parts with axial relative motion, preventing friction, wear and 

failure of elements on a rotating machine. To analyze this problem, the Reynolds’ Equation must be solved so that the 

distribution of pressure on the sections under hydrodynamic lubrication is obtained and the total load capacity of the 

bearing can be calculated. The solution of this fundamental equation is reached by using a Finite Volume Method in 

polar coordinates, solving a balance of fluid flows in each control volume of the mesh, which allows the analysis of film 

thickness discontinuities that exist due to the bearing grooves. Knowing the distribution of pressure and the total load 

capacity of the lubricant, it is possible to calculate the equivalent stiffness and damping coefficients of the fluid film. 

Constant fluid viscosity and density are assumed as well as the fact that the collar attached to the shaft is always 

parallel to the thrust bearing. For this reason, only direct coefficients in the axial direction are calculated. This kind of 

analysis is very important to allow the prediction of the dynamic behavior of the shaft-lubricant-bearing system, 

improving the parameters of investigation of rotating machines with thrust bearings. 
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1. INTRODUCTION 
 

The study of rotating machinery plays a very important role in the field of structures and machines, as this type of 

equipment has its own typical phenomena while in operation. The existence of a rotating element supported by bearings 

and transmitting power creates a range of problems which can occur in several different equipments, such as 

compressors, turbines, pumps, engines, turbochargers and so on. Such machines are usually part of great facilities or 

energy generators and any unexpected maintenance may result in large financial losses. For this reason, a wider 

knowledge of the phenomena that may happen in rotating machinery, more specifically between the fixed and rotating 

components, is required. 

In the specific case of a shaft under axial external forces, effective thrust bearings are required to avoid contact 

between solid parts and, consequently, wear and failure. Hydrodynamic bearings may prevent such contacts due to the 

lubricant fluid film in the interface of the moving parts, which must be able to provide load capacity with the least 

energy waste as possible and without introducing undesired instabilities. Large axial movements of the shaft can be 

avoided due to the pressures generated within the oil present between the bearing and the moving collar, which rotates 

with the shaft. In order to ensure the correct functioning of the system, the clearance containing the lubricant must be 

extremely small, in the order of micrometers, and the bearing must have several pads separated by grooves that provide 

the oil, searching to avoid cavitation and to improve the heat dissipation. 

The study of lubrication in rotating machinery started during the 19
th

 century, when scientists such as Petrov (1883), 

Tower (1885) and Reynolds (1886) gave a great contribution to the tribology. Reynolds was responsible for writing the 

differential equation that defines the pressure profile between two surfaces with relative motion. This equation was 

obtained applying some simplifications to the Navier-Stokes Equations and it is still the basis of modern lubrication 

theory. 

During the 20
th

 century, several scientists attempted to solve the Reynolds Equation by means of numerical methods. 

Pinkus and Lynn (1958) solved this equation for sector thrust bearings using the Finite Difference Method (FDM). 

Nevertheless, due to computational limitations, they could only use a 7 x 7 mesh, which may have introduced errors in 

the values of the integrated pressure. Two years earlier, Pinkus had already solved the Reynolds’ Equation for elliptical 

journal bearings, also by using the FDM. In 1981, Singhal discussed in his paper some relaxation methods, the Jacobi-

Method and the Gauss-Seidel Method, analyzing the numerical convergence and trying to reduce the computational 

time. Koç (1990) used the FDM with Lagrange Polynomials to solve the Reynolds Equation. Vieira and Cavalca (2009) 

and Vieira et al. (2010) used the FDM to calculate the generated pressure on thrust bearings, analyzed the influence of 

several operating parameters on the load capacity of the bearing and searched for an optimized bearing pad ramp size. 

Other authors, on the other hand, used the Finite Volume Method, also called FVM, (which, unlike the FDM, allows the 

introduction of fluid film discontinuities) to solve this equation, such as Kogure et al. (1983) and Jang et al. (2006), who 

used a coordinate transformation in order to align the fluid film discontinuities to the mesh. 
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Other authors focused their efforts on the calculation of the equivalent dynamic coefficients of the lubricant. Lund 

(1987) reviewed in his paper the concept of stiffness and damping coefficients for journal bearings. Storteig and White 

(1999) calculated the crossed stiffness and damping coefficients for thrust bearings and analyzed the effects of the thrust 

bearings on lateral vibration. They used the Finite Elements Method to obtain the pressure distribution on the bearing. 

Zhu and Zhang (2003) used a non-linear model to study the transient response of thrust bearings with hydrodynamic 

lubrication. Jang et al. (2006) also used the Finite Elements Model, but to study the dynamic behavior of a system with 

journal and thrust bearings in a computer hard disk. In 2006, Jang and Lee, calculated the dynamic coefficients by using 

the perturbations method, the same approach applied in the present paper. 

The present paper attempts to perform a preliminary analysis of thrust bearings under hydrodynamic lubrication. 

Both the axial load capacity and the dynamic behavior of thrust bearings are analyzed. A FVM, which allows the 

analysis of fluid film discontinuities, such as thrust bearing grooves, is used to solve the Reynolds Equation and to 

obtain the load capacity of this type of bearings. A balance of the fluid flows inside each control volume is applied with 

help from the Bernoulli Equation, according to the model suggested by Arghir et al. (2002), allowing the analysis of 

rapid pressure variations due to the discontinuities. Having the load capacity, it is possible to calculate both the direct 

stiffness and damping equivalent coefficients of the lubricant fluid present between the bearing and the rotating collar. 

At first, a result of pressure distribution obtained with the model with film discontinuities (bearing grooves) by FVM 

is compared to the result obtained with a FDM code, earlier implemented by the authors (Vieira and Cavalca (2009) and 

Vieira et al., 2010), without film discontinuities. To verify the algorithm performance, both methods, FVM and FDM, 

are applied in similar conditions, in which the influence of the grooves is not very expressive and the potential of the 

FVM is not completely used. This comparison validates the calculation method used. Although the method suggested 

by Arghir et al. (2002) allows further analysis of film discontinuities, such as the analysis of pocket thrust bearings or 

“Rayleigh-Step” bearing pads, the objective of the present paper is to perform a preliminary analysis of the results 

obtained without the consideration of the influence of concentrated inertia effect or the temperature influence. 

Nonetheless, the authors recognize the importance of such influences and intend to analyze these influences in future 

works. 

Secondly, the dynamic coefficients of bearings with different geometrical parameters and different fluid viscosities 

are calculated and compared.  

Finally, the coefficients obtained are compared to the coefficients obtained by Zhu and Zhang (2003), attempting to 

validate the results of dynamic coefficients obtained with the implemented code. 

 

2. THEORY AND RESULTS 

 

2.1 Coordinate Systems and Bearing Pads 

 

The Reynolds’ Equation solved in this paper is used in Polar Coordinates. Figure 1 shows the geometry of the pad of 

a thrust bearing in both Polar and Cartesian co-ordinate systems. The coordinate r  is in the radial direction with the 

reference in the center of the bearing; the coordinate θ  is the circumferential direction and increases clock-wisely. It is 

known that the Cartesian coordinates are related to the polar ones as follows: θry =  and rz = . 

 

 

(a) 

 

 

(b) 

Figure 1. (a) Polar and (b) Cartesian coordinates in a pad of a sector thrust bearing 

 

The shape of the bearing pad, as assumed in the case with no bearing grooves considered, as well as the fluid film 

shape, can be seen in Fig. 2 (a) and (b). The inner radius of the pad is given by innerr , the outer radius is given by outerr , 

resulting, as a consequence, in 
innerouter rrb −= . The angular span of each pad is given by 

oθ  and the angular size of 

the ramp is given by
rampθ . All bearing pads considered in this paper have a ratio of 4/3/ =oramp θθ , what, according 

to shown in Vieira et al. (2010), is the ratio that provides an optimized load capacity. It is important to notice that the 

flat surface in Fig. 2 (b) rotates in the same direction of θ . This surface is the collar. The bearing (upper surface) has no 

load capacity whether the shaft rotates in the opposite direction. The oil shape, considering the grooves can be seen in 
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Fig. 2 (c). In Fig. 2 (b) and Fig. 2 (c), oh  is the minimum film thickness and maxh  is the maximum film thickness. The 

difference between these two values of film thickness is given by oh hhs −= max . 

 

 

(a) 

 

 

(b)  
(c) 

Figure 2. (a) Bearing pad; (b) Fluid film thickness for the case with no grooves; (c) Fluid film thickness for the case 

with grooves 

 

2.2 Reynolds’ Equation and Assumptions 

 

The differential equation which governs the pressure distribution in the lubricant fluid present in the clearance 

between a thrust bearing and the collar attached to the shaft, the Reynolds’ Equation, is given in Eq. (1). As mentioned 

before, it is usually written in polar coordinates when studying thrust bearings. 

In Eq. (1), p  is the pressure generated within the fluid, r  and θ  are the polar co-ordinates, as shown in Fig. 1, h  

is the film thickness, η  is the absolute viscosity of the lubricant and θv  is the velocity of the collar attached to the 

shaft, in the θ  direction. Constant temperature, viscosity and density of the fluid are assumed. The velocity of the fluid 

in contact with the collar surface in the radial direction is null, since any movement of the collar in this direction is 

neglected. Hydrodynamic lubrication is considered and the effect of temperature on the lubricant fluid viscosity is not 

considered. As commonly used in problems related to bearings, the pressure is assumed as being atmospheric along the 

outer boundary of the bearing. When the grooves are not considered and the bearing pad is analyzed separately, the 

pressure is atmospheric also in the positions with 0=θ  and 
oθθ = . Unlike the assumptions made in analytical 

solutions solved by several authors (such as Hamrock et al., 2005, for example), side leakages of fluid are not neglected 

in numerical solutions. 

The Reynolds’ Equation may also be written based on the fluid flows. Equation (2), written as function of the fluid 

flows in both radial and angular directions, is equivalent to Eq. (1) and it is the basis for the numerical solution obtained 

in this paper. It should be pointed out that in the calculation of the damping coefficients, the term th ∂∂ / , which 

considers the variation of the fluid film in time, must be considered in Eq. (1) and in Eq. (2). 
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The fluid flow per unit width in the radial direction, 
'

latq , can be seen in Eq. (3), while the flow per unit length in 

the angular direction, 
'

padq , is seen in Eq. (4). In this last equation, the subscript c is related to the moving collar. Since 

the bearing is stationary, the velocities related to it are neglected in both equations.  
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2.3 Finite Volume Method and Calculation of the Pressure Distribution 

 

The numerical method used to solve the Reynolds’ Equation is the Finite Volume Method, based on the solution of 

Arghir et al. (2002). This solution is based on a balance of fluid flows in every control volume of the mesh. Figure 3 

shows a control volume in the mesh built in polar coordinates. In this figure, the index i  is related to the position of a 
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node of the mesh in the radial direction, while the index j  is related to the position of a node in the angular direction. 

 

 

Figure 3. Control volume in polar coordinates 

 

Figure 4. Control volume and fluid film discontinuities 

 

In this solution, the film discontinuities must always be coincident with the boundary of a control volume (the film 

thickness in the east or west position of the cell), as seen in Fig. 4: 

Equation (2) can be rewritten as a function of the fluid flows across the boundaries of the control volumes in north, 

south, east and west: 
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The relationship between the flows of adjacent cells may be written as seen in the set of expressions written in Eq. 

(6), knowing that the flows at the east and west sides of each cell are related to 
'

padq  (angular), and the flows at north 

and south are related to 
'

latq  (radial).  
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The terms of Eq. (6) may be rewritten in function of 
'

padq  and 
'

latq . Substituting Eq. (4) into the term 
w
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for example, the following expression is obtained: 
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Introducing the term 
w

jib 1, + , described in Eq. (8), and rearranging Eq. (7), the expression written in Eq. (9) is 

obtained: 
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To analyze the abrupt pressure change that occurs when fluid film discontinuities are considered, Arghir et al. 

(2002) introduced the use of a simplified and rearranged Bernoulli Equation as seen in Eq. (10): 

 

2/1,,1, ++ −= ji

e

ji

w

ji App  (10) 

in which 
e

ji

e

jie

ji
h

q
V

,

'

,

, =  and 
w

ji

w

jiw

ji
h

q
V

1,

'

1,

1,

+

+

+ =  are fluid velocities and 
2

)(

2

)( 2

,

2

1,

2/1,

e

ji

w

ji

ji

VV
A

ρρ
−=

+

+
. It is important to 

mention once again that, since the present approach is a preliminary work implementing the model proposed by Arghir 

et al. (2002), with the objective to compare the results obtained with this method with another model and analyze some 

results of dynamic coefficients obtained for different bearing pad geometries, the term of concentrated inertia is 

neglected, as performed by Arghir et al. (2002) on part of their results, focusing more on the use of the generalized 
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Bernoulli equation written immediately before and after a film discontinuity to analyze the pressure drop at this region 

due to the kinetic energy variation, not considering the influence of viscous effects. 

Substituting Eq. (9) in Eq. (10), the following expression for the pressure at the east of the control volume is 

obtained: 
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Applying this same procedure to the other terms of Eq. (6), the values of pressure at the western, northern and 

southern boundaries of each cell can be calculated. 

Returning to Eq. (5), substituting the expressions for the fluid flows, the following equation is obtained: 
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After the substitution of the values of the pressures 
e

jip , , 
w

jip , , 
n

jip ,  and 
s

jip , , the expression for the calculation of 

the pressure at the center of one control volume is finally found in Eq. (13): 

 

( ) ( ) ( ) ( )

θθ

θθ θ

∂+∂+∂+∂











 ∂−
−∂+∂+∂+∂

=
ji

s

jiji

n

ji

w

ji

e

ji

w

ji

e

jic

ji

s

ji

s

jiji

n

ji

n

ji

w

ji

w

ji

e

ji

e

ji

ji
rbrbrbrb

rhhv
rpbrpbrpbrpb

p
,,,,,,

,,

,,,,,,,,,,

,

2

)(

 
(13) 

 

Once the pressure on every control volume has been calculated, the axial load capacity of the bearing may be 

obtained by integrating this pressure along the entire area of the bearing pads and grooves (if the grooves are considered 

in the calculations). Equation (14) shows the expression used for this calculation. 

 

∫ ∫ ∂∂= rprW θ  (14) 

 

2.4 Calculation of Stiffness and Damping Coefficients 

 

Having calculated the pressure distribution and load capacity of the bearing, it is possible to calculate the equivalent 

stiffness and damping coefficients of the lubricant fluid, that can be considered as analogous to a spring-damper system, 

as seen in Fig. 5. The mass of the fluid is neglected, since the amount of fluid present between the bearing and the collar 

is extremely small. 

The direct stiffness coefficient, xxK , can be calculated by introducing small perturbations to the equilibrium 

position, x∂ , as seen in Eq. (15): 
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Figure 5. Spring-damper system representing the lubricant fluid 

 

The damping coefficient is calculated by introducing the term of the fluid film thickness variation in time, th ∂∂ / , 

in Eq. (2). Rearranging Eq. (2) after introducing th ∂∂ / , Eq. (16) is obtained. The load capacity of the bearing is 

calculated again based on this equation and the direct damping coefficient can be calculated by Eq. (17). 
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2.5 Results and General Comments 

 

In the following sections, the results for pressure distribution and stiffness and damping coefficients are presented 

and analyzed. Bearings with and without grooves are compared at first. Then, coefficients for bearings with different 

geometries and different fluid viscosity values are analyzed. 

 

2.5.1 Comparison between cases with and without grooves 

 

The first results analyzed were the results obtained for bearings considering grooves (FVM analysis) and bearings 

without them (FDM analysis). In the second case, the pressure distribution is calculated for one single bearing pad and 

its load capacity is multiplied by the number of pads in order to obtain the total load capacity of the bearing. 

Table 1 shows the geometrical data for the bearing used in the simulations and the viscosity of the lubricant fluid 

considered. The grid was built in a way that the dimensionless distance between two adjacent nodes is approximately 

9x10
-3

 in both radial and angular directions. This value was used searching a compromise between computational time 

and accuracy of the results. Table 2 shows the results obtained for both cases and a comparison between them.  

 

Table 1. Thrust Bearing and Fluid Data 

Data Value Data Value 

outerr  0,0135 m oθ  20° 

innerr  0,0045 m N  50000 RPM 

oh  10 mµ  
hs  10 mµ  

η  0.012 
2/ mNs    

 

Table 2: Results 

 totalW  lessdimmaxθ  maxR  maxp  

Grooves 

(FVM) 
610,12 N 0,62 0,73 

6,98 

MPa 

No grooves 

(FDM) 
626,56 N 0,63 0,73 

7,03 

MPa 

Difference 2,62 % 1,71 % 0 % 0,71 % 

 

Equation 18 gives the expressions for the dimensionless positions of the maximum pressure both in the radial and 

angular directions. 
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Comparing the results shown in Table 2, it can be seen that the load capacity and the pressure peak are slightly 

higher for the case in which grooves are not considered. The axial load capacity obtained in the simulation that does not 

consider grooves is around 2,6% higher than the one calculated with bearing grooves. The results of pressure 

distribution for the cases with bearing grooves and without grooves are in Fig. 6 and Fig. 7, respectively. In the case 

with grooves (Fig. 6), the pressure distribution is calculated for the entire bearing, while in the case with no grooves, the 

pressure at bearing pad is calculated and multiplied by the number of pads. 

The results in Table 2, also demonstrate that the position of the peak pressure in the angular direction slightly 

changes when grooves are considered. The position of the peak pressure on the radial direction, on the other hand, 

remains practically the same. This may be explained by the fact that the boundary conditions at 
outerrr =  and 

innerrr =  

considered in both cases are the same (pressure equals the atmospheric pressure), but the boundary conditions at 

°= 0θ  and 
oθθ =  are different (when the grooves are considered, the pressure cannot be set as atmospheric and is 

calculated). 

Figure 8 shows the pressure profile (at 
maxRR = ) obtained for one bearing pad in the case that considers the 

grooves. The red star in both figures shows the position of the end of the pad. Figure 9 shows the pressure profile for the 

case in which the grooves are not considered. 

The results shown in Fig. 8 and Fig. 9, demonstrate that, unlike what happens at the second case, the pressure at the 

beginning and at the end of the pad at the first case is not null. Also, the pressure on the groove is mostly equal zero 

(calculated pressure values that are negative are set zero, since cavitation is not considered as the bearing is submerged 

in oil), as one can see from Fig. 10. 

Comparing the results obtained with both methods, the FVM based on the proposal of Arghir et al. (2002), which 

allows the consideration of grooves, and the FDM, which does not allow the consideration of fluid film discontinuities, 

one can see that the results obtained were very similar. The pressure at the end and at the beginning of the bearing pads 

at the case with grooves is slightly different of zero due to numerical calculation, since the pressure at the groove is 
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equal zero, but the pressure above the pad is different of zero, resulting in values close to zero, but not null, at the nodes 

close to the grooves. 
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Figure 6. Pressure distribution for the case with grooves 
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Figure 7. Pressure distribution for the  

case without grooves 
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Figure 8. Pressure profile for one bearing pad  

in the case with the consideration of grooves 
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Figure 9. Pressure profile for one bearing pad  

in the case without the consideration of grooves 
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Figure 10. Pressure profile for one bearing pad and one groove 

 

2.5.2 Stiffness and Damping Coefficients 
 

Figure 11 and Fig. 12 show, respectively, the direct stiffness and damping coefficients as function of the speed of 

rotation of the collar, considering only the case of bearings with grooves. The calculations considered a fixed applied 

axial load of 100N. The required film thickness necessary to support such axial load at each speed was calculated before 

obtaining the dynamic coefficients. 

An analysis of the dynamic coefficients of bearings with different angular pad sizes was performed. Figure 11 and 

Fig. 12 show the results of stiffness and damping coefficients obtained for bearings with four different values of 
oθ . 

Figure 11 shows that smaller bearing pads result in higher stiffness coefficients. The reason for this behavior is that 

pads with smaller values of 
oθ  work with smaller values of film thickness than the bearings with longer pads in order to 

support the same axial load of 100N. The behavior observed in Fig. 12, however, shows that longer bearing pads result 

in greater values of damping coefficients.  
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Such behavior may be explained by the fact that thinner thicknesses result in stiffer bearings; a stiffer system implies 

that the displacements are lower, implying lower velocities, hence lower damping forces. The behavior of both stiffness 

and damping coefficients seen in Fig. 11 to Fig. 12 is similar to the behavior of the direct coefficients (in the vertical 

direction) calculated for cylindrical journal bearings, as seen in Machado and Cavalca (2009), following the typical 

behavior of coefficients of hydrodynamic bearings in general. 

Figure 13 shows the minimum film thickness as function of the speed of the shaft for all four different values of 
oθ . 

The behavior obtained for all the cases is similar, with the film thickness increasing as the speed of the shaft increases. 

Once again, one can notice that the bearing with smaller pads requires thinner film thicknesses to support the applied 

load of 100N.  
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Figure 11. Stiffness coefficients as function of the  

speed of the shaft obtained for different values of 
oθ  
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Figure 12. Damping coefficients as function of the  

speed of the shaft obtained for different values of 
oθ  
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Figure 13. Minimum film thickness as function of the  

speed of the shaft obtained for different values of 
oθ  
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Figure 14. Stiffness coefficients for different  

values of fluid viscosity 
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Figure 15. Damping coefficients for different  

values of fluid viscosity 
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Figure 14 and Fig. 15 show the behavior of the stiffness and damping coefficients as function of the speed of the 

shaft for four different values of viscosity of the lubricant. The influence of the viscosity is clear for the stiffness 

coefficients, showing that for less viscous oils, the stiffness coefficients obtained are higher, since the film thickness 

required to support the axial load of 100N is thinner, resulting in a stiffer system. With regards to the damping 

coefficients, the influence of the viscosity, at this specific case, is not expressive and the curves are almost overlapping. 

The temperature of the fluid has influence on its viscosity and, as a consequence, on the load capacity of the bearing 

and the stiffness and damping coefficients. This influence is of great importance at high speeds, in such a way that the 

temperature of the fluid will increase as the speed increases, causing a reduction of the fluid’s viscosity, resulting in the 

fact that the film thickness necessary to support a defined axial load at a defined speed must be smaller. The influence 

of the temperature, using a Thermohydrodynamic (THD) model, was analyzed by Daniel et al. (2010) for journal 

bearings and such analysis is to be performed for thrust bearings in a near future. 

 

2.5.3 Validation and Additional Results 

 

In order to validate the results for stiffness and damping coefficients by the model used in the present paper, some 

results were obtained for a different geometry of bearing pad and compared to the results from Zhu and Zhang (2003). 

The bearing pad geometry considered can be seen in Fig. 16. Figure 17 shows the fluid film thickness considered in this 

case and the angleα , an important variable considered by Zhu and Zhang (2003) in their paper. Three different values 

of α  were used in the analysis, resulting in three different values of )tan(α . A constant speed of 36000RPM and twelve 

bearing pads with °= 25oθ  were considered. Other information of the bearing pads can be seen in Zhu and Zhang 

(2003). 

The stiffness and damping coefficients obtained are shown, respectively, in Fig. 18 and Fig 19 (in logarithmic scale, 

as done by Zhu and Zhang, 2003). The results from Fig. 18, demonstrate that for cases with less inclined ramps (smaller 

values of )tan(α ) the stiffness coefficient is greater then the coefficients obtained for bearing pads with more inclined 

ramps for a certain range of film thicknesses; at certain point, the curves cross each other (at this particular case, this 

phenomenon occurs for 61035 −≈ xho
m) and the bearing with more inclined ramps becomes stiffer than the others. 

With regard to the damping coefficients, bearings with less inclined ramps result in higher damping coefficients for 

the entire range of 
oh  analyzed. 

 

 
Figure 16. Bearing pad geometry 

 

 
Figure 17. Fluid film thickness and angle α  
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Figure 18. Stiffness coefficients as function of the 

minimum film thickness for different values of )tan(α  
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Figure 19. Damping coefficients as function of the 

minimum film thickness for different values of )tan(α  

 

2.6 CONCLUSIONS 

 

The FVM is proposed to solve the lubrication dynamic model for thrust bearings with grooves, in polar coordinates. 

The model seems reasonable when comparing its results to those obtained from different models (FDM and Zhu and 
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Zhang, 2003).  

The influence of temperature of the lubricant fluid is not analyzed in the present paper. However, it is know that at 

higher speeds, the temperature of the fluid increases and its viscosity decreases, causing a reduction at its load capacity. 

Further analyses of this influence are suggested to be performed in the future. 

Impact of important design parameters such as angular extension, inclination of the bearing pad ramp and fluid 

viscosity of the bearing pad were also discussed and analyzed.  

This work showed results that were performed without the consideration of a concentrated inertia term, as done by 

Arghir et al. (2002) in part of his analyses. The influence of such term at high speeds, however, is recognized to be 

important and will be analyzed in future works. 
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